-
Notifications
You must be signed in to change notification settings - Fork 49
/
MonotonicFixpointIteratorTest.cpp
862 lines (723 loc) · 28.2 KB
/
MonotonicFixpointIteratorTest.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
/*
* Copyright (c) Meta Platforms, Inc. and affiliates.
*
* This source code is licensed under the MIT license found in the
* LICENSE file in the root directory of this source tree.
*/
#include <sparta/HashedSetAbstractDomain.h>
#include <sparta/MonotonicFixpointIterator.h>
#include <sparta/PatriciaTreeMapAbstractEnvironment.h>
#include <sparta/PatriciaTreeSet.h>
#include <functional>
#include <gmock/gmock.h>
#include <gtest/gtest.h>
#include <initializer_list>
#include <string>
#include <unordered_map>
#include <unordered_set>
#include <vector>
#include <boost/functional/hash.hpp>
namespace liveness {
using namespace sparta;
/*
* In order to test the fixpoint iterator, we implement a liveness analysis on a
* skeleton language. A statement simply contains the variables it defines and
* the variables it uses, which is all we need to perform liveness analysis.
*/
struct Statement {
Statement() = default;
Statement(std::initializer_list<std::string> use,
std::initializer_list<std::string> def)
: use(use), def(def) {}
std::vector<std::string> use;
std::vector<std::string> def;
};
/*
* A program is a control-flow graph where each node is labeled with a
* statement.
*/
class Program final {
public:
using Edge = std::pair<uint32_t, uint32_t>;
using EdgeId = std::shared_ptr<Edge>;
explicit Program(uint32_t entry) : m_entry(entry), m_exit(entry) {}
std::vector<EdgeId> successors(uint32_t node) const {
auto& succs = m_successors.at(node);
return std::vector<EdgeId>(succs.begin(), succs.end());
}
std::vector<EdgeId> predecessors(uint32_t node) const {
auto& preds = m_predecessors.at(node);
return std::vector<EdgeId>(preds.begin(), preds.end());
}
const Statement& statement_at(uint32_t node) const {
auto it = m_statements.find(node);
if (it == m_statements.end()) {
fail(node);
}
return it->second;
}
void add(uint32_t node, const Statement& stmt) {
m_statements[node] = stmt;
// Ensure that the pred/succ entries for the node are initialized
m_predecessors[node];
m_successors[node];
}
void add_edge(uint32_t src, uint32_t dst) {
auto edge = std::make_shared<Edge>(src, dst);
m_successors[src].insert(edge);
m_predecessors[dst].insert(edge);
}
void set_exit(uint32_t exit) { m_exit = exit; }
private:
// In gtest, FAIL (or any ASSERT_* statement) can only be called from within a
// function that returns void.
void fail(uint32_t node) const { FAIL() << "No statement at node " << node; }
uint32_t m_entry;
uint32_t m_exit;
std::unordered_map<uint32_t, Statement> m_statements;
std::unordered_map<uint32_t, std::unordered_set<EdgeId>> m_successors;
std::unordered_map<uint32_t, std::unordered_set<EdgeId>> m_predecessors;
friend class ProgramInterface;
};
class ProgramInterface {
public:
using Graph = Program;
using NodeId = uint32_t;
using EdgeId = Program::EdgeId;
static NodeId entry(const Graph& graph) { return graph.m_entry; }
static NodeId exit(const Graph& graph) { return graph.m_exit; }
static std::vector<EdgeId> predecessors(const Graph& graph,
const NodeId& node) {
return graph.predecessors(node);
}
static std::vector<EdgeId> successors(const Graph& graph,
const NodeId& node) {
return graph.successors(node);
}
static NodeId source(const Graph&, const EdgeId& e) { return e->first; }
static NodeId target(const Graph&, const EdgeId& e) { return e->second; }
};
/*
* The abstract domain for liveness is just the powerset domain of variables.
*/
using LivenessDomain = HashedSetAbstractDomain<std::string>;
template <template <typename GraphInterface, typename Domain, typename NodeHash>
class FixpointIteratorBase>
class FixpointEngine final
: public FixpointIteratorBase<
BackwardsFixpointIterationAdaptor<ProgramInterface>,
LivenessDomain,
std::hash<typename ProgramInterface::NodeId>> {
private:
using Base =
FixpointIteratorBase<BackwardsFixpointIterationAdaptor<ProgramInterface>,
LivenessDomain,
std::hash<typename ProgramInterface::NodeId>>;
using EdgeId = typename Base::EdgeId;
public:
explicit FixpointEngine(const Program& program)
: Base(program), m_program(program) {}
void analyze_node(const uint32_t& node,
LivenessDomain* current_state) const override {
const Statement& stmt = m_program.statement_at(node);
// This is the standard semantic definition of liveness.
current_state->remove(stmt.def.begin(), stmt.def.end());
current_state->add(stmt.use.begin(), stmt.use.end());
}
LivenessDomain analyze_edge(
const EdgeId&,
const LivenessDomain& exit_state_at_source) const override {
// Edges have no semantic transformers attached.
return exit_state_at_source;
}
LivenessDomain get_live_in_vars_at(const uint32_t& node) {
// Since we performed a backward analysis by reversing the control-flow
// graph, the set of live variables before executing a node is given by
// the exit state at the node.
return Base::get_exit_state_at(node);
}
LivenessDomain get_live_out_vars_at(const uint32_t& node) {
// Similarly, the set of live variables after executing a node is given by
// the entry state at the node.
return Base::get_entry_state_at(node);
}
private:
const Program& m_program;
};
} // namespace liveness
template <typename FixpointEngine>
class MonotonicFixpointIteratorLivenessTest : public ::testing::Test {
protected:
MonotonicFixpointIteratorLivenessTest()
: m_program1(1), m_program2(1), m_program3(1) {}
void SetUp() override {
build_program1();
build_program2();
build_program3();
}
liveness::Program m_program1;
liveness::Program m_program2;
liveness::Program m_program3;
private:
/*
* live in live out
* 1: a = 0; {c} {a, c}
* 2: b = a + 1; {a, c} {b, c}
* 3: c = c + b; {b, c} {b, c}
* 4: a = b * 2; {b, c} {a, c}
* 5: if (a < 9) { {a, c} {a, c}
* goto 2;
* } else {
* 6: return c; {c} {}
* }
*/
void build_program1() {
using namespace liveness;
m_program1.add(1, Statement(/* use: */ {}, /* def: */ {"a"}));
m_program1.add(2, Statement(/* use: */ {"a"}, /* def: */ {"b"}));
m_program1.add(3, Statement(/* use: */ {"c", "b"}, /* def: */ {"c"}));
m_program1.add(4, Statement(/* use: */ {"b"}, /* def: */ {"a"}));
m_program1.add(5, Statement(/* use: */ {"a"}, /* def: */ {}));
m_program1.add(6, Statement(/* use: */ {"c"}, /* def: */ {}));
m_program1.add_edge(1, 2);
m_program1.add_edge(2, 3);
m_program1.add_edge(3, 4);
m_program1.add_edge(4, 5);
m_program1.add_edge(5, 6);
m_program1.add_edge(5, 2);
m_program1.set_exit(6);
}
/*
* live in live out
* 1: x = a + b; {a, b} {x, a, b}
* 2: y = a * b; {x, a, b} {x, y, a, b}
* 3: if (y > a) { {x, y, a, b} {x, y, a, b}
* 4: return x; {x} {}
* }
* 5: a = a + 1; {y, a, b} {y, a, b}
* 6: x = a + b; {y, a, b} {x, y, a, b}
* if (...) {
* goto 7;
* }
* goto 3;
* 7: x = y + a;
*
*/
void build_program2() {
using namespace liveness;
m_program2.add(1, Statement(/* use: */ {"a", "b"}, /* def: */ {"x"}));
m_program2.add(2, Statement(/* use: */ {"a", "b"}, /* def: */ {"y"}));
m_program2.add(3, Statement(/* use: */ {"y", "a"}, /* def: */ {}));
m_program2.add(4, Statement(/* use: */ {"x"}, /* def: */ {}));
m_program2.add(5, Statement(/* use: */ {"a"}, /* def: */ {"a"}));
m_program2.add(6, Statement(/* use: */ {"a", "b"}, /* def: */ {"x"}));
m_program2.add(7, Statement(/* use: */ {"y", "a"}, /* def: */ {"x"}));
m_program2.add_edge(1, 2);
m_program2.add_edge(2, 3);
m_program2.add_edge(3, 4);
m_program2.add_edge(3, 5);
m_program2.add_edge(5, 6);
m_program2.add_edge(6, 3);
m_program2.add_edge(6, 7);
m_program2.set_exit(4);
}
/*
* live in live out
* 1: a, b -> x, y {a, b, z} {a, b, x, y, z}
* 2: x, y -> z {x, y, a, b} {a, b, y, z}
* 3: a -> c {a, b, y, z} {c, b, y, z}
* 4: b -> d {c, b, y, z} {c, d, y, z}
* 5: c, d -> a, b {c, d, y, z} {a, b, y, z}
* 6: a, b -> x {a, b, y, z} {a, b, x, y, z}
* 7: return z {z} {}
* 8: a, b -> c, d {a, b, y, z} {c, b, y, z}
*
* 1->2, 2->3, 3->4, 4->5, 5->6, 6->7, 6->2, 5->3, 1->8, 8->4
* A test using graph that can reproduce error fixed in
* https://github.com/facebookincubator/SPARTA/pull/7
*/
void build_program3() {
using namespace liveness;
m_program3.add(1, Statement(/* use: */ {"a", "b"}, /* def: */ {"x", "y"}));
m_program3.add(2, Statement(/* use: */ {"x", "y"}, /* def: */ {"z"}));
m_program3.add(3, Statement(/* use: */ {"a"}, /* def: */ {"c"}));
m_program3.add(4, Statement(/* use: */ {"b"}, /* def: */ {"d"}));
m_program3.add(5, Statement(/* use: */ {"c", "d"}, /* def: */ {"a", "b"}));
m_program3.add(6, Statement(/* use: */ {"a", "b"}, /* def: */ {"x"}));
m_program3.add(7, Statement(/* use: */ {"z"}, /* def: */ {}));
m_program3.add(8, Statement(/* use: */ {"a", "b"}, /* def: */ {"c", "d"}));
m_program3.add_edge(1, 2);
m_program3.add_edge(2, 3);
m_program3.add_edge(3, 4);
m_program3.add_edge(4, 5);
m_program3.add_edge(5, 6);
m_program3.add_edge(6, 7);
m_program3.add_edge(6, 2);
m_program3.add_edge(5, 3);
m_program3.add_edge(1, 8);
m_program3.add_edge(8, 4);
m_program3.set_exit(7);
}
};
using LivenessFixpoints = ::testing::Types<
liveness::FixpointEngine<sparta::WTOMonotonicFixpointIterator>,
liveness::FixpointEngine<sparta::MonotonicFixpointIterator>,
liveness::FixpointEngine<sparta::ParallelMonotonicFixpointIterator>>;
TYPED_TEST_CASE(MonotonicFixpointIteratorLivenessTest, LivenessFixpoints);
TYPED_TEST(MonotonicFixpointIteratorLivenessTest, program1) {
using namespace std::placeholders;
using namespace liveness;
TypeParam fp(this->m_program1);
fp.run(LivenessDomain());
ASSERT_TRUE(fp.get_live_in_vars_at(1).is_value());
ASSERT_TRUE(fp.get_live_out_vars_at(1).is_value());
EXPECT_THAT(fp.get_live_in_vars_at(1).elements(),
::testing::UnorderedElementsAre("c"));
EXPECT_THAT(fp.get_live_out_vars_at(1).elements(),
::testing::UnorderedElementsAre("a", "c"));
ASSERT_TRUE(fp.get_live_in_vars_at(2).is_value());
ASSERT_TRUE(fp.get_live_out_vars_at(2).is_value());
EXPECT_THAT(fp.get_live_in_vars_at(2).elements(),
::testing::UnorderedElementsAre("a", "c"));
EXPECT_THAT(fp.get_live_out_vars_at(2).elements(),
::testing::UnorderedElementsAre("b", "c"));
ASSERT_TRUE(fp.get_live_in_vars_at(3).is_value());
ASSERT_TRUE(fp.get_live_out_vars_at(3).is_value());
EXPECT_THAT(fp.get_live_in_vars_at(3).elements(),
::testing::UnorderedElementsAre("b", "c"));
EXPECT_THAT(fp.get_live_out_vars_at(3).elements(),
::testing::UnorderedElementsAre("b", "c"));
ASSERT_TRUE(fp.get_live_in_vars_at(4).is_value());
ASSERT_TRUE(fp.get_live_out_vars_at(4).is_value());
EXPECT_THAT(fp.get_live_in_vars_at(4).elements(),
::testing::UnorderedElementsAre("b", "c"));
EXPECT_THAT(fp.get_live_out_vars_at(4).elements(),
::testing::UnorderedElementsAre("a", "c"));
ASSERT_TRUE(fp.get_live_in_vars_at(5).is_value());
ASSERT_TRUE(fp.get_live_out_vars_at(5).is_value());
EXPECT_THAT(fp.get_live_in_vars_at(5).elements(),
::testing::UnorderedElementsAre("a", "c"));
EXPECT_THAT(fp.get_live_out_vars_at(5).elements(),
::testing::UnorderedElementsAre("a", "c"));
ASSERT_TRUE(fp.get_live_in_vars_at(6).is_value());
ASSERT_TRUE(fp.get_live_out_vars_at(6).is_value());
EXPECT_THAT(fp.get_live_in_vars_at(6).elements(),
::testing::UnorderedElementsAre("c"));
EXPECT_TRUE(fp.get_live_out_vars_at(6).elements().empty());
}
TYPED_TEST(MonotonicFixpointIteratorLivenessTest, program2) {
using namespace std::placeholders;
using namespace liveness;
TypeParam fp(this->m_program2);
fp.run(LivenessDomain());
ASSERT_TRUE(fp.get_live_in_vars_at(1).is_value());
ASSERT_TRUE(fp.get_live_out_vars_at(1).is_value());
EXPECT_THAT(fp.get_live_in_vars_at(1).elements(),
::testing::UnorderedElementsAre("a", "b"));
EXPECT_THAT(fp.get_live_out_vars_at(1).elements(),
::testing::UnorderedElementsAre("x", "a", "b"));
ASSERT_TRUE(fp.get_live_in_vars_at(2).is_value());
ASSERT_TRUE(fp.get_live_out_vars_at(2).is_value());
EXPECT_THAT(fp.get_live_in_vars_at(2).elements(),
::testing::UnorderedElementsAre("x", "a", "b"));
EXPECT_THAT(fp.get_live_out_vars_at(2).elements(),
::testing::UnorderedElementsAre("x", "y", "a", "b"));
ASSERT_TRUE(fp.get_live_in_vars_at(3).is_value());
ASSERT_TRUE(fp.get_live_out_vars_at(3).is_value());
EXPECT_THAT(fp.get_live_in_vars_at(3).elements(),
::testing::UnorderedElementsAre("x", "y", "a", "b"));
EXPECT_THAT(fp.get_live_out_vars_at(3).elements(),
::testing::UnorderedElementsAre("x", "y", "a", "b"));
ASSERT_TRUE(fp.get_live_in_vars_at(4).is_value());
ASSERT_TRUE(fp.get_live_out_vars_at(4).is_value());
EXPECT_THAT(fp.get_live_in_vars_at(4).elements(),
::testing::UnorderedElementsAre("x"));
EXPECT_TRUE(fp.get_live_out_vars_at(4).elements().empty());
ASSERT_TRUE(fp.get_live_in_vars_at(5).is_value());
ASSERT_TRUE(fp.get_live_out_vars_at(5).is_value());
EXPECT_THAT(fp.get_live_in_vars_at(5).elements(),
::testing::UnorderedElementsAre("y", "a", "b"));
EXPECT_THAT(fp.get_live_out_vars_at(5).elements(),
::testing::UnorderedElementsAre("y", "a", "b"));
ASSERT_TRUE(fp.get_live_in_vars_at(6).is_value());
ASSERT_TRUE(fp.get_live_out_vars_at(6).is_value());
EXPECT_THAT(fp.get_live_in_vars_at(6).elements(),
::testing::UnorderedElementsAre("y", "a", "b"));
EXPECT_THAT(fp.get_live_out_vars_at(6).elements(),
::testing::UnorderedElementsAre("x", "y", "a", "b"));
ASSERT_TRUE(fp.get_live_in_vars_at(7).is_bottom());
ASSERT_TRUE(fp.get_live_out_vars_at(7).is_bottom());
}
TYPED_TEST(MonotonicFixpointIteratorLivenessTest, program3) {
using namespace std::placeholders;
using namespace liveness;
TypeParam fp(this->m_program3);
fp.run(LivenessDomain());
ASSERT_TRUE(fp.get_live_in_vars_at(1).is_value());
ASSERT_TRUE(fp.get_live_out_vars_at(1).is_value());
EXPECT_THAT(fp.get_live_in_vars_at(1).elements(),
::testing::UnorderedElementsAre("a", "b", "z"));
EXPECT_THAT(fp.get_live_out_vars_at(1).elements(),
::testing::UnorderedElementsAre("x", "y", "a", "b", "z"));
ASSERT_TRUE(fp.get_live_in_vars_at(2).is_value());
ASSERT_TRUE(fp.get_live_out_vars_at(2).is_value());
EXPECT_THAT(fp.get_live_in_vars_at(2).elements(),
::testing::UnorderedElementsAre("x", "y", "a", "b"));
EXPECT_THAT(fp.get_live_out_vars_at(2).elements(),
::testing::UnorderedElementsAre("z", "y", "a", "b"));
ASSERT_TRUE(fp.get_live_in_vars_at(3).is_value());
ASSERT_TRUE(fp.get_live_out_vars_at(3).is_value());
EXPECT_THAT(fp.get_live_in_vars_at(3).elements(),
::testing::UnorderedElementsAre("z", "y", "a", "b"));
EXPECT_THAT(fp.get_live_out_vars_at(3).elements(),
::testing::UnorderedElementsAre("z", "y", "c", "b"));
ASSERT_TRUE(fp.get_live_in_vars_at(4).is_value());
ASSERT_TRUE(fp.get_live_out_vars_at(4).is_value());
EXPECT_THAT(fp.get_live_in_vars_at(4).elements(),
::testing::UnorderedElementsAre("z", "y", "c", "b"));
EXPECT_THAT(fp.get_live_out_vars_at(4).elements(),
::testing::UnorderedElementsAre("z", "y", "c", "d"));
ASSERT_TRUE(fp.get_live_in_vars_at(5).is_value());
ASSERT_TRUE(fp.get_live_out_vars_at(5).is_value());
EXPECT_THAT(fp.get_live_in_vars_at(5).elements(),
::testing::UnorderedElementsAre("z", "y", "c", "d"));
EXPECT_THAT(fp.get_live_out_vars_at(5).elements(),
::testing::UnorderedElementsAre("z", "a", "b", "y"));
ASSERT_TRUE(fp.get_live_in_vars_at(6).is_value());
ASSERT_TRUE(fp.get_live_out_vars_at(6).is_value());
EXPECT_THAT(fp.get_live_in_vars_at(6).elements(),
::testing::UnorderedElementsAre("z", "a", "b", "y"));
EXPECT_THAT(fp.get_live_out_vars_at(6).elements(),
::testing::UnorderedElementsAre("z", "a", "b", "x", "y"));
ASSERT_TRUE(fp.get_live_in_vars_at(7).is_value());
ASSERT_TRUE(fp.get_live_out_vars_at(7).is_value());
EXPECT_THAT(fp.get_live_in_vars_at(7).elements(),
::testing::UnorderedElementsAre("z"));
EXPECT_TRUE(fp.get_live_out_vars_at(7).elements().empty());
ASSERT_TRUE(fp.get_live_in_vars_at(8).is_value());
ASSERT_TRUE(fp.get_live_out_vars_at(8).is_value());
EXPECT_THAT(fp.get_live_in_vars_at(8).elements(),
::testing::UnorderedElementsAre("z", "a", "b", "y"));
EXPECT_THAT(fp.get_live_out_vars_at(8).elements(),
::testing::UnorderedElementsAre("z", "c", "b", "y"));
}
namespace numerical {
using namespace sparta;
/*
* In order to test the fixpoint iterator, we implement a numerical analysis on
* a skeleton language.
*/
/*
* A statement of our language is either:
* - An assignment: `x = 0`
* - An addition: `x = y + 1`
*/
struct Statement {
Statement() = default;
virtual ~Statement() = default;
};
struct Assignment : public Statement {
Assignment(std::string* variable, unsigned value)
: variable(variable), value(value) {}
std::string* variable;
unsigned value;
};
struct Addition : public Statement {
Addition(std::string* result, std::string* left, unsigned right)
: result(result), left(left), right(right) {}
std::string* result;
std::string* left;
unsigned right;
};
class BasicBlock;
struct Edge final {
Edge(BasicBlock* source, BasicBlock* target)
: source(source), target(target) {}
BasicBlock* source;
BasicBlock* target;
};
class BasicBlock final {
public:
BasicBlock() = default;
void add(std::unique_ptr<Statement> statement) {
m_statements.push_back(std::move(statement));
}
void add_successor(BasicBlock* successor) {
m_edges.push_back(std::make_unique<Edge>(this, successor));
auto* edge = m_edges.back().get();
m_successors.push_back(edge);
successor->m_predecessors.push_back(edge);
}
const std::vector<std::unique_ptr<Statement>>& statements() const {
return m_statements;
}
private:
std::vector<std::unique_ptr<Statement>> m_statements;
std::vector<std::unique_ptr<Edge>> m_edges;
std::vector<Edge*> m_predecessors;
std::vector<Edge*> m_successors;
friend class ProgramInterface;
};
class Program final {
public:
Program() = default;
BasicBlock* create_block() {
m_basic_blocks.push_back(std::make_unique<BasicBlock>());
return m_basic_blocks.back().get();
}
void set_entry(BasicBlock* entry) { m_entry = entry; }
void set_exit(BasicBlock* exit) { m_exit = exit; }
private:
std::vector<std::unique_ptr<BasicBlock>> m_basic_blocks;
BasicBlock* m_entry = nullptr;
BasicBlock* m_exit = nullptr;
friend class ProgramInterface;
};
class ProgramInterface {
public:
using Graph = Program;
using NodeId = BasicBlock*;
using EdgeId = Edge*;
static NodeId entry(const Graph& graph) { return graph.m_entry; }
static NodeId exit(const Graph& graph) { return graph.m_exit; }
static std::vector<EdgeId> predecessors(const Graph&, const NodeId& node) {
return node->m_predecessors;
}
static std::vector<EdgeId> successors(const Graph&, const NodeId& node) {
return node->m_successors;
}
static NodeId source(const Graph&, const EdgeId& e) { return e->source; }
static NodeId target(const Graph&, const EdgeId& e) { return e->target; }
};
/* A powerset of integers with a widening to top. */
class IntegerSetAbstractDomain final
: public AbstractDomain<IntegerSetAbstractDomain> {
public:
IntegerSetAbstractDomain() : m_top(true) {}
explicit IntegerSetAbstractDomain(std::initializer_list<unsigned> values)
: m_set(values), m_top(false) {}
static IntegerSetAbstractDomain bottom() {
return IntegerSetAbstractDomain(/* top */ false);
}
static IntegerSetAbstractDomain top() {
return IntegerSetAbstractDomain(/* top */ true);
}
bool is_bottom() const { return !m_top && m_set.empty(); }
bool is_top() const { return m_top; }
void set_to_bottom() {
m_set.clear();
m_top = false;
}
void set_to_top() {
m_set.clear();
m_top = true;
}
bool leq(const IntegerSetAbstractDomain& other) const {
if (is_bottom() || other.is_top()) {
return true;
} else if (is_top() || other.is_bottom()) {
return false;
} else {
return m_set.is_subset_of(other.m_set);
}
}
bool equals(const IntegerSetAbstractDomain& other) const {
if (is_bottom()) {
return other.is_bottom();
} else if (is_top()) {
return other.is_top();
} else {
return m_set.equals(other.m_set);
}
}
void join_with(const IntegerSetAbstractDomain& other) {
if (is_top() || other.is_bottom()) {
return;
} else if (is_bottom() || other.is_top()) {
*this = other;
} else {
m_set.union_with(other.m_set);
}
}
void widen_with(const IntegerSetAbstractDomain& other) {
if (is_top() || other.is_bottom()) {
return;
} else if (is_bottom() || other.is_top()) {
*this = other;
} else if (other.m_set.is_subset_of(m_set)) {
return;
} else {
set_to_top();
}
}
void meet_with(const IntegerSetAbstractDomain& other) {
// Never used.
}
void narrow_with(const IntegerSetAbstractDomain& other) {
// Never used.
}
/* Insert a value in the set. */
void insert(unsigned value) {
if (m_top) {
return;
}
m_set.insert(value);
}
/* Add two integer sets. */
static IntegerSetAbstractDomain add(const IntegerSetAbstractDomain& lhs,
const IntegerSetAbstractDomain& rhs) {
if (lhs.is_bottom() || rhs.is_bottom()) {
return bottom();
} else if (lhs.is_top() || rhs.is_top()) {
return top();
} else {
auto result = IntegerSetAbstractDomain::bottom();
for (unsigned x : lhs.m_set) {
for (unsigned y : rhs.m_set) {
result.insert(x + y);
}
}
return result;
}
}
friend std::ostream& operator<<(std::ostream& o,
const IntegerSetAbstractDomain& set) {
if (set.is_top()) {
o << "T";
} else if (set.is_bottom()) {
o << "_|_";
} else {
o << set.m_set;
}
return o;
}
private:
explicit IntegerSetAbstractDomain(bool top) : m_top(top) {}
PatriciaTreeSet<unsigned> m_set;
bool m_top;
};
using AbstractEnvironmentT =
PatriciaTreeMapAbstractEnvironment<std::string*, IntegerSetAbstractDomain>;
template <template <typename GraphInterface, typename Domain, typename NodeHash>
class FixpointIteratorBase>
class FixpointEngine final : public FixpointIteratorBase<
ProgramInterface,
AbstractEnvironmentT,
std::hash<typename ProgramInterface::NodeId>> {
private:
using Base =
FixpointIteratorBase<ProgramInterface,
AbstractEnvironmentT,
std::hash<typename ProgramInterface::NodeId>>;
using NodeId = typename Base::NodeId;
using EdgeId = typename Base::EdgeId;
public:
explicit FixpointEngine(const Program& program) : Base(program) {}
void analyze_node(const NodeId& bb,
AbstractEnvironmentT* current_state) const override {
for (const auto& statement : bb->statements()) {
analyze_statement(statement.get(), current_state);
}
}
void analyze_statement(Statement* statement,
AbstractEnvironmentT* current_state) const {
if (auto* assign = dynamic_cast<Assignment*>(statement)) {
current_state->set(assign->variable,
IntegerSetAbstractDomain{assign->value});
} else if (auto* addition = dynamic_cast<Addition*>(statement)) {
current_state->set(addition->result,
IntegerSetAbstractDomain::add(
current_state->get(addition->left),
IntegerSetAbstractDomain{addition->right}));
} else {
throw std::runtime_error("unreachable");
}
}
AbstractEnvironmentT analyze_edge(
const EdgeId&, const AbstractEnvironmentT& state) const override {
return state;
}
};
} // namespace numerical
template <typename FixpointEngine>
class MonotonicFixpointIteratorNumericalTest : public ::testing::Test {};
using NumericalFixpoints = ::testing::Types<
numerical::FixpointEngine<sparta::WTOMonotonicFixpointIterator>,
numerical::FixpointEngine<sparta::MonotonicFixpointIterator>,
numerical::FixpointEngine<sparta::ParallelMonotonicFixpointIterator>>;
TYPED_TEST_CASE(MonotonicFixpointIteratorNumericalTest, NumericalFixpoints);
TYPED_TEST(MonotonicFixpointIteratorNumericalTest, program1) {
using namespace numerical;
/*
* bb1: x = 1;
* if (...) {
* bb2: y = x + 1;
* } else {
* bb3: y = x + 2;
* }
* bb4: return
*/
Program program;
BasicBlock* bb1 = program.create_block();
BasicBlock* bb2 = program.create_block();
BasicBlock* bb3 = program.create_block();
BasicBlock* bb4 = program.create_block();
std::string x = "x";
std::string y = "y";
bb1->add(std::make_unique<Assignment>(&x, 1));
bb1->add_successor(bb2);
bb1->add_successor(bb3);
bb2->add(std::make_unique<Addition>(&y, &x, 1));
bb2->add_successor(bb4);
bb3->add(std::make_unique<Addition>(&y, &x, 2));
bb3->add_successor(bb4);
program.set_entry(bb1);
program.set_exit(bb4);
TypeParam fp(program);
fp.run(AbstractEnvironmentT::top());
EXPECT_EQ(fp.get_entry_state_at(bb1), AbstractEnvironmentT::top());
EXPECT_EQ(fp.get_exit_state_at(bb1).get(&x), IntegerSetAbstractDomain{1});
EXPECT_EQ(fp.get_exit_state_at(bb1).get(&y), IntegerSetAbstractDomain::top());
EXPECT_EQ(fp.get_entry_state_at(bb2), fp.get_exit_state_at(bb1));
EXPECT_EQ(fp.get_exit_state_at(bb2).get(&x), IntegerSetAbstractDomain{1});
EXPECT_EQ(fp.get_exit_state_at(bb2).get(&y), IntegerSetAbstractDomain{2});
EXPECT_EQ(fp.get_entry_state_at(bb3), fp.get_exit_state_at(bb1));
EXPECT_EQ(fp.get_exit_state_at(bb3).get(&x), IntegerSetAbstractDomain{1});
EXPECT_EQ(fp.get_exit_state_at(bb3).get(&y), IntegerSetAbstractDomain{3});
EXPECT_EQ(fp.get_entry_state_at(bb4).get(&x), IntegerSetAbstractDomain{1});
EXPECT_EQ(fp.get_entry_state_at(bb4).get(&y),
(IntegerSetAbstractDomain{2, 3}));
EXPECT_EQ(fp.get_exit_state_at(bb4), fp.get_entry_state_at(bb4));
}
TYPED_TEST(MonotonicFixpointIteratorNumericalTest, program2) {
using namespace numerical;
/*
* bb1: x = 1;
* while (...) {
* bb2: x = x + 1;
* }
* bb3: return
*/
Program program;
BasicBlock* bb1 = program.create_block();
BasicBlock* bb2 = program.create_block();
BasicBlock* bb3 = program.create_block();
std::string x = "x";
bb1->add(std::make_unique<Assignment>(&x, 1));
bb1->add_successor(bb2);
bb2->add(std::make_unique<Addition>(&x, &x, 1));
bb2->add_successor(bb2);
bb2->add_successor(bb3);
program.set_entry(bb1);
program.set_exit(bb3);
TypeParam fp(program);
fp.run(AbstractEnvironmentT::top());
EXPECT_EQ(fp.get_entry_state_at(bb1), AbstractEnvironmentT::top());
EXPECT_EQ(fp.get_exit_state_at(bb1).get(&x), IntegerSetAbstractDomain{1});
EXPECT_EQ(fp.get_entry_state_at(bb2).get(&x),
IntegerSetAbstractDomain::top());
EXPECT_EQ(fp.get_exit_state_at(bb2).get(&x), IntegerSetAbstractDomain::top());
EXPECT_EQ(fp.get_entry_state_at(bb3).get(&x),
IntegerSetAbstractDomain::top());
EXPECT_EQ(fp.get_exit_state_at(bb3).get(&x), IntegerSetAbstractDomain::top());
}