-
-
Notifications
You must be signed in to change notification settings - Fork 4.4k
/
lemmatizer.py
207 lines (181 loc) · 6.58 KB
/
lemmatizer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
# coding: utf8
from ...symbols import ADJ, DET, NOUN, NUM, PRON, PROPN, PUNCT, VERB, POS
from ...lemmatizer import Lemmatizer
class UkrainianLemmatizer(Lemmatizer):
_morph = None
def __init__(self):
super(UkrainianLemmatizer, self).__init__()
try:
from pymorphy2 import MorphAnalyzer
if UkrainianLemmatizer._morph is None:
UkrainianLemmatizer._morph = MorphAnalyzer(lang="uk")
except (ImportError, TypeError):
raise ImportError(
"The Ukrainian lemmatizer requires the pymorphy2 library and "
'dictionaries: try to fix it with "pip uninstall pymorphy2" and'
'"pip install git+https://github.com/kmike/pymorphy2.git pymorphy2-dicts-uk"'
)
def __call__(self, string, univ_pos, morphology=None):
univ_pos = self.normalize_univ_pos(univ_pos)
if univ_pos == "PUNCT":
return [PUNCT_RULES.get(string, string)]
if univ_pos not in ("ADJ", "DET", "NOUN", "NUM", "PRON", "PROPN", "VERB"):
# Skip unchangeable pos
return [string.lower()]
analyses = self._morph.parse(string)
filtered_analyses = []
for analysis in analyses:
if not analysis.is_known:
# Skip suggested parse variant for unknown word for pymorphy
continue
analysis_pos, _ = oc2ud(str(analysis.tag))
if analysis_pos == univ_pos or (
analysis_pos in ("NOUN", "PROPN") and univ_pos in ("NOUN", "PROPN")
):
filtered_analyses.append(analysis)
if not len(filtered_analyses):
return [string.lower()]
if morphology is None or (len(morphology) == 1 and POS in morphology):
return list(set([analysis.normal_form for analysis in filtered_analyses]))
if univ_pos in ("ADJ", "DET", "NOUN", "PROPN"):
features_to_compare = ["Case", "Number", "Gender"]
elif univ_pos == "NUM":
features_to_compare = ["Case", "Gender"]
elif univ_pos == "PRON":
features_to_compare = ["Case", "Number", "Gender", "Person"]
else: # VERB
features_to_compare = [
"Aspect",
"Gender",
"Mood",
"Number",
"Tense",
"VerbForm",
"Voice",
]
analyses, filtered_analyses = filtered_analyses, []
for analysis in analyses:
_, analysis_morph = oc2ud(str(analysis.tag))
for feature in features_to_compare:
if (
feature in morphology
and feature in analysis_morph
and morphology[feature] != analysis_morph[feature]
):
break
else:
filtered_analyses.append(analysis)
if not len(filtered_analyses):
return [string.lower()]
return list(set([analysis.normal_form for analysis in filtered_analyses]))
@staticmethod
def normalize_univ_pos(univ_pos):
if isinstance(univ_pos, str):
return univ_pos.upper()
symbols_to_str = {
ADJ: "ADJ",
DET: "DET",
NOUN: "NOUN",
NUM: "NUM",
PRON: "PRON",
PROPN: "PROPN",
PUNCT: "PUNCT",
VERB: "VERB",
}
if univ_pos in symbols_to_str:
return symbols_to_str[univ_pos]
return None
def is_base_form(self, univ_pos, morphology=None):
# TODO
raise NotImplementedError
def det(self, string, morphology=None):
return self(string, "det", morphology)
def num(self, string, morphology=None):
return self(string, "num", morphology)
def pron(self, string, morphology=None):
return self(string, "pron", morphology)
def lookup(self, string):
analyses = self._morph.parse(string)
if len(analyses) == 1:
return analyses[0].normal_form
return string
def oc2ud(oc_tag):
gram_map = {
"_POS": {
"ADJF": "ADJ",
"ADJS": "ADJ",
"ADVB": "ADV",
"Apro": "DET",
"COMP": "ADJ", # Can also be an ADV - unchangeable
"CONJ": "CCONJ", # Can also be a SCONJ - both unchangeable ones
"GRND": "VERB",
"INFN": "VERB",
"INTJ": "INTJ",
"NOUN": "NOUN",
"NPRO": "PRON",
"NUMR": "NUM",
"NUMB": "NUM",
"PNCT": "PUNCT",
"PRCL": "PART",
"PREP": "ADP",
"PRTF": "VERB",
"PRTS": "VERB",
"VERB": "VERB",
},
"Animacy": {"anim": "Anim", "inan": "Inan"},
"Aspect": {"impf": "Imp", "perf": "Perf"},
"Case": {
"ablt": "Ins",
"accs": "Acc",
"datv": "Dat",
"gen1": "Gen",
"gen2": "Gen",
"gent": "Gen",
"loc2": "Loc",
"loct": "Loc",
"nomn": "Nom",
"voct": "Voc",
},
"Degree": {"COMP": "Cmp", "Supr": "Sup"},
"Gender": {"femn": "Fem", "masc": "Masc", "neut": "Neut"},
"Mood": {"impr": "Imp", "indc": "Ind"},
"Number": {"plur": "Plur", "sing": "Sing"},
"NumForm": {"NUMB": "Digit"},
"Person": {"1per": "1", "2per": "2", "3per": "3", "excl": "2", "incl": "1"},
"Tense": {"futr": "Fut", "past": "Past", "pres": "Pres"},
"Variant": {"ADJS": "Brev", "PRTS": "Brev"},
"VerbForm": {
"GRND": "Conv",
"INFN": "Inf",
"PRTF": "Part",
"PRTS": "Part",
"VERB": "Fin",
},
"Voice": {"actv": "Act", "pssv": "Pass"},
"Abbr": {"Abbr": "Yes"},
}
pos = "X"
morphology = dict()
unmatched = set()
grams = oc_tag.replace(" ", ",").split(",")
for gram in grams:
match = False
for categ, gmap in sorted(gram_map.items()):
if gram in gmap:
match = True
if categ == "_POS":
pos = gmap[gram]
else:
morphology[categ] = gmap[gram]
if not match:
unmatched.add(gram)
while len(unmatched) > 0:
gram = unmatched.pop()
if gram in ("Name", "Patr", "Surn", "Geox", "Orgn"):
pos = "PROPN"
elif gram == "Auxt":
pos = "AUX"
elif gram == "Pltm":
morphology["Number"] = "Ptan"
return pos, morphology
PUNCT_RULES = {"«": '"', "»": '"'}