forked from karpathy/llama2.c
-
Notifications
You must be signed in to change notification settings - Fork 25
/
Copy pathrun.c
1388 lines (1203 loc) · 47.6 KB
/
run.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/* Inference for Llama-2 Transformer model in pure C */
#include <stdio.h>
#include <stdlib.h>
#include <ctype.h>
#include <time.h>
#include <math.h>
#include <string.h>
#include <fcntl.h>
#if defined _WIN32
#include "win.h"
#else
#include <unistd.h>
#include <sys/mman.h>
#endif
#include <stdarg.h>
#if defined(_WIN32) && defined(__BORLANDC__)
#define NO_SIMD
#define NO_FAST_MATH
#define LEGACY_FP
typedef DWORDLONG uint64;
#else
typedef unsigned long long uint64;
#endif
#define REAL_EPSILON 1e-5f
#ifdef LEGACY_FP
static float safe_exp(float x) {
// Avoid overflow
if (x > 88.0) return 1e38;
if (x < -88.0) return 0;
return exp(x);
}
static float safe_sqrt(float x) {
if (x <= 0) return 0;
return sqrt(x);
}
#else
#define safe_exp expf
#define safe_sqrt sqrtf
#endif
static void log_debug(const char* format, ...) {
static FILE* debug_file = NULL;
va_list args;
// Open file on first use
if (!debug_file) {
debug_file = fopen("debug.log", "w");
if (!debug_file) return;
}
va_start(args, format);
vfprintf(debug_file, format, args);
va_end(args);
// Flush after each write to ensure we get logs even if program crashes
fflush(debug_file);
}
// Add at the top with other helper functions
static void read_weights_from_file(FILE* file, float* dest, size_t n_elements) {
float* temp;
size_t i, chunk_size, current_chunk, remaining;
const size_t MAX_CHUNK = 16384; // Read in 16KB chunks
if (sizeof(float) == sizeof(float)) {
// Direct read for 32-bit platforms
remaining = n_elements;
while (remaining > 0) {
chunk_size = (remaining < MAX_CHUNK) ? remaining : MAX_CHUNK;
if (fread(dest, sizeof(float), chunk_size, file) != chunk_size) {
log_debug("Failed to read chunk of %ld elements\n", (long)chunk_size);
exit(EXIT_FAILURE);
}
dest += chunk_size;
remaining -= chunk_size;
}
} else {
// Read into temp buffer and convert for other platforms
temp = (float*)malloc(MAX_CHUNK * sizeof(float));
if (!temp) {
log_debug("Failed to allocate temp buffer for %ld elements\n", (long)MAX_CHUNK);
exit(EXIT_FAILURE);
}
remaining = n_elements;
while (remaining > 0) {
current_chunk = (remaining < MAX_CHUNK) ? remaining : MAX_CHUNK;
if (fread(temp, sizeof(float), current_chunk, file) != current_chunk) {
log_debug("Failed to read chunk of %ld elements (remaining: %ld)\n",
(long)current_chunk, (long)remaining);
free(temp);
exit(EXIT_FAILURE);
}
for (i = 0; i < current_chunk; i++) {
dest[i] = (float)temp[i];
}
dest += current_chunk;
remaining -= current_chunk;
}
free(temp);
}
}
// ----------------------------------------------------------------------------
// Transformer model
typedef struct {
int dim; // transformer dimension
int hidden_dim; // for ffn layers
int n_layers; // number of layers
int n_heads; // number of query heads
int n_kv_heads; // number of key/value heads (can be < query heads because of multiquery)
int vocab_size; // vocabulary size, usually 256 (byte-level)
int seq_len; // max sequence length
} Config;
typedef struct {
// token embedding table
float* token_embedding_table; // (vocab_size, dim)
// weights for rmsnorms
float* rms_att_weight; // (layer, dim) rmsnorm weights
float* rms_ffn_weight; // (layer, dim)
// weights for matmuls. note dim == n_heads * head_size
float* wq; // (layer, dim, n_heads * head_size)
float* wk; // (layer, dim, n_kv_heads * head_size)
float* wv; // (layer, dim, n_kv_heads * head_size)
float* wo; // (layer, n_heads * head_size, dim)
// weights for ffn
float* w1; // (layer, hidden_dim, dim)
float* w2; // (layer, dim, hidden_dim)
float* w3; // (layer, hidden_dim, dim)
// final rmsnorm
float* rms_final_weight; // (dim,)
// (optional) classifier weights for the logits, on the last layer
float* wcls;
} TransformerWeights;
typedef struct {
// current wave of activations
float *x; // activation at current time stamp (dim,)
float *xb; // same, but inside a residual branch (dim,)
float *xb2; // an additional buffer just for convenience (dim,)
float *hb; // buffer for hidden dimension in the ffn (hidden_dim,)
float *hb2; // buffer for hidden dimension in the ffn (hidden_dim,)
float *q; // query (dim,)
float *k; // key (dim,)
float *v; // value (dim,)
float *att; // buffer for scores/attention values (n_heads, seq_len)
float *logits; // output logits
// kv cache
float* key_cache; // (layer, seq_len, dim)
float* value_cache; // (layer, seq_len, dim)
} RunState;
typedef struct {
Config config; // the hyperparameters of the architecture (the blueprint)
TransformerWeights weights; // the weights of the model
RunState state; // buffers for the "wave" of activations in the forward pass
// some more state needed to properly clean up the memory mapping (sigh)
int fd; // file descriptor for memory mapping
float* data; // memory mapped data pointer
long file_size; // size of the checkpoint file in bytes
} Transformer;
void malloc_run_state(RunState* s, Config* p) {
// we calloc instead of malloc to keep valgrind happy
int kv_dim = (p->dim * p->n_kv_heads) / p->n_heads;
printf("Allocating RunState buffers: dim=%d, hidden_dim=%d, kv_dim=%d\n",
p->dim, p->hidden_dim, kv_dim);
s->x = (float*)calloc(p->dim, sizeof(float));
s->xb = calloc(p->dim, sizeof(float));
s->xb2 = calloc(p->dim, sizeof(float));
s->hb = calloc(p->hidden_dim, sizeof(float));
s->hb2 = calloc(p->hidden_dim, sizeof(float));
s->q = calloc(p->dim, sizeof(float));
s->key_cache = calloc(p->n_layers * p->seq_len * kv_dim, sizeof(float));
s->value_cache = calloc(p->n_layers * p->seq_len * kv_dim, sizeof(float));
s->att = calloc(p->n_heads * p->seq_len, sizeof(float));
s->logits = calloc(p->vocab_size, sizeof(float));
// ensure all mallocs went fine
if (!s->x || !s->xb || !s->xb2 || !s->hb || !s->hb2 || !s->q
|| !s->key_cache || !s->value_cache || !s->att || !s->logits) {
fprintf(stderr, "malloc failed!\n");
exit(EXIT_FAILURE);
}
printf("All RunState buffers allocated successfully\n");
}
void free_run_state(RunState* s) {
free(s->x);
free(s->xb);
free(s->xb2);
free(s->hb);
free(s->hb2);
free(s->q);
free(s->att);
free(s->logits);
free(s->key_cache);
free(s->value_cache);
}
void read_checkpoint(char* checkpoint, Config* config, TransformerWeights* weights,
int* fd, float** data, long* file_size) {
FILE *file;
int shared_weights;
size_t offset;
int head_size;
size_t layer_size;
size_t embedding_size;
const size_t chunk_size = 64 * 1024; // 64KB chunks
size_t remaining, current_chunk;
char* ptr;
long current_pos;
size_t bytes_read;
size_t read_size;
size_t rms_size;
size_t total_allocated, alloc_size;
const size_t MAX_SINGLE_ALLOC = 1024 * 1024; // 1MB max single allocation
file = fopen(checkpoint, "rb");
if (!file) { fprintf(stderr, "Couldn't open file %s\n", checkpoint); exit(EXIT_FAILURE); }
// read in the config header
if (fread(config, sizeof(Config), 1, file) != 1) { exit(EXIT_FAILURE); }
shared_weights = config->vocab_size > 0 ? 1 : 0;
config->vocab_size = abs(config->vocab_size);
head_size = config->dim / config->n_heads;
fseek(file, 0, SEEK_END);
*file_size = ftell(file);
fseek(file, 0, SEEK_SET);
log_debug("Reading checkpoint: file_size=%ld bytes (%.2f MB)\n",
*file_size, (float)*file_size / (1024*1024));
log_debug("Config: vocab_size=%d, dim=%d, n_layers=%d\n",
config->vocab_size, config->dim, config->n_layers);
// Skip the config header for subsequent reads
offset = sizeof(Config);
// token embedding table
embedding_size = config->vocab_size * config->dim;
log_debug("Allocating token_embedding_table: %ld elements (%ld bytes)\n",
(long)embedding_size, (long)(embedding_size * sizeof(float)));
weights->token_embedding_table = (float*)malloc(embedding_size * sizeof(float));
if (!weights->token_embedding_table) {
log_debug("Failed to allocate token_embedding_table\n");
exit(EXIT_FAILURE);
}
log_debug("Allocated token_embedding_table at %p\n", (void*)weights->token_embedding_table);
// Read in chunks
remaining = embedding_size * sizeof(float);
ptr = (char*)weights->token_embedding_table;
fseek(file, offset, SEEK_SET);
while (remaining > 0) {
current_pos = ftell(file);
current_chunk = remaining < chunk_size ? remaining : chunk_size;
bytes_read = fread(ptr, 1, current_chunk, file);
if (bytes_read != current_chunk) {
log_debug("Failed to read chunk: expected %ld bytes, got %ld bytes\n",
(long)current_chunk, (long)bytes_read);
log_debug("File position: %ld, file size: %ld\n",
ftell(file), *file_size);
exit(EXIT_FAILURE);
}
ptr += current_chunk;
remaining -= current_chunk;
}
offset += embedding_size * sizeof(float);
log_debug("Successfully read token_embedding_table in chunks\n");
// rms attention weights
rms_size = config->n_layers * config->dim;
weights->rms_att_weight = (float*)malloc(rms_size * sizeof(float));
if (!weights->rms_att_weight) {
log_debug("Failed to allocate rms_att_weight\n");
exit(EXIT_FAILURE);
}
fseek(file, offset, SEEK_SET);
read_weights_from_file(file, weights->rms_att_weight, rms_size);
offset += rms_size * sizeof(float);
// wq, wk, wv weights
layer_size = config->dim * config->n_heads * head_size;
weights->wq = (float*)malloc(config->n_layers * layer_size * sizeof(float));
log_debug("Allocated wq at %p\n", (void*)weights->wq);
fseek(file, offset, SEEK_SET);
read_weights_from_file(file, weights->wq, config->n_layers * layer_size);
offset += config->n_layers * layer_size * sizeof(float);
layer_size = config->dim * config->n_kv_heads * head_size;
weights->wk = (float*)malloc(config->n_layers * layer_size * sizeof(float));
log_debug("Allocated wk at %p\n", (void*)weights->wk);
fseek(file, offset, SEEK_SET);
read_weights_from_file(file, weights->wk, config->n_layers * layer_size);
offset += config->n_layers * layer_size * sizeof(float);
weights->wv = (float*)malloc(config->n_layers * layer_size * sizeof(float));
log_debug("Allocated wv at %p\n", (void*)weights->wv);
fseek(file, offset, SEEK_SET);
read_weights_from_file(file, weights->wv, config->n_layers * layer_size);
offset += config->n_layers * layer_size * sizeof(float);
// wo weights
layer_size = config->n_heads * head_size * config->dim;
weights->wo = (float*)malloc(config->n_layers * layer_size * sizeof(float));
log_debug("Allocated wo at %p\n", (void*)weights->wo);
fseek(file, offset, SEEK_SET);
read_weights_from_file(file, weights->wo, config->n_layers * layer_size);
offset += config->n_layers * layer_size * sizeof(float);
// Remaining weights...
weights->rms_ffn_weight = (float*)malloc(config->n_layers * config->dim * sizeof(float));
fseek(file, offset, SEEK_SET);
read_weights_from_file(file, weights->rms_ffn_weight, config->n_layers * config->dim);
offset += config->n_layers * config->dim * sizeof(float);
// w1, w2, w3 weights
layer_size = config->dim * config->hidden_dim;
log_debug("Allocating w1: layer_size=%ld, total bytes=%ld\n",
(long)layer_size, (long)(config->n_layers * layer_size * sizeof(float)));
// Add memory tracking
total_allocated = 0;
// When allocating large buffers:
alloc_size = config->n_layers * layer_size * sizeof(float);
if (alloc_size > MAX_SINGLE_ALLOC) {
log_debug("Warning: Large allocation of %ld bytes requested\n", (long)alloc_size);
}
weights->w1 = (float*)malloc(alloc_size);
if (!weights->w1) {
log_debug("Failed to allocate w1 (%ld bytes)\n", (long)alloc_size);
// Clean up previous allocations
// Add cleanup code here
exit(EXIT_FAILURE);
}
total_allocated += alloc_size;
log_debug("Total memory allocated: %ld bytes\n", (long)total_allocated);
fseek(file, offset, SEEK_SET);
read_weights_from_file(file, weights->w1, config->n_layers * layer_size);
offset += config->n_layers * layer_size * sizeof(float);
layer_size = config->dim * config->hidden_dim;
weights->w2 = (float*)malloc(config->n_layers * layer_size * sizeof(float));
weights->w3 = (float*)malloc(config->n_layers * layer_size * sizeof(float));
fseek(file, offset, SEEK_SET);
read_weights_from_file(file, weights->w2, config->n_layers * layer_size);
offset += config->n_layers * layer_size * sizeof(float);
fseek(file, offset, SEEK_SET);
read_weights_from_file(file, weights->w3, config->n_layers * layer_size);
offset += config->n_layers * layer_size * sizeof(float);
// final rms norm
weights->rms_final_weight = (float*)malloc(config->dim * sizeof(float));
fseek(file, offset, SEEK_SET);
read_weights_from_file(file, weights->rms_final_weight, config->dim);
offset += config->dim * sizeof(float);
// Skip freq_cis_real and freq_cis_imag
offset += config->seq_len * head_size * sizeof(float);
// classifier weights
if (!shared_weights) {
weights->wcls = (float*)malloc(config->vocab_size * config->dim * sizeof(float));
fseek(file, offset, SEEK_SET);
read_weights_from_file(file, weights->wcls, config->vocab_size * config->dim);
} else {
weights->wcls = weights->token_embedding_table;
}
log_debug("Checkpoint loaded successfully\n");
fclose(file);
}
void build_transformer(Transformer *t, char* checkpoint_path) {
// read in the Config and the Weights from the checkpoint
read_checkpoint(checkpoint_path, &t->config, &t->weights, &t->fd, &t->data, &t->file_size);
// allocate the RunState buffers
malloc_run_state(&t->state, &t->config);
}
void free_transformer(Transformer* t) {
// Replace munmap with free
if (t->data) { free(t->data); }
// No need to close fd since we're not using mmap
free_run_state(&t->state);
}
// ----------------------------------------------------------------------------
// neural net blocks; the dynamics of the Transformer
void rmsnorm(float* o, float* x, float* weight, int size) {
// calculate sum of squares
float ss = 0.0f;
int j;
for (j = 0; j < size; j++) {
ss += x[j] * x[j];
}
ss /= size;
ss += REAL_EPSILON;
ss = 1.0f / safe_sqrt(ss);
// normalize and scale
for (j = 0; j < size; j++) {
o[j] = weight[j] * (ss * x[j]);
}
}
void softmax(float* x, int size) {
float sum;
float max_val;
int i;
// find max value (for numerical stability)
max_val = x[0];
for (i = 1; i < size; i++) {
if (x[i] > max_val) {
max_val = x[i];
}
}
// exp and sum
sum = 0.0f;
for (i = 0; i < size; i++) {
x[i] = safe_exp(x[i] - max_val);
sum += x[i];
}
// normalize
for (i = 0; i < size; i++) {
x[i] /= sum;
}
}
void matmul(float* xout, float* x, float* w, int n, int d) {
int i, j;
float val;
size_t offset;
for (i = 0; i < d; i++) {
val = 0.0f;
for (j = 0; j < n; j++) {
offset = i * n + j;
val += w[offset] * x[j];
}
xout[i] = val;
}
}
float* forward(Transformer* transformer, int token, int pos) {
Config* p;
TransformerWeights* w;
RunState* s;
float *x;
int dim;
int kv_dim;
int kv_mul;
int hidden_dim;
int head_size;
int head_dim;
float* content_row;
uint64 l;
int loff;
int h;
int i, j, t;
float val, freq, fcr, fci, a;
float* vv;
float* q;
float* att;
float* xb;
float score;
long matmul_size;
float v0, v1;
// initialize variables
p = &transformer->config;
w = &transformer->weights;
s = &transformer->state;
x = s->x;
dim = p->dim;
kv_dim = (p->dim * p->n_kv_heads) / p->n_heads;
kv_mul = p->n_heads / p->n_kv_heads;
hidden_dim = p->hidden_dim;
head_size = dim / p->n_heads;
// copy the token embedding into x
content_row = w->token_embedding_table + token * dim;
memcpy(x, content_row, dim*sizeof(*x));
// forward all the layers
for(l = 0; l < p->n_layers; l++) {
// attention rmsnorm
rmsnorm(s->xb, x, w->rms_att_weight + l*dim, dim);
// key and value point to the kv cache
loff = l * p->seq_len * kv_dim;
s->k = s->key_cache + loff + pos * kv_dim;
s->v = s->value_cache + loff + pos * kv_dim;
// qkv matmuls for this position
matmul_size = l*dim*dim;
matmul(s->q, s->xb, w->wq + matmul_size, dim, dim);
matmul_size = l*dim*kv_dim;
matmul(s->k, s->xb, w->wk + matmul_size, dim, kv_dim);
matmul(s->v, s->xb, w->wv + matmul_size, dim, kv_dim);
// RoPE relative positional encoding
for (i = 0; i < dim; i+=2) {
head_dim = i % head_size;
freq = 1.0f / pow(10000.0f, head_dim / (float)head_size);
val = pos * freq;
fcr = cos(val);
fci = sin(val);
if (i < kv_dim) {
v0 = s->k[i];
v1 = s->k[i+1];
s->k[i] = v0 * fcr - v1 * fci;
s->k[i+1] = v0 * fci + v1 * fcr;
}
v0 = s->q[i];
v1 = s->q[i+1];
s->q[i] = v0 * fcr - v1 * fci;
s->q[i+1] = v0 * fci + v1 * fcr;
}
// multihead attention
for (h = 0; h < p->n_heads; h++) {
q = s->q + h * head_size;
att = s->att + h * p->seq_len;
for (t = 0; t <= pos; t++) {
float* k = s->key_cache + loff + t * kv_dim + (h / kv_mul) * head_size;
score = 0.0f;
for (i = 0; i < head_size; i++) {
score += q[i] * k[i];
}
score /= safe_sqrt(head_size);
att[t] = score;
}
softmax(att, pos + 1);
xb = s->xb + h * head_size;
memset(xb, 0, head_size * sizeof(float));
for (t = 0; t <= pos; t++) {
vv = s->value_cache + loff + t * kv_dim + (h / kv_mul) * head_size;
a = att[t];
for (i = 0; i < head_size; i++) {
xb[i] += a * vv[i];
}
}
}
matmul(s->xb2, s->xb, w->wo + l*dim*dim, dim, dim);
for (i = 0; i < dim; i++) {
x[i] += s->xb2[i];
}
rmsnorm(s->xb, x, w->rms_ffn_weight + l*dim, dim);
matmul(s->hb, s->xb, w->w1 + l*dim*hidden_dim, dim, hidden_dim);
matmul(s->hb2, s->xb, w->w3 + l*dim*hidden_dim, dim, hidden_dim);
for (i = 0; i < hidden_dim; i++) {
val = s->hb[i];
val *= (1.0f / (1.0f + safe_exp(-val)));
val *= s->hb2[i];
s->hb[i] = val;
}
matmul(s->xb, s->hb, w->w2 + l*dim*hidden_dim, hidden_dim, dim);
for (i = 0; i < dim; i++) {
x[i] += s->xb[i];
}
}
rmsnorm(x, x, w->rms_final_weight, dim);
matmul(s->logits, x, w->wcls, p->dim, p->vocab_size);
return s->logits;
}
// ----------------------------------------------------------------------------
// The Byte Pair Encoding (BPE) Tokenizer that translates strings <-> tokens
typedef struct {
char *str;
int id;
} TokenIndex;
typedef struct {
char** vocab;
float* vocab_scores;
TokenIndex *sorted_vocab;
int vocab_size;
unsigned int max_token_length;
unsigned char byte_pieces[512]; // stores all single-byte strings
} Tokenizer;
int compare_tokens(const void *a, const void *b) {
return strcmp(((TokenIndex*)a)->str, ((TokenIndex*)b)->str);
}
void build_tokenizer(Tokenizer* t, char* tokenizer_path, int vocab_size) {
FILE *file;
int i, j;
int len;
size_t total_allocated = 0;
size_t vocab_ptr_size;
size_t vocab_scores_size;
float score;
float temp_score; // Always 4 bytes
unsigned char len_bytes[4];
long file_size;
unsigned char raw_bytes[32];
log_debug("\nStarting build_tokenizer\n");
log_debug("Tokenizer path: %s\n", tokenizer_path);
log_debug("Size of float: %d\n", sizeof(float));
log_debug("Size of float: %d\n", sizeof(float));
log_debug("Vocab size: %d\n", vocab_size);
t->vocab_size = vocab_size;
vocab_ptr_size = vocab_size * sizeof(char*);
vocab_scores_size = vocab_size * sizeof(float);
total_allocated += vocab_ptr_size + vocab_scores_size;
log_debug("About to allocate vocab arrays:\n");
log_debug(" - vocab array: %ld bytes\n", (long)vocab_ptr_size);
log_debug(" - vocab_scores: %ld bytes\n", (long)vocab_scores_size);
t->vocab = (char**)malloc(vocab_ptr_size);
t->vocab_scores = (float*)malloc(vocab_scores_size);
t->sorted_vocab = NULL;
if (!t->vocab || !t->vocab_scores) {
log_debug("Failed to allocate vocab arrays\n");
exit(EXIT_FAILURE);
}
log_debug("Allocated initial vocab arrays successfully\n");
for (i = 0; i < 256; i++) {
t->byte_pieces[i * 2] = (unsigned char)i;
t->byte_pieces[i * 2 + 1] = '\0';
}
file = fopen(tokenizer_path, "rb");
if (!file) {
log_debug("couldn't load %s\n", tokenizer_path);
exit(EXIT_FAILURE);
}
// Peek at first 32 bytes
if (fread(raw_bytes, 1, 32, file) == 32) {
log_debug("First 32 bytes of file:\n");
for (i = 0; i < 32; i++) {
log_debug("%02x ", raw_bytes[i]);
if ((i + 1) % 8 == 0) log_debug("\n");
}
}
fseek(file, 0, SEEK_SET);
fseek(file, 0, SEEK_END);
file_size = ftell(file);
fseek(file, 0, SEEK_SET);
log_debug("Tokenizer file size: %ld bytes\n", file_size);
log_debug("Opened tokenizer file successfully\n");
if (fread(&t->max_token_length, sizeof(int), 1, file) != 1) {
log_debug("failed to read max_token_length\n");
exit(EXIT_FAILURE);
}
log_debug("Read max_token_length: %d\n", t->max_token_length);
for (i = 0; i < vocab_size; i++) {
// Read score as 4-byte float first
if (fread(&temp_score, sizeof(float), 1, file) != 1) {
log_debug("failed to read vocab score at index %d\n", i);
exit(EXIT_FAILURE);
}
// Convert to whatever float is
score = (float)temp_score;
t->vocab_scores[i] = score;
// Read length bytes one at a time
for (j = 0; j < 4; j++) {
if (fread(&len_bytes[j], 1, 1, file) != 1) {
log_debug("failed to read length byte %d at index %d\n", j, i);
exit(EXIT_FAILURE);
}
}
len = (len_bytes[3] << 24) | (len_bytes[2] << 16) | (len_bytes[1] << 8) | len_bytes[0];
if (len <= 0 || len > t->max_token_length) {
log_debug("Invalid token length %d at index %d (max allowed: %d)\n",
len, i, t->max_token_length);
exit(EXIT_FAILURE);
}
t->vocab[i] = (char *)malloc(len + 1);
if (!t->vocab[i]) {
log_debug("Failed to allocate token string at index %d\n", i);
exit(EXIT_FAILURE);
}
total_allocated += len + 1;
if (fread(t->vocab[i], len, 1, file) != 1) {
log_debug("failed to read token text at index %d\n", i);
exit(EXIT_FAILURE);
}
t->vocab[i][len] = '\0';
}
log_debug("Successfully read all tokens and scores\n");
log_debug("Total tokenizer memory allocated: %ld bytes (%.2f MB)\n",
(long)total_allocated, (float)total_allocated / (1024*1024));
fclose(file);
log_debug("Tokenizer built successfully\n");
}
void free_tokenizer(Tokenizer* t) {
int i;
for (i = 0; i < t->vocab_size; i++) { free(t->vocab[i]); }
free(t->vocab);
free(t->vocab_scores);
free(t->sorted_vocab);
}
char* decode(Tokenizer* t, int prev_token, int token) {
char* piece;
unsigned char byte_val;
piece = t->vocab[token];
// following BOS (1) token, sentencepiece decoder strips any leading whitespace (see PR #89)
if (prev_token == 1 && piece[0] == ' ') { piece++; }
// careful, some tokens designate raw bytes, and look like e.g. '<0x01>'
// parse this and convert and return the actual byte
if (sscanf(piece, "<0x%02hhX>", &byte_val) == 1) {
piece = (char*)t->byte_pieces + byte_val * 2;
}
return piece;
}
void safe_printf(char *piece) {
unsigned char byte_val;
// piece might be a raw byte token, and we only want to print printable chars or whitespace
// because some of the other bytes can be various control codes, backspace, etc.
if (piece == NULL) { return; }
if (piece[0] == '\0') { return; }
if (piece[1] == '\0') {
byte_val = piece[0];
if (!(isprint(byte_val) || isspace(byte_val))) {
return; // bad byte, don't print it
}
}
printf("%s", piece);
}
int str_lookup(char *str, TokenIndex *sorted_vocab, int vocab_size) {
// efficiently find the perfect match for str in vocab, return its index or -1 if not found
TokenIndex tok;
TokenIndex *res;
tok.str = str;
tok.id = 0; // id not used for searching
res = bsearch(&tok, sorted_vocab, vocab_size, sizeof(TokenIndex), compare_tokens);
return res != NULL ? res->id : -1;
}
// void encode(Tokenizer* t, char *text, int8_t bos, int8_t eos, int *tokens, int *n_tokens) {
// // Mark unused parameters
// (void)t;
// (void)text;
// (void)bos;
// (void)eos;
// // Hardcoded test tokens
// log_debug("Using hardcoded test tokens\n");
// *n_tokens = 6;
// tokens[0] = 1; // BOS
// tokens[1] = 22172;
// tokens[2] = 727;
// tokens[3] = 590;
// tokens[4] = 1024;
// tokens[5] = 338;
// }
void encode(Tokenizer* t, char *text, int8_t bos, int8_t eos, int *tokens, int *n_tokens) {
int i;
char* str_buffer;
char* c;
float best_score;
int best_id;
int best_idx;
int id;
size_t str_len;
// encode the string text (input) into an upper-bound preallocated tokens[] array
// bos != 0 means prepend the BOS token (=1), eos != 0 means append the EOS token (=2)
if (text == NULL) { fprintf(stderr, "cannot encode NULL text\n"); exit(EXIT_FAILURE); }
if (t->sorted_vocab == NULL) {
// lazily malloc and sort the vocabulary
t->sorted_vocab = malloc(t->vocab_size * sizeof(TokenIndex));
for (i = 0; i < t->vocab_size; i++) {
t->sorted_vocab[i].str = t->vocab[i];
t->sorted_vocab[i].id = i;
}
qsort(t->sorted_vocab, t->vocab_size, sizeof(TokenIndex), compare_tokens);
}
// create a temporary buffer that will store merge candidates of always two consecutive tokens
// *2 for concat, +1 for null terminator +2 for UTF8 (in case max_token_length is 1)
str_buffer = malloc((t->max_token_length*2 +1 +2) * sizeof(char));
str_len = 0;
// start at 0 tokens
*n_tokens = 0;
// add optional BOS (=1) token, if desired
if (bos) tokens[(*n_tokens)++] = 1;
// add_dummy_prefix is true by default
// so prepend a dummy prefix token to the input string, but only if text != ""
// TODO: pretty sure this isn't correct in the general case but I don't have the
// energy to read more of the sentencepiece code to figure out what it's doing
if (text[0] != '\0') {
int dummy_prefix = str_lookup(" ", t->sorted_vocab, t->vocab_size);
tokens[(*n_tokens)++] = dummy_prefix;
}
// Okay UTF-8 time. This will get messy. Here is the reference from Wikipedia:
// Code point ↔ UTF-8 conversion
// First code point Last code point Byte 1 Byte 2 Byte 3 Byte 4
// U+0000 U+007F 0xxxxxxx
// U+0080 U+07FF 110xxxxx 10xxxxxx
// U+0800 U+FFFF 1110xxxx 10xxxxxx 10xxxxxx
// U+10000 U+10FFFF 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx
// process the raw (UTF-8) byte sequence of the input string
for (c = text; *c != '\0'; c++) {
// reset buffer if the current byte is ASCII or a leading byte
// 0xC0 is 11000000, so (*c & 0xC0) keeps the first 2 bits and zeros the rest
// 0x80 is 10000000
// in UTF-8, all continuation bytes start with "10" in first two bits
// so in English this is: "if this byte is not a continuation byte"
if ((*c & 0xC0) != 0x80) {
// this byte must be either a leading byte (11...) or an ASCII char (0x...)
// => reset our location, as we're starting a new UTF-8 codepoint
str_len = 0;
}
// append the current byte to the buffer
str_buffer[str_len++] = *c; // ++ is post-increment, incremented after this line
str_buffer[str_len] = '\0';
// while the next character is a continuation byte, continue appending
// but if there are too many of them, just stop to avoid overruning str_buffer size.
if ((*(c+1) & 0xC0) == 0x80 && str_len < 4) {
continue;
}
// ok c+1 is not a continuation byte, so we've read in a full codepoint
id = str_lookup(str_buffer, t->sorted_vocab, t->vocab_size);
if (id != -1) {
// we found this codepoint in vocab, add it as a token
tokens[(*n_tokens)++] = id;
} else {
// byte_fallback encoding: just encode each byte as a token
// +3 is here because the first 3 vocab elements are <unk>, <s>, </s>
// so the individual bytes only start at index 3
for (i=0; i < str_len; i++) {
tokens[(*n_tokens)++] = (unsigned char)str_buffer[i] + 3;
}
}
str_len = 0; // protect against a sequence of stray UTF8 continuation bytes
}
// merge the best consecutive pair each iteration, according the scores in vocab_scores
while (1) {
best_score = -1e10;
best_id = -1;
best_idx = -1;
for (i=0; i < (*n_tokens-1); i++) {
// check if we can merge the pair (tokens[i], tokens[i+1])
sprintf(str_buffer, "%s%s", t->vocab[tokens[i]], t->vocab[tokens[i+1]]);
id = str_lookup(str_buffer, t->sorted_vocab, t->vocab_size);
if (id != -1 && t->vocab_scores[id] > best_score) {
// this merge pair exists in vocab! record its score and position
best_score = t->vocab_scores[id];
best_id = id;
best_idx = i;
}
}
if (best_idx == -1) {
break; // we couldn't find any more pairs to merge, so we're done
}
// merge the consecutive pair (best_idx, best_idx+1) into new token best_id
tokens[best_idx] = best_id;
// delete token at position best_idx+1, shift the entire sequence back 1
for (i = best_idx+1; i < (*n_tokens-1); i++) {
tokens[i] = tokens[i+1];
}
(*n_tokens)--; // token length decreased
}
// add optional EOS (=2) token, if desired
if (eos) tokens[(*n_tokens)++] = 2;
free(str_buffer);
}
// ----------------------------------------------------------------------------
// The Sampler, which takes logits and returns a sampled token
// sampling can be done in a few ways: greedy argmax, sampling, top-p sampling
typedef struct {
float prob;
int index;
} ProbIndex; // struct used when sorting probabilities during top-p sampling
typedef struct {
int vocab_size;
ProbIndex* probindex; // buffer used in top-p sampling
float temperature;
float topp;
uint64 rng_state;
} Sampler;
int sample_argmax(float* probabilities, int n) {
// return the index that has the highest probability
int i;
int max_i = 0;
float max_p = probabilities[0];
for (i = 1; i < n; i++) {
if (probabilities[i] > max_p) {
max_i = i;
max_p = probabilities[i];
}
}
return max_i;
}
int sample_mult(float* probabilities, int n, float coin) {
// sample index from probabilities (they must sum to 1!)
// coin is a random number in [0, 1), usually from random_f32()
float cdf = 0.0f;
int i;
for (i = 0; i < n; i++) {
cdf += probabilities[i];
if (coin < cdf) {
return i;
}
}
return n - 1; // in case of rounding errors
}
int compare(const void* a, const void* b) {
ProbIndex* a_ = (ProbIndex*) a;
ProbIndex* b_ = (ProbIndex*) b;
if (a_->prob > b_->prob) return -1;
if (a_->prob < b_->prob) return 1;
return 0;
}
int sample_topp(float* probabilities, int n, float topp, ProbIndex* probindex, float coin) {
// top-p sampling (or "nucleus sampling") samples from the smallest set of
// tokens that exceed probability topp. This way we never sample tokens that
// have very low probabilities and are less likely to go "off the rails".
// coin is a random number in [0, 1), usually from random_f32()
int n0 = 0;