From 747e31117c8a9734eb7b5ccf6e386bc010e00090 Mon Sep 17 00:00:00 2001 From: Eric Willigers Date: Mon, 18 Dec 2023 21:24:20 +1100 Subject: [PATCH] Sync exercise instructions, metadata We sync the following exercises: - acronym - affine-cipher - all-your-base - hello-world - list-ops - perfect-numbers - pig-latin - pop-count --- .../practice/acronym/.docs/instructions.md | 10 ++-- .../affine-cipher/.docs/instructions.md | 4 +- .../all-your-base/.docs/instructions.md | 8 +-- .../practice/hello-world/.meta/config.json | 2 +- .../practice/list-ops/.docs/instructions.md | 18 ++++--- .../perfect-numbers/.docs/instructions.md | 53 ++++++++++++------- .../practice/pig-latin/.docs/instructions.md | 3 +- .../practice/pop-count/.meta/config.json | 2 +- 8 files changed, 59 insertions(+), 41 deletions(-) diff --git a/exercises/practice/acronym/.docs/instructions.md b/exercises/practice/acronym/.docs/instructions.md index c62fc3e..133bd2c 100644 --- a/exercises/practice/acronym/.docs/instructions.md +++ b/exercises/practice/acronym/.docs/instructions.md @@ -10,8 +10,8 @@ Punctuation is handled as follows: hyphens are word separators (like whitespace) For example: -|Input|Output| -|-|-| -|As Soon As Possible|ASAP| -|Liquid-crystal display|LCD| -|Thank George It's Friday!|TGIF| +| Input | Output | +| ------------------------- | ------ | +| As Soon As Possible | ASAP | +| Liquid-crystal display | LCD | +| Thank George It's Friday! | TGIF | diff --git a/exercises/practice/affine-cipher/.docs/instructions.md b/exercises/practice/affine-cipher/.docs/instructions.md index 2ad6d15..26ce153 100644 --- a/exercises/practice/affine-cipher/.docs/instructions.md +++ b/exercises/practice/affine-cipher/.docs/instructions.md @@ -6,7 +6,7 @@ The affine cipher is a type of monoalphabetic substitution cipher. Each character is mapped to its numeric equivalent, encrypted with a mathematical function and then converted to the letter relating to its new numeric value. Although all monoalphabetic ciphers are weak, the affine cipher is much stronger than the atbash cipher, because it has many more keys. -[//]: # ( monoalphabetic as spelled by Merriam-Webster, compare to polyalphabetic ) +[//]: # " monoalphabetic as spelled by Merriam-Webster, compare to polyalphabetic " ## Encryption @@ -23,7 +23,7 @@ Where: For the Roman alphabet `m` is `26`. - `a` and `b` are integers which make the encryption key -Values `a` and `m` must be *coprime* (or, *relatively prime*) for automatic decryption to succeed, i.e., they have number `1` as their only common factor (more information can be found in the [Wikipedia article about coprime integers][coprime-integers]). +Values `a` and `m` must be _coprime_ (or, _relatively prime_) for automatic decryption to succeed, i.e., they have number `1` as their only common factor (more information can be found in the [Wikipedia article about coprime integers][coprime-integers]). In case `a` is not coprime to `m`, your program should indicate that this is an error. Otherwise it should encrypt or decrypt with the provided key. diff --git a/exercises/practice/all-your-base/.docs/instructions.md b/exercises/practice/all-your-base/.docs/instructions.md index d5a2cde..4602b5c 100644 --- a/exercises/practice/all-your-base/.docs/instructions.md +++ b/exercises/practice/all-your-base/.docs/instructions.md @@ -14,20 +14,20 @@ Given a number in base **a**, represented as a sequence of digits, convert it to In positional notation, a number in base **b** can be understood as a linear combination of powers of **b**. -The number 42, *in base 10*, means: +The number 42, _in base 10_, means: `(4 * 10^1) + (2 * 10^0)` -The number 101010, *in base 2*, means: +The number 101010, _in base 2_, means: `(1 * 2^5) + (0 * 2^4) + (1 * 2^3) + (0 * 2^2) + (1 * 2^1) + (0 * 2^0)` -The number 1120, *in base 3*, means: +The number 1120, _in base 3_, means: `(1 * 3^3) + (1 * 3^2) + (2 * 3^1) + (0 * 3^0)` I think you got the idea! -*Yes. Those three numbers above are exactly the same. Congratulations!* +_Yes. Those three numbers above are exactly the same. Congratulations!_ [positional-notation]: https://en.wikipedia.org/wiki/Positional_notation diff --git a/exercises/practice/hello-world/.meta/config.json b/exercises/practice/hello-world/.meta/config.json index 1f6d931..bcc1811 100644 --- a/exercises/practice/hello-world/.meta/config.json +++ b/exercises/practice/hello-world/.meta/config.json @@ -19,7 +19,7 @@ ".meta/example.sml" ] }, - "blurb": "The classical introductory exercise. Just say \"Hello, World!\".", + "blurb": "Exercism's classic introductory exercise. Just say \"Hello, World!\".", "source": "This is an exercise to introduce users to using Exercism", "source_url": "https://en.wikipedia.org/wiki/%22Hello,_world!%22_program" } diff --git a/exercises/practice/list-ops/.docs/instructions.md b/exercises/practice/list-ops/.docs/instructions.md index d345333..ebc5dff 100644 --- a/exercises/practice/list-ops/.docs/instructions.md +++ b/exercises/practice/list-ops/.docs/instructions.md @@ -7,11 +7,13 @@ Implement a series of basic list operations, without using existing functions. The precise number and names of the operations to be implemented will be track dependent to avoid conflicts with existing names, but the general operations you will implement include: -- `append` (*given two lists, add all items in the second list to the end of the first list*); -- `concatenate` (*given a series of lists, combine all items in all lists into one flattened list*); -- `filter` (*given a predicate and a list, return the list of all items for which `predicate(item)` is True*); -- `length` (*given a list, return the total number of items within it*); -- `map` (*given a function and a list, return the list of the results of applying `function(item)` on all items*); -- `foldl` (*given a function, a list, and initial accumulator, fold (reduce) each item into the accumulator from the left using `function(accumulator, item)`*); -- `foldr` (*given a function, a list, and an initial accumulator, fold (reduce) each item into the accumulator from the right using `function(item, accumulator)`*); -- `reverse` (*given a list, return a list with all the original items, but in reversed order*); +- `append` (_given two lists, add all items in the second list to the end of the first list_); +- `concatenate` (_given a series of lists, combine all items in all lists into one flattened list_); +- `filter` (_given a predicate and a list, return the list of all items for which `predicate(item)` is True_); +- `length` (_given a list, return the total number of items within it_); +- `map` (_given a function and a list, return the list of the results of applying `function(item)` on all items_); +- `foldl` (_given a function, a list, and initial accumulator, fold (reduce) each item into the accumulator from the left_); +- `foldr` (_given a function, a list, and an initial accumulator, fold (reduce) each item into the accumulator from the right_); +- `reverse` (_given a list, return a list with all the original items, but in reversed order_). + +Note, the ordering in which arguments are passed to the fold functions (`foldl`, `foldr`) is significant. diff --git a/exercises/practice/perfect-numbers/.docs/instructions.md b/exercises/practice/perfect-numbers/.docs/instructions.md index 0dae886..b2bc82c 100644 --- a/exercises/practice/perfect-numbers/.docs/instructions.md +++ b/exercises/practice/perfect-numbers/.docs/instructions.md @@ -1,24 +1,39 @@ # Instructions -Determine if a number is perfect, abundant, or deficient based on -Nicomachus' (60 - 120 CE) classification scheme for positive integers. - -The Greek mathematician [Nicomachus][nicomachus] devised a classification scheme for positive integers, identifying each as belonging uniquely to the categories of **perfect**, **abundant**, or **deficient** based on their [aliquot sum][aliquot-sum]. -The aliquot sum is defined as the sum of the factors of a number not including the number itself. -For example, the aliquot sum of 15 is (1 + 3 + 5) = 9 - -- **Perfect**: aliquot sum = number - - 6 is a perfect number because (1 + 2 + 3) = 6 - - 28 is a perfect number because (1 + 2 + 4 + 7 + 14) = 28 -- **Abundant**: aliquot sum > number - - 12 is an abundant number because (1 + 2 + 3 + 4 + 6) = 16 - - 24 is an abundant number because (1 + 2 + 3 + 4 + 6 + 8 + 12) = 36 -- **Deficient**: aliquot sum < number - - 8 is a deficient number because (1 + 2 + 4) = 7 - - Prime numbers are deficient - -Implement a way to determine whether a given number is **perfect**. -Depending on your language track, you may also need to implement a way to determine whether a given number is **abundant** or **deficient**. +Determine if a number is perfect, abundant, or deficient based on Nicomachus' (60 - 120 CE) classification scheme for positive integers. + +The Greek mathematician [Nicomachus][nicomachus] devised a classification scheme for positive integers, identifying each as belonging uniquely to the categories of [perfect](#perfect), [abundant](#abundant), or [deficient](#deficient) based on their [aliquot sum][aliquot-sum]. +The _aliquot sum_ is defined as the sum of the factors of a number not including the number itself. +For example, the aliquot sum of `15` is `1 + 3 + 5 = 9`. + +## Perfect + +A number is perfect when it equals its aliquot sum. +For example: + +- `6` is a perfect number because `1 + 2 + 3 = 6` +- `28` is a perfect number because `1 + 2 + 4 + 7 + 14 = 28` + +## Abundant + +A number is abundant when it is less than its aliquot sum. +For example: + +- `12` is an abundant number because `1 + 2 + 3 + 4 + 6 = 16` +- `24` is an abundant number because `1 + 2 + 3 + 4 + 6 + 8 + 12 = 36` + +## Deficient + +A number is deficient when it is greater than its aliquot sum. +For example: + +- `8` is a deficient number because `1 + 2 + 4 = 7` +- Prime numbers are deficient + +## Task + +Implement a way to determine whether a given number is [perfect](#perfect). +Depending on your language track, you may also need to implement a way to determine whether a given number is [abundant](#abundant) or [deficient](#deficient). [nicomachus]: https://en.wikipedia.org/wiki/Nicomachus [aliquot-sum]: https://en.wikipedia.org/wiki/Aliquot_sum diff --git a/exercises/practice/pig-latin/.docs/instructions.md b/exercises/practice/pig-latin/.docs/instructions.md index c9de5ca..032905a 100644 --- a/exercises/practice/pig-latin/.docs/instructions.md +++ b/exercises/practice/pig-latin/.docs/instructions.md @@ -8,11 +8,12 @@ It obeys a few simple rules (below), but when it's spoken quickly it's really di - **Rule 1**: If a word begins with a vowel sound, add an "ay" sound to the end of the word. Please note that "xr" and "yt" at the beginning of a word make vowel sounds (e.g. "xray" -> "xrayay", "yttria" -> "yttriaay"). - **Rule 2**: If a word begins with a consonant sound, move it to the end of the word and then add an "ay" sound to the end of the word. - Consonant sounds can be made up of multiple consonants, a.k.a. a consonant cluster (e.g. "chair" -> "airchay"). + Consonant sounds can be made up of multiple consonants, such as the "ch" in "chair" or "st" in "stand" (e.g. "chair" -> "airchay"). - **Rule 3**: If a word starts with a consonant sound followed by "qu", move it to the end of the word, and then add an "ay" sound to the end of the word (e.g. "square" -> "aresquay"). - **Rule 4**: If a word contains a "y" after a consonant cluster or as the second letter in a two letter word it makes a vowel sound (e.g. "rhythm" -> "ythmrhay", "my" -> "ymay"). There are a few more rules for edge cases, and there are regional variants too. +Check the tests for all the details. Read more about [Pig Latin on Wikipedia][pig-latin]. diff --git a/exercises/practice/pop-count/.meta/config.json b/exercises/practice/pop-count/.meta/config.json index 615068a..aadf18d 100644 --- a/exercises/practice/pop-count/.meta/config.json +++ b/exercises/practice/pop-count/.meta/config.json @@ -13,7 +13,7 @@ ".meta/example.sml" ] }, - "blurb": "Count the 1 bits in a number", + "blurb": "Help Eliud count the number of eggs in her chicken coop by counting the number of 1 bits in a binary representation.", "source": "Christian Willner, Eric Willigers", "source_url": "https://forum.exercism.org/t/new-exercise-suggestion-pop-count/7632/5" }