diff --git a/exercises/practice/acronym/.docs/instructions.md b/exercises/practice/acronym/.docs/instructions.md index c62fc3e85f..133bd2cbb7 100644 --- a/exercises/practice/acronym/.docs/instructions.md +++ b/exercises/practice/acronym/.docs/instructions.md @@ -10,8 +10,8 @@ Punctuation is handled as follows: hyphens are word separators (like whitespace) For example: -|Input|Output| -|-|-| -|As Soon As Possible|ASAP| -|Liquid-crystal display|LCD| -|Thank George It's Friday!|TGIF| +| Input | Output | +| ------------------------- | ------ | +| As Soon As Possible | ASAP | +| Liquid-crystal display | LCD | +| Thank George It's Friday! | TGIF | diff --git a/exercises/practice/affine-cipher/.docs/instructions.md b/exercises/practice/affine-cipher/.docs/instructions.md index 2ad6d15215..26ce153426 100644 --- a/exercises/practice/affine-cipher/.docs/instructions.md +++ b/exercises/practice/affine-cipher/.docs/instructions.md @@ -6,7 +6,7 @@ The affine cipher is a type of monoalphabetic substitution cipher. Each character is mapped to its numeric equivalent, encrypted with a mathematical function and then converted to the letter relating to its new numeric value. Although all monoalphabetic ciphers are weak, the affine cipher is much stronger than the atbash cipher, because it has many more keys. -[//]: # ( monoalphabetic as spelled by Merriam-Webster, compare to polyalphabetic ) +[//]: # " monoalphabetic as spelled by Merriam-Webster, compare to polyalphabetic " ## Encryption @@ -23,7 +23,7 @@ Where: For the Roman alphabet `m` is `26`. - `a` and `b` are integers which make the encryption key -Values `a` and `m` must be *coprime* (or, *relatively prime*) for automatic decryption to succeed, i.e., they have number `1` as their only common factor (more information can be found in the [Wikipedia article about coprime integers][coprime-integers]). +Values `a` and `m` must be _coprime_ (or, _relatively prime_) for automatic decryption to succeed, i.e., they have number `1` as their only common factor (more information can be found in the [Wikipedia article about coprime integers][coprime-integers]). In case `a` is not coprime to `m`, your program should indicate that this is an error. Otherwise it should encrypt or decrypt with the provided key. diff --git a/exercises/practice/all-your-base/.docs/instructions.md b/exercises/practice/all-your-base/.docs/instructions.md index d5a2cde652..4602b5cfad 100644 --- a/exercises/practice/all-your-base/.docs/instructions.md +++ b/exercises/practice/all-your-base/.docs/instructions.md @@ -14,20 +14,20 @@ Given a number in base **a**, represented as a sequence of digits, convert it to In positional notation, a number in base **b** can be understood as a linear combination of powers of **b**. -The number 42, *in base 10*, means: +The number 42, _in base 10_, means: `(4 * 10^1) + (2 * 10^0)` -The number 101010, *in base 2*, means: +The number 101010, _in base 2_, means: `(1 * 2^5) + (0 * 2^4) + (1 * 2^3) + (0 * 2^2) + (1 * 2^1) + (0 * 2^0)` -The number 1120, *in base 3*, means: +The number 1120, _in base 3_, means: `(1 * 3^3) + (1 * 3^2) + (2 * 3^1) + (0 * 3^0)` I think you got the idea! -*Yes. Those three numbers above are exactly the same. Congratulations!* +_Yes. Those three numbers above are exactly the same. Congratulations!_ [positional-notation]: https://en.wikipedia.org/wiki/Positional_notation diff --git a/exercises/practice/allergies/.docs/instructions.md b/exercises/practice/allergies/.docs/instructions.md index a139492096..daf8cfde21 100644 --- a/exercises/practice/allergies/.docs/instructions.md +++ b/exercises/practice/allergies/.docs/instructions.md @@ -22,6 +22,6 @@ Now, given just that score of 34, your program should be able to say: - Whether Tom is allergic to any one of those allergens listed above. - All the allergens Tom is allergic to. -Note: a given score may include allergens **not** listed above (i.e. allergens that score 256, 512, 1024, etc.). +Note: a given score may include allergens **not** listed above (i.e. allergens that score 256, 512, 1024, etc.). Your program should ignore those components of the score. For example, if the allergy score is 257, your program should only report the eggs (1) allergy. diff --git a/exercises/practice/armstrong-numbers/.docs/instructions.md b/exercises/practice/armstrong-numbers/.docs/instructions.md index 744cfbe7fa..5e56bbe465 100644 --- a/exercises/practice/armstrong-numbers/.docs/instructions.md +++ b/exercises/practice/armstrong-numbers/.docs/instructions.md @@ -5,9 +5,9 @@ An [Armstrong number][armstrong-number] is a number that is the sum of its own d For example: - 9 is an Armstrong number, because `9 = 9^1 = 9` -- 10 is *not* an Armstrong number, because `10 != 1^2 + 0^2 = 1` +- 10 is _not_ an Armstrong number, because `10 != 1^2 + 0^2 = 1` - 153 is an Armstrong number, because: `153 = 1^3 + 5^3 + 3^3 = 1 + 125 + 27 = 153` -- 154 is *not* an Armstrong number, because: `154 != 1^3 + 5^3 + 4^3 = 1 + 125 + 64 = 190` +- 154 is _not_ an Armstrong number, because: `154 != 1^3 + 5^3 + 4^3 = 1 + 125 + 64 = 190` Write some code to determine whether a number is an Armstrong number. diff --git a/exercises/practice/binary-search-tree/.meta/config.json b/exercises/practice/binary-search-tree/.meta/config.json index b2261d1bd8..912427aff8 100644 --- a/exercises/practice/binary-search-tree/.meta/config.json +++ b/exercises/practice/binary-search-tree/.meta/config.json @@ -21,6 +21,5 @@ ] }, "blurb": "Insert and search for numbers in a binary tree.", - "source": "Josh Cheek", - "source_url": "https://twitter.com/josh_cheek" + "source": "Josh Cheek" } diff --git a/exercises/practice/binary-search/.docs/instructions.md b/exercises/practice/binary-search/.docs/instructions.md index aa1946cfb0..f183061e05 100644 --- a/exercises/practice/binary-search/.docs/instructions.md +++ b/exercises/practice/binary-search/.docs/instructions.md @@ -5,13 +5,13 @@ Your task is to implement a binary search algorithm. A binary search algorithm finds an item in a list by repeatedly splitting it in half, only keeping the half which contains the item we're looking for. It allows us to quickly narrow down the possible locations of our item until we find it, or until we've eliminated all possible locations. -~~~~exercism/caution +```exercism/caution Binary search only works when a list has been sorted. -~~~~ +``` The algorithm looks like this: -- Find the middle element of a *sorted* list and compare it with the item we're looking for. +- Find the middle element of a _sorted_ list and compare it with the item we're looking for. - If the middle element is our item, then we're done! - If the middle element is greater than our item, we can eliminate that element and all the elements **after** it. - If the middle element is less than our item, we can eliminate that element and all the elements **before** it. diff --git a/exercises/practice/book-store/.docs/instructions.md b/exercises/practice/book-store/.docs/instructions.md index 906eb58761..54403f17bf 100644 --- a/exercises/practice/book-store/.docs/instructions.md +++ b/exercises/practice/book-store/.docs/instructions.md @@ -36,8 +36,8 @@ This would give a total of: Resulting in: -- 5 × (100% - 25%) * $8 = 5 × $6.00 = $30.00, plus -- 3 × (100% - 10%) * $8 = 3 × $7.20 = $21.60 +- 5 × (100% - 25%) × $8 = 5 × $6.00 = $30.00, plus +- 3 × (100% - 10%) × $8 = 3 × $7.20 = $21.60 Which equals $51.60. @@ -53,8 +53,8 @@ This would give a total of: Resulting in: -- 4 × (100% - 20%) * $8 = 4 × $6.40 = $25.60, plus -- 4 × (100% - 20%) * $8 = 4 × $6.40 = $25.60 +- 4 × (100% - 20%) × $8 = 4 × $6.40 = $25.60, plus +- 4 × (100% - 20%) × $8 = 4 × $6.40 = $25.60 Which equals $51.20. diff --git a/exercises/practice/bowling/.docs/instructions.md b/exercises/practice/bowling/.docs/instructions.md index ddce7ee489..60ccad1b61 100644 --- a/exercises/practice/bowling/.docs/instructions.md +++ b/exercises/practice/bowling/.docs/instructions.md @@ -23,9 +23,9 @@ There are three cases for the tabulation of a frame. Here is a three frame example: -| Frame 1 | Frame 2 | Frame 3 | -| :-------------: |:-------------:| :---------------------:| -| X (strike) | 5/ (spare) | 9 0 (open frame) | +| Frame 1 | Frame 2 | Frame 3 | +| :--------: | :--------: | :--------------: | +| X (strike) | 5/ (spare) | 9 0 (open frame) | Frame 1 is (10 + 5 + 5) = 20 diff --git a/exercises/practice/circular-buffer/.docs/instructions.md b/exercises/practice/circular-buffer/.docs/instructions.md index 3487a0f614..2ba1fda2aa 100644 --- a/exercises/practice/circular-buffer/.docs/instructions.md +++ b/exercises/practice/circular-buffer/.docs/instructions.md @@ -4,39 +4,55 @@ A circular buffer, cyclic buffer or ring buffer is a data structure that uses a A circular buffer first starts empty and of some predefined length. For example, this is a 7-element buffer: - - [ ][ ][ ][ ][ ][ ][ ] + +```text +[ ][ ][ ][ ][ ][ ][ ] +``` Assume that a 1 is written into the middle of the buffer (exact starting location does not matter in a circular buffer): - - [ ][ ][ ][1][ ][ ][ ] + +```text +[ ][ ][ ][1][ ][ ][ ] +``` Then assume that two more elements are added — 2 & 3 — which get appended after the 1: - - [ ][ ][ ][1][2][3][ ] + +```text +[ ][ ][ ][1][2][3][ ] +``` If two elements are then removed from the buffer, the oldest values inside the buffer are removed. The two elements removed, in this case, are 1 & 2, leaving the buffer with just a 3: - - [ ][ ][ ][ ][ ][3][ ] + +```text +[ ][ ][ ][ ][ ][3][ ] +``` If the buffer has 7 elements then it is completely full: - - [5][6][7][8][9][3][4] + +```text +[5][6][7][8][9][3][4] +``` When the buffer is full an error will be raised, alerting the client that further writes are blocked until a slot becomes free. When the buffer is full, the client can opt to overwrite the oldest data with a forced write. In this case, two more elements — A & B — are added and they overwrite the 3 & 4: - - [5][6][7][8][9][A][B] + +```text +[5][6][7][8][9][A][B] +``` 3 & 4 have been replaced by A & B making 5 now the oldest data in the buffer. Finally, if two elements are removed then what would be returned is 5 & 6 yielding the buffer: - - [ ][ ][7][8][9][A][B] + +```text +[ ][ ][7][8][9][A][B] +``` Because there is space available, if the client again uses overwrite to store C & D then the space where 5 & 6 were stored previously will be used not the location of 7 & 8. 7 is still the oldest element and the buffer is once again full. - - [C][D][7][8][9][A][B] + +```text +[C][D][7][8][9][A][B] +``` diff --git a/exercises/practice/clock/.meta/config.json b/exercises/practice/clock/.meta/config.json index 064f78a4dc..ac79b5b56f 100644 --- a/exercises/practice/clock/.meta/config.json +++ b/exercises/practice/clock/.meta/config.json @@ -23,6 +23,5 @@ ] }, "blurb": "Implement a clock that handles times without dates.", - "source": "Pairing session with Erin Drummond", - "source_url": "https://twitter.com/ebdrummond" + "source": "Pairing session with Erin Drummond" } diff --git a/exercises/practice/dot-dsl/.docs/instructions.md b/exercises/practice/dot-dsl/.docs/instructions.md index 9230547ea5..b3a63996d8 100644 --- a/exercises/practice/dot-dsl/.docs/instructions.md +++ b/exercises/practice/dot-dsl/.docs/instructions.md @@ -1,7 +1,7 @@ # Instructions A [Domain Specific Language (DSL)][dsl] is a small language optimized for a specific domain. -Since a DSL is targeted, it can greatly impact productivity/understanding by allowing the writer to declare *what* they want rather than *how*. +Since a DSL is targeted, it can greatly impact productivity/understanding by allowing the writer to declare _what_ they want rather than _how_. One problem area where they are applied are complex customizations/configurations. diff --git a/exercises/practice/etl/.docs/instructions.md b/exercises/practice/etl/.docs/instructions.md index 802863b540..7bb161f8b7 100644 --- a/exercises/practice/etl/.docs/instructions.md +++ b/exercises/practice/etl/.docs/instructions.md @@ -22,6 +22,6 @@ This needs to be changed to store each individual letter with its score in a one As part of this change, the team has also decided to change the letters to be lower-case rather than upper-case. -~~~~exercism/note +```exercism/note If you want to look at how the data was previously structured and how it needs to change, take a look at the examples in the test suite. -~~~~ +``` diff --git a/exercises/practice/gigasecond/.docs/introduction.md b/exercises/practice/gigasecond/.docs/introduction.md index 18a3dc2005..74afaa994f 100644 --- a/exercises/practice/gigasecond/.docs/introduction.md +++ b/exercises/practice/gigasecond/.docs/introduction.md @@ -13,7 +13,7 @@ Then we can use metric system prefixes for writing large numbers of seconds in m - Perhaps you and your family would travel to somewhere exotic for two megaseconds (that's two million seconds). - And if you and your spouse were married for _a thousand million_ seconds, you would celebrate your one gigasecond anniversary. -~~~~exercism/note +```exercism/note If we ever colonize Mars or some other planet, measuring time is going to get even messier. If someone says "year" do they mean a year on Earth or a year on Mars? @@ -21,4 +21,4 @@ The idea for this exercise came from the science fiction novel ["A Deepness in t In it the author uses the metric system as the basis for time measurements. [vinge-novel]: https://www.tor.com/2017/08/03/science-fiction-with-something-for-everyone-a-deepness-in-the-sky-by-vernor-vinge/ -~~~~ +``` diff --git a/exercises/practice/isogram/.docs/instructions.md b/exercises/practice/isogram/.docs/instructions.md index 5e48844762..2e8df851a9 100644 --- a/exercises/practice/isogram/.docs/instructions.md +++ b/exercises/practice/isogram/.docs/instructions.md @@ -11,4 +11,4 @@ Examples of isograms: - downstream - six-year-old -The word *isograms*, however, is not an isogram, because the s repeats. +The word _isograms_, however, is not an isogram, because the s repeats. diff --git a/exercises/practice/knapsack/.docs/instructions.md b/exercises/practice/knapsack/.docs/instructions.md index 1dbbca91c2..fadcee1b18 100644 --- a/exercises/practice/knapsack/.docs/instructions.md +++ b/exercises/practice/knapsack/.docs/instructions.md @@ -13,10 +13,12 @@ Given a knapsack with a specific carrying capacity (W), help Bob determine the m Note that Bob can take only one of each item. All values given will be strictly positive. -Items will be represented as a list of pairs, `wi` and `vi`, where the first element `wi` is the weight of the *i*th item and `vi` is the value for that item. +Items will be represented as a list of items. +Each item will have a weight and value. For example: +```none Items: [ { "weight": 5, "value": 10 }, { "weight": 4, "value": 40 }, @@ -25,6 +27,7 @@ Items: [ ] Knapsack Limit: 10 +``` For the above, the first item has weight 5 and value 10, the second item has weight 4 and value 40, and so on. diff --git a/exercises/practice/list-ops/.docs/instructions.md b/exercises/practice/list-ops/.docs/instructions.md index ccfc2f8b2a..ebc5dffed0 100644 --- a/exercises/practice/list-ops/.docs/instructions.md +++ b/exercises/practice/list-ops/.docs/instructions.md @@ -7,13 +7,13 @@ Implement a series of basic list operations, without using existing functions. The precise number and names of the operations to be implemented will be track dependent to avoid conflicts with existing names, but the general operations you will implement include: -- `append` (*given two lists, add all items in the second list to the end of the first list*); -- `concatenate` (*given a series of lists, combine all items in all lists into one flattened list*); -- `filter` (*given a predicate and a list, return the list of all items for which `predicate(item)` is True*); -- `length` (*given a list, return the total number of items within it*); -- `map` (*given a function and a list, return the list of the results of applying `function(item)` on all items*); -- `foldl` (*given a function, a list, and initial accumulator, fold (reduce) each item into the accumulator from the left*); -- `foldr` (*given a function, a list, and an initial accumulator, fold (reduce) each item into the accumulator from the right*); -- `reverse` (*given a list, return a list with all the original items, but in reversed order*). +- `append` (_given two lists, add all items in the second list to the end of the first list_); +- `concatenate` (_given a series of lists, combine all items in all lists into one flattened list_); +- `filter` (_given a predicate and a list, return the list of all items for which `predicate(item)` is True_); +- `length` (_given a list, return the total number of items within it_); +- `map` (_given a function and a list, return the list of the results of applying `function(item)` on all items_); +- `foldl` (_given a function, a list, and initial accumulator, fold (reduce) each item into the accumulator from the left_); +- `foldr` (_given a function, a list, and an initial accumulator, fold (reduce) each item into the accumulator from the right_); +- `reverse` (_given a list, return a list with all the original items, but in reversed order_). Note, the ordering in which arguments are passed to the fold functions (`foldl`, `foldr`) is significant. diff --git a/exercises/practice/meetup/.meta/config.json b/exercises/practice/meetup/.meta/config.json index e542d865f1..3a03f65486 100644 --- a/exercises/practice/meetup/.meta/config.json +++ b/exercises/practice/meetup/.meta/config.json @@ -33,5 +33,5 @@ }, "blurb": "Calculate the date of meetups.", "source": "Jeremy Hinegardner mentioned a Boulder meetup that happens on the Wednesteenth of every month", - "source_url": "https://twitter.com/copiousfreetime" + "source_url": "http://www.copiousfreetime.org/" } diff --git a/exercises/practice/pangram/.docs/introduction.md b/exercises/practice/pangram/.docs/introduction.md index 32b6f1fc31..d38fa341df 100644 --- a/exercises/practice/pangram/.docs/introduction.md +++ b/exercises/practice/pangram/.docs/introduction.md @@ -7,10 +7,10 @@ To give a comprehensive sense of the font, the random sentences should use **all They're running a competition to get suggestions for sentences that they can use. You're in charge of checking the submissions to see if they are valid. -~~~~exercism/note +```exercism/note Pangram comes from Greek, παν γράμμα, pan gramma, which means "every letter". The best known English pangram is: > The quick brown fox jumps over the lazy dog. -~~~~ +``` diff --git a/exercises/practice/phone-number/.docs/instructions.md b/exercises/practice/phone-number/.docs/instructions.md index 6d3275cdf2..6b86bbac9f 100644 --- a/exercises/practice/phone-number/.docs/instructions.md +++ b/exercises/practice/phone-number/.docs/instructions.md @@ -5,8 +5,8 @@ Clean up user-entered phone numbers so that they can be sent SMS messages. The **North American Numbering Plan (NANP)** is a telephone numbering system used by many countries in North America like the United States, Canada or Bermuda. All NANP-countries share the same international country code: `1`. -NANP numbers are ten-digit numbers consisting of a three-digit Numbering Plan Area code, commonly known as *area code*, followed by a seven-digit local number. -The first three digits of the local number represent the *exchange code*, followed by the unique four-digit number which is the *subscriber number*. +NANP numbers are ten-digit numbers consisting of a three-digit Numbering Plan Area code, commonly known as _area code_, followed by a seven-digit local number. +The first three digits of the local number represent the _exchange code_, followed by the unique four-digit number which is the _subscriber number_. The format is usually represented as diff --git a/exercises/practice/protein-translation/.docs/instructions.md b/exercises/practice/protein-translation/.docs/instructions.md index d9b9054cf5..7dc34d2edf 100644 --- a/exercises/practice/protein-translation/.docs/instructions.md +++ b/exercises/practice/protein-translation/.docs/instructions.md @@ -29,16 +29,16 @@ Note the stop codon `"UAA"` terminates the translation and the final methionine Below are the codons and resulting Amino Acids needed for the exercise. -Codon | Protein -:--- | :--- -AUG | Methionine -UUU, UUC | Phenylalanine -UUA, UUG | Leucine -UCU, UCC, UCA, UCG | Serine -UAU, UAC | Tyrosine -UGU, UGC | Cysteine -UGG | Tryptophan -UAA, UAG, UGA | STOP +| Codon | Protein | +| :----------------- | :------------ | +| AUG | Methionine | +| UUU, UUC | Phenylalanine | +| UUA, UUG | Leucine | +| UCU, UCC, UCA, UCG | Serine | +| UAU, UAC | Tyrosine | +| UGU, UGC | Cysteine | +| UGG | Tryptophan | +| UAA, UAG, UGA | STOP | Learn more about [protein translation on Wikipedia][protein-translation]. diff --git a/exercises/practice/rational-numbers/.docs/instructions.md b/exercises/practice/rational-numbers/.docs/instructions.md index f64fc0f28e..5de9966aed 100644 --- a/exercises/practice/rational-numbers/.docs/instructions.md +++ b/exercises/practice/rational-numbers/.docs/instructions.md @@ -2,11 +2,11 @@ A rational number is defined as the quotient of two integers `a` and `b`, called the numerator and denominator, respectively, where `b != 0`. -~~~~exercism/note +```exercism/note Note that mathematically, the denominator can't be zero. However in many implementations of rational numbers, you will find that the denominator is allowed to be zero with behaviour similar to positive or negative infinity in floating point numbers. In those cases, the denominator and numerator generally still can't both be zero at once. -~~~~ +``` The absolute value `|r|` of the rational number `r = a/b` is equal to `|a|/|b|`. diff --git a/exercises/practice/rna-transcription/.docs/instructions.md b/exercises/practice/rna-transcription/.docs/instructions.md index 36da381f5a..f787be60bc 100644 --- a/exercises/practice/rna-transcription/.docs/instructions.md +++ b/exercises/practice/rna-transcription/.docs/instructions.md @@ -15,6 +15,6 @@ Given a DNA strand, its transcribed RNA strand is formed by replacing each nucle - `T` -> `A` - `A` -> `U` -~~~~exercism/note +```exercism/note If you want to look at how the inputs and outputs are structured, take a look at the examples in the test suite. -~~~~ +``` diff --git a/exercises/practice/rna-transcription/.docs/introduction.md b/exercises/practice/rna-transcription/.docs/introduction.md index 6b3f44b532..d74a8e84d2 100644 --- a/exercises/practice/rna-transcription/.docs/introduction.md +++ b/exercises/practice/rna-transcription/.docs/introduction.md @@ -4,7 +4,7 @@ You work for a bioengineering company that specializes in developing therapeutic Your team has just been given a new project to develop a targeted therapy for a rare type of cancer. -~~~~exercism/note +```exercism/note It's all very complicated, but the basic idea is that sometimes people's bodies produce too much of a given protein. That can cause all sorts of havoc. @@ -13,4 +13,4 @@ But if you can create a very specific molecule (called a micro-RNA), it can prev This technique is called [RNA Interference][rnai]. [rnai]: https://admin.acceleratingscience.com/ask-a-scientist/what-is-rnai/ -~~~~ +``` diff --git a/exercises/practice/rotational-cipher/.docs/instructions.md b/exercises/practice/rotational-cipher/.docs/instructions.md index 4dee51b355..4bf64ca1d3 100644 --- a/exercises/practice/rotational-cipher/.docs/instructions.md +++ b/exercises/practice/rotational-cipher/.docs/instructions.md @@ -22,8 +22,8 @@ Ciphertext is written out in the same formatting as the input including spaces a ## Examples -- ROT5 `omg` gives `trl` -- ROT0 `c` gives `c` +- ROT5 `omg` gives `trl` +- ROT0 `c` gives `c` - ROT26 `Cool` gives `Cool` - ROT13 `The quick brown fox jumps over the lazy dog.` gives `Gur dhvpx oebja sbk whzcf bire gur ynml qbt.` - ROT13 `Gur dhvpx oebja sbk whzcf bire gur ynml qbt.` gives `The quick brown fox jumps over the lazy dog.` diff --git a/exercises/practice/scale-generator/.docs/instructions.md b/exercises/practice/scale-generator/.docs/instructions.md index 23e06e1ab2..ebb7debc76 100644 --- a/exercises/practice/scale-generator/.docs/instructions.md +++ b/exercises/practice/scale-generator/.docs/instructions.md @@ -56,13 +56,13 @@ Then, for each interval in the pattern, the next note is determined by starting For example, starting with G and using the seven intervals MMmMMMm, there would be the following eight notes: -Note | Reason ---|-- -G | Tonic -A | M indicates a whole step from G, skipping G♯ -B | M indicates a whole step from A, skipping A♯ -C | m indicates a half step from B, skipping nothing -D | M indicates a whole step from C, skipping C♯ -E | M indicates a whole step from D, skipping D♯ -F♯ | M indicates a whole step from E, skipping F -G | m indicates a half step from F♯, skipping nothing +| Note | Reason | +| ---- | ------------------------------------------------- | +| G | Tonic | +| A | M indicates a whole step from G, skipping G♯ | +| B | M indicates a whole step from A, skipping A♯ | +| C | m indicates a half step from B, skipping nothing | +| D | M indicates a whole step from C, skipping C♯ | +| E | M indicates a whole step from D, skipping D♯ | +| F♯ | M indicates a whole step from E, skipping F | +| G | m indicates a half step from F♯, skipping nothing | diff --git a/exercises/practice/secret-handshake/.docs/instructions.md b/exercises/practice/secret-handshake/.docs/instructions.md index d2120b9bf2..b825c12895 100644 --- a/exercises/practice/secret-handshake/.docs/instructions.md +++ b/exercises/practice/secret-handshake/.docs/instructions.md @@ -41,8 +41,8 @@ The secret handshake for 26 is therefore: jump, double blink ``` -~~~~exercism/note +```exercism/note If you aren't sure what binary is or how it works, check out [this binary tutorial][intro-to-binary]. [intro-to-binary]: https://medium.com/basecs/bits-bytes-building-with-binary-13cb4289aafa -~~~~ +``` diff --git a/exercises/practice/series/.docs/instructions.md b/exercises/practice/series/.docs/instructions.md index e32cc38c67..fd97a6706a 100644 --- a/exercises/practice/series/.docs/instructions.md +++ b/exercises/practice/series/.docs/instructions.md @@ -15,5 +15,5 @@ And the following 4-digit series: And if you ask for a 6-digit series from a 5-digit string, you deserve whatever you get. -Note that these series are only required to occupy *adjacent positions* in the input; -the digits need not be *numerically consecutive*. +Note that these series are only required to occupy _adjacent positions_ in the input; +the digits need not be _numerically consecutive_. diff --git a/exercises/practice/sgf-parsing/.docs/instructions.md b/exercises/practice/sgf-parsing/.docs/instructions.md index d38b341fc0..edc8d6b188 100644 --- a/exercises/practice/sgf-parsing/.docs/instructions.md +++ b/exercises/practice/sgf-parsing/.docs/instructions.md @@ -24,7 +24,7 @@ This is a tree with three nodes: "SZ", value = "19"). (FF indicates the version of SGF, C is a comment and SZ is the size of the board.) - The top level node has a single child which has a single property: - B\[aa\]. (Black plays on the point encoded as "aa", which is the + B\[aa\]. (Black plays on the point encoded as "aa", which is the 1-1 point). - The B\[aa\] node has a single child which has a single property: W\[ab\]. diff --git a/exercises/practice/sieve/.docs/instructions.md b/exercises/practice/sieve/.docs/instructions.md index 3adf1d551b..ec14620ce4 100644 --- a/exercises/practice/sieve/.docs/instructions.md +++ b/exercises/practice/sieve/.docs/instructions.md @@ -18,11 +18,11 @@ Then you repeat the following steps: You keep repeating these steps until you've gone through every number in your list. At the end, all the unmarked numbers are prime. -~~~~exercism/note +```exercism/note [Wikipedia's Sieve of Eratosthenes article][eratosthenes] has a useful graphic that explains the algorithm. The tests don't check that you've implemented the algorithm, only that you've come up with the correct list of primes. A good first test is to check that you do not use division or remainder operations. [eratosthenes]: https://en.wikipedia.org/wiki/Sieve_of_Eratosthenes -~~~~ +``` diff --git a/exercises/practice/simple-linked-list/.docs/instructions.md b/exercises/practice/simple-linked-list/.docs/instructions.md index 04640b1fb0..c3ff4cf311 100644 --- a/exercises/practice/simple-linked-list/.docs/instructions.md +++ b/exercises/practice/simple-linked-list/.docs/instructions.md @@ -7,7 +7,7 @@ Given a range of numbers (the song IDs), create a singly linked list. Given a singly linked list, you should be able to reverse the list to play the songs in the opposite order. -~~~~exercism/note +```exercism/note The linked list is a fundamental data structure in computer science, often used in the implementation of other data structures. The simplest kind of linked list is a **singly** linked list. @@ -16,4 +16,4 @@ That means that each element (or "node") contains data, along with something tha If you want to dig deeper into linked lists, check out [this article][intro-linked-list] that explains it using nice drawings. [intro-linked-list]: https://medium.com/basecs/whats-a-linked-list-anyway-part-1-d8b7e6508b9d -~~~~ +``` diff --git a/exercises/practice/strain/.meta/config.json b/exercises/practice/strain/.meta/config.json index f1dccd95b6..f2d60d3a8f 100644 --- a/exercises/practice/strain/.meta/config.json +++ b/exercises/practice/strain/.meta/config.json @@ -25,5 +25,5 @@ }, "blurb": "Implement the `keep` and `discard` operation on collections. Given a collection and a predicate on the collection's elements, `keep` returns a new collection containing those elements where the predicate is true, while `discard` returns a new collection containing those elements where the predicate is false.", "source": "Conversation with James Edward Gray II", - "source_url": "https://twitter.com/jeg2" + "source_url": "http://graysoftinc.com/" } diff --git a/exercises/practice/wordy/.docs/instructions.md b/exercises/practice/wordy/.docs/instructions.md index 0b9e67b6ca..aafb9ee54b 100644 --- a/exercises/practice/wordy/.docs/instructions.md +++ b/exercises/practice/wordy/.docs/instructions.md @@ -48,7 +48,7 @@ Since these are verbal word problems, evaluate the expression from left-to-right > What is 3 plus 2 multiplied by 3? -15 (i.e. not 9) +15 (i.e. not 9) ## Iteration 4 — Errors diff --git a/exercises/practice/yacht/.docs/instructions.md b/exercises/practice/yacht/.docs/instructions.md index 163ba3792c..54fdb452f5 100644 --- a/exercises/practice/yacht/.docs/instructions.md +++ b/exercises/practice/yacht/.docs/instructions.md @@ -6,24 +6,24 @@ The score of a throw of the dice depends on category chosen. ## Scores in Yacht -| Category | Score | Description | Example | -| -------- | ----- | ----------- | ------- | -| Ones | 1 × number of ones | Any combination | 1 1 1 4 5 scores 3 | -| Twos | 2 × number of twos | Any combination | 2 2 3 4 5 scores 4 | -| Threes | 3 × number of threes | Any combination | 3 3 3 3 3 scores 15 | -| Fours | 4 × number of fours | Any combination | 1 2 3 3 5 scores 0 | -| Fives | 5 × number of fives| Any combination | 5 1 5 2 5 scores 15 | -| Sixes | 6 × number of sixes | Any combination | 2 3 4 5 6 scores 6 | -| Full House | Total of the dice | Three of one number and two of another | 3 3 3 5 5 scores 19 | -| Four of a Kind | Total of the four dice | At least four dice showing the same face | 4 4 4 4 6 scores 16 | -| Little Straight | 30 points | 1-2-3-4-5 | 1 2 3 4 5 scores 30 | -| Big Straight | 30 points | 2-3-4-5-6 | 2 3 4 5 6 scores 30 | -| Choice | Sum of the dice | Any combination | 2 3 3 4 6 scores 18 | -| Yacht | 50 points | All five dice showing the same face | 4 4 4 4 4 scores 50 | +| Category | Score | Description | Example | +| --------------- | ---------------------- | ---------------------------------------- | ------------------- | +| Ones | 1 × number of ones | Any combination | 1 1 1 4 5 scores 3 | +| Twos | 2 × number of twos | Any combination | 2 2 3 4 5 scores 4 | +| Threes | 3 × number of threes | Any combination | 3 3 3 3 3 scores 15 | +| Fours | 4 × number of fours | Any combination | 1 2 3 3 5 scores 0 | +| Fives | 5 × number of fives | Any combination | 5 1 5 2 5 scores 15 | +| Sixes | 6 × number of sixes | Any combination | 2 3 4 5 6 scores 6 | +| Full House | Total of the dice | Three of one number and two of another | 3 3 3 5 5 scores 19 | +| Four of a Kind | Total of the four dice | At least four dice showing the same face | 4 4 4 4 6 scores 16 | +| Little Straight | 30 points | 1-2-3-4-5 | 1 2 3 4 5 scores 30 | +| Big Straight | 30 points | 2-3-4-5-6 | 2 3 4 5 6 scores 30 | +| Choice | Sum of the dice | Any combination | 2 3 3 4 6 scores 18 | +| Yacht | 50 points | All five dice showing the same face | 4 4 4 4 4 scores 50 | If the dice do not satisfy the requirements of a category, the score is zero. -If, for example, *Four Of A Kind* is entered in the *Yacht* category, zero points are scored. -A *Yacht* scores zero if entered in the *Full House* category. +If, for example, _Four Of A Kind_ is entered in the _Yacht_ category, zero points are scored. +A _Yacht_ scores zero if entered in the _Full House_ category. ## Task