This repository has been archived by the owner on Aug 31, 2021. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 375
/
Copy pathonline_memmnet.lua
572 lines (549 loc) · 20.4 KB
/
online_memmnet.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
-- Copyright (c) 2015-present, Facebook, Inc.
-- All rights reserved.
--
-- This source code is licensed under the BSD-style license found in the
-- LICENSE file in the root directory of this source tree. An additional grant
-- of patent rights can be found in the PATENTS file in the same directory.
require('torch')
local stringx=require("pl.stringx")
local online_memmnet={}
online_memmnet.Data=require("data")
function online_memmnet:Initial(params_)
self.params=params_;
self.Data:Initial(self.params)
if self.params.dataset=="movieQA" then
model.Data:constructLink()
end
self.candidate_pool={};
self.Data:process_data(self.params)
assert(self.params.dataset~=nil)
if self.params.dataset=="movieQA" then
self.params.token_size=200000
else self.params.token_size=100;
end
self.word_table=
nn.LookupTable(self.params.token_size,self.params.dimension):cuda();
self.word_table:reset(self.params.init_weight)
self.word_table.weight[1]:zero()
self.LookUpTable=self:LookUpTable_();
self.Modules={}
self.Modules[1]=self.LookUpTable;
grad_norm=0
self.MeMM=self:MeMM_();
if self.params.ReadModel then
self:ReadExisitngModel()
end
self.n_instance=self.params.batch_size;
self.total_reward=0;
self.total_reward_instance=0;
self.total_cost_FP=0;
self.total_cost_RBI=0;
self.total_instance_FP=0;
self.total_instance_RBI=0;
self.current_lr=self.params.lr;
if self.params.REINFORCE then
-- REINFORCE baseline
self.baseline = nn.Linear(self.params.dimension, 1)
self.baseline.weight:fill(0)
self.baseline.bias:fill(0)
self.baseline:cuda()
self.mse = nn.MSECriterion()
self.mse:cuda()
-- REINFORCE regularizer
self.regularizer = nn.Sequential()
local tmp = nn.ConcatTable()
tmp:add(nn.Identity())
tmp:add(nn.Exp())
self.regularizer:add(tmp)
self.regularizer:add(nn.CMulTable()) -- p log p
self.regularizer:add(nn.Sum(1, 1))
self.regularizer:add(nn.Sum(1))
self.regularizer:cuda()
end
self.gen_yes_list={
"Yes, that is correct!",
"Yes, that's right.",
"Correct!",
"That's right.",
"That's correct.",
"Yes!"
}
if self.params.FP then
self:ReadNegativeResponses()
end
if self.params.dataset=="movieQA" then
self.Data.trainData=self.Data:sortData(model.Data.trainData,"hist_x")
end
end
function online_memmnet:ReadNegativeResponses()
if self.params.FP then
self.Data.NegResponse={};
local open=io.open(self.params.IncorrectResponse,"r")
local i=0
while true do
i=i+1;
local line=open:read("*line");
if line==nil then break end
line=self.Data:process_string(line)
if self.Data.trainData[i]~=nil then
self.Data.trainData[i].NegResponse=self.Data:String2Vector(line)
self.Data:ConstructNegativePool(self.Data.trainData[i],"NegResponse","responsePool")
local pos_string=self.gen_yes_list[torch.random(#self.gen_yes_list)];
self.Data.trainData[i].PosResponse
=self.Data:String2Vector(self.Data:process_string(pos_string))
self.Data:ConstructNegativePool(self.Data.trainData[i],"PosResponse","responsePool")
else break;
end
end
end
end
function online_memmnet:MeMM_()
local inputs={}
local memory
memory=nn.Identity()()
table.insert(inputs,memory)
local question=nn.Identity()()
table.insert(inputs,question)
local answer_v=nn.Identity()()
table.insert(inputs,answer_v)
local context_mask=nn.Identity()()
local context_mask_p = nn.MulConstant(1e8)(nn.AddConstant(-1)(context_mask))
table.insert(inputs,context_mask)
local word_mask=nn.Identity()()
local word_mask_p = nn.MulConstant(1e8)(nn.AddConstant(-1)(word_mask))
table.insert(inputs,word_mask)
local u=question;
local store={};
local sen_atten;
local attens={}
for i=1,self.params.N_hop do
if i==1 then
u=nn.Replicate(1,3)(u); -- add dummy dimension
else
u=nn.Replicate(1,3)(store[i-1]);
end
sen_atten=nn.MM()({memory,u});
sen_atten=nn.Sum(3)(sen_atten);
sen_atten = nn.CAddTable(){sen_atten, context_mask_p}
sen_atten=nn.SoftMax()(sen_atten);
table.insert(attens,sen_atten);
sen_atten=nn.Replicate(1,2)(sen_atten);
local attent_vect
attent_vect=nn.MM()({sen_atten,memory});
attent_vect=nn.Sum(2)(attent_vect)
store[i]=nn.CAddTable()({attent_vect,u}):annotate{name = 'hopvec' .. i}
--u=nn.Linear(params.dimension,params.dimension):noBias()(add_sum);
end
local atten;
local expand=nn.Replicate(1,3)(store[self.params.N_hop]);
atten=nn.MM()({answer_v,expand});
atten=nn.Sum(3)(atten);
atten = nn.CAddTable(){atten, word_mask_p}
pred=nn.LogSoftMax()(atten);
local outputs={}
table.insert(outputs,pred)
local pred_response;
if self.params.FP then
local response_v=nn.Identity()();
table.insert(inputs,response_v)
local beta_v=nn.Identity()();
table.insert(inputs,beta_v)
atten=nn.Replicate(1,2)(nn.Exp()(pred));
local attent_vect=nn.MM()({atten,beta_v});
attent_vect=nn.Sum(2)(attent_vect);
local combine_v=nn.CAddTable()({attent_vect,store[self.params.N_hop]});
combine_v=nn.Replicate(1,3)(combine_v);
local h2rank=nn.MM()({response_v,combine_v});
h2rank=nn.Sum(3)(h2rank);
pred_response=nn.LogSoftMax()(h2rank);
table.insert(outputs,pred_response)
end
local module=nn.gModule(inputs,outputs);
return module:cuda();
end
function online_memmnet:LookUpTable_()
local inputs={};
local context
context=nn.Identity()();
table.insert(inputs,context)
local question=nn.Identity()();
table.insert(inputs,question)
local question_table=
self.word_table:clone('weight','bias');
local question_v=nn.Sum(2)(question_table(question));
local answer_table=
self.word_table:clone('weight','bias');
local answer=nn.Identity()();
local answer_v=nn.Sum(2)(answer_table(answer))
table.insert(inputs,answer)
local context_table=
self.word_table:clone('weight','bias');
local context_v=nn.Sum(2)(context_table(context));
if self.params.FP then
local response=nn.Identity()();
table.insert(inputs,response)
response_table=self.word_table:clone('weight','bias');
response_v=nn.Sum(2)(response_table(response));
local potential_answer_beta=nn.Identity()()
table.insert(inputs,potential_answer_beta)
potential_answer_beta_table=self.word_table:clone('weight','bias');
potential_answer_beta_v=nn.Sum(2)(potential_answer_beta_table(potential_answer_beta));
end
local module;
local context_length
if self.params.context then
context_length=nn.Identity()();
table.insert(inputs,context_length);
answer_v=nn.CMulTable()({answer_v,context_length})
end
if self.params.FP then
module=nn.gModule(inputs,{context_v,question_v,answer_v,response_v,potential_answer_beta_v});
else module=nn.gModule(inputs,{context_v,question_v,answer_v});
end
return module:cuda();
end
function online_memmnet:getHopVec()
local found = nil
for _, node in pairs(self.MeMM.forwardnodes) do
if node.data.annotations.name == ('hopvec'..self.params.N_hop) then
found = node.data.module.output
end
end
return found
end
function online_memmnet:PrepareNegativeResponse(Dataset)
for i,instance in pairs(Dataset)do
if instance.response:size(1)>self.Data.MaxResponseLength then
self.Data.MaxResponseLength=instance.response:size(1);
end
end
self.response_word=torch.Tensor(#Dataset*(1+self.params.negative),self.Data.MaxResponseLength):fill(1)
for i,ex in pairs(Dataset)do
local line_index=(i-1)*(1+self.params.negative)+1
self.response_word:sub(line_index,line_index,1,ex.response:size(1)):copy(ex.response)
for j=1,self.params.negative do
local line_index=(i-1)*(1+self.params.negative)+1+j;
local negative_response=self.Data.responsePool[torch.random(#self.Data.responsePool)];
self.response_word:sub(line_index,line_index,1,negative_response:size(1)):copy(negative_response)
end
self.Data.responsePool[torch.random(#self.Data.responsePool)]=ex.response;
end
self.response_word=self.response_word:cuda()
end
function online_memmnet:prepareAnswer(Dataset)
local max_length=-1;
for i=1,#Dataset do
local ex=Dataset[i]
local length=#Dataset[i].AnswerCandidate;
if length>max_length then
max_length=length;
end
end
self.answer_word=torch.Tensor(
#Dataset,max_length):fill(1):cuda();
self.answer_mask=torch.Tensor(
#Dataset,max_length):fill(0):cuda();
for i=1,#Dataset do
local ex=Dataset[i]
self.answer_word[{{i},{1,#ex.AnswerCandidate}}]
:copy(torch.Tensor(ex.AnswerCandidate));
self.answer_mask[{{i},{1,#ex.AnswerCandidate}}]:fill(1);
end
self.answer_word=torch.reshape(self.answer_word,
self.answer_word:size(1)*self.answer_word:size(2),1);
if self.params.FP then
self.beta_word=torch.ones(self.answer_word:size()):cuda();
for i=1,self.params.batch_size do
local ex=Dataset[i];
if ex.AnswerCandidateReverse[ex.answer[1]]~=nil then
self.beta_word[(i-1)*max_length+
ex.AnswerCandidateReverse[ex.answer[1]]]=self.params.token_size;
end
end
self.beta_word=torch.cat(self.answer_word,self.beta_word,2);
end
end
function online_memmnet:PrepareContextVector(Dataset)
self.context_length=-100
self.context_num=-100
for i,instance in pairs(Dataset)do
if #instance["hist_x"]>self.context_num then
self.context_num=#instance["hist_x"]
end
for j,v in pairs(instance["hist_x"])do
if v:size(1)>self.context_length then
self.context_length=v:size(1)
end
end
end
self.context_mask=torch.Tensor(#Dataset,self.context_num):fill(0):cuda()
for i,instance in pairs(Dataset)do
self.context_mask:sub(i,i,1,#instance.hist_x):fill(1);
local context_Mat=torch.Tensor(self.context_num,self.context_length):fill(1):cuda()
for j,v in pairs(Dataset[i].hist_x)do
context_Mat:sub(j,j,1,v:size(1)):copy(v);
end
if i==1 then
self.context_word=context_Mat;
else
self.context_word=torch.cat(self.context_word,context_Mat,1);
end
end
end
function online_memmnet:PrepareQues(Dataset)
local max_length=-1;
for i,instance in pairs(Dataset)do
if instance.question:size(1)>max_length then
max_length=instance.question:size(1)
end
end
self.query_word=torch.Tensor(#Dataset,max_length):fill(1);
for i,instance in pairs(Dataset)do
self.query_word:sub(i,i,1,instance.question:size(1)):copy(instance.question);
end
self.query_word=self.query_word:cuda()
end
function online_memmnet:prepareData(Dataset)
self:PrepareContextVector(Dataset)
self:PrepareQues(Dataset)
self.reward_vector=torch.Tensor(#Dataset):cuda();
for i,instance in pairs(Dataset)do
self.reward_vector[i]=instance.r[1]
end
self:prepareAnswer(Dataset)
if self.params.FP then
self:PrepareNegativeResponse(Dataset);
end
end
function online_memmnet:Reshape2Dto3D(vector,n1)
return torch.reshape(vector,
n1,vector:size(1)/n1,
self.params.dimension);
end
function online_memmnet:Reshape3Dto2D(vector)
return torch.reshape(vector,
vector:size(1)*vector:size(2),
vector:size(3))
end
function online_memmnet:batch_train(batch_data)
for i=1,#self.Modules do
self.Modules[i]:zeroGradParameters()
end
self.n_instance=#batch_data
self:prepareData(batch_data);
local pred,pred_response=self:Forward()
local d_pred=torch.Tensor(pred:size()):fill(0):cuda(); -- this stores the deriavtives to be sent back to the logsoftmax
local d_pred_response
local bsz = self.reward_vector:size(1)
local baseline, baseline_input, baseline_error
-- IM, RBI, RBI + FP
if self.params.policyGrad or (not self.params.policyGrad and not self.params.FP) then
--params.policyGrad: RBI or RBI+FP
--not params.policyGrad and not params.FP: IM
if self.params.REINFORCE then
-- the input to the baseline module is the output
-- of the 2nd hop.
baseline_input = self:getHopVec()
baseline = self.baseline:forward(baseline_input)
baseline_error = self.mse:forward(baseline,
self.reward_vector:view(bsz, 1))
else
baseline = torch.zeros(#batch_data):cuda()
end
local num_candidates=self['answer_mask']:sum(2)
for i = 1, bsz do -- TODO: work in batch mode
local bot_answer
if self.params.dataset=="babi" then
bot_answer=batch_data[i].AnswerCandidateReverse[batch_data[i].answer[1]]
elseif self.params.dataset=="movieQA" then
bot_answer=batch_data[i].AnswerCandidateReverse[batch_data[i].answer[1]]
end
-- RBI, RBI+FP
if self.params.policyGrad then
if bot_answer~=nil then
if self.params.REINFORCE then
-- set derivatives at output of logsoftmax
d_pred[i][bot_answer] =
baseline[i] - self.reward_vector[i]
else
-- plain epsilon-greedy RBI
if self.reward_vector[i] == 1 then
d_pred[i][bot_answer] = -1
self.total_cost_RBI=self.total_cost_RBI -
pred[i][bot_answer]
self.total_instance_RBI=self.total_instance_RBI + 1
end
end
end
else -- IM (bot_answer is always correct)
d_pred[i][bot_answer]= -1
self.total_cost_RBI=self.total_cost_RBI - pred[i][bot_answer]
self.total_instance_RBI=self.total_instance_RBI + 1
end
end
end
-- FP only
self.total_cost_FP=0
self.total_instance_FP=0
if self.params.FP then
d_pred_response=torch.Tensor(pred_response:size()):fill(0):cuda();
for i=1,self.params.batch_size do
d_pred_response[i][1]=-1;
self.total_cost_FP=self.total_cost_FP
+math.exp(-pred_response[i][1]) ;
self.total_instance_FP=self.total_instance_FP+1
end
end
--print(self.total_cost_FP/self.total_instance_FP)
-- for REINFORCE update also the baseline
if self.params.REINFORCE then
self.baseline:zeroGradParameters()
self.mse:backward(baseline, self.reward_vector:view(bsz, 1))
self.baseline:backward(baseline_input, self.mse.gradInput)
self.baseline:updateParameters(self.params.RF_lr)
if self.params.REINFORCE_reg > 0 then
self.regularizer:forward(pred)
self.regularizer:backward(
pred, torch.CudaTensor{self.params.REINFORCE_reg})
d_pred:add(self.regularizer.gradInput)
end
end
self:Backward(d_pred,d_pred_response)
self:update()
end
function online_memmnet:Forward()
local vector_output;
if self.params.FP then
vector_output=self.LookUpTable:forward({
self.context_word,self.query_word,self.answer_word,
self.response_word,self.beta_word})
else
vector_output=self.LookUpTable:forward({
self.context_word,self.query_word,self.answer_word})
end
self.context_v=vector_output[1]
self.question_v=vector_output[2]
self.answer_v=vector_output[3]
self.response_v=vector_output[4]
self.beta_v=vector_output[5]
self.context_v=self:Reshape2Dto3D(self.context_v,self.n_instance)
self.answer_v=self:Reshape2Dto3D(self.answer_v,self.n_instance)
if self.params.FP then
self.response_v=self:Reshape2Dto3D(self.response_v,self.n_instance)
self.beta_v=self:Reshape2Dto3D(self.beta_v,self.n_instance)
end
local pred,pred_response;
if self.params.FP then
local output=self.MeMM:forward({
self.context_v,self.question_v,self.answer_v,
self.context_mask,self.answer_mask,
self.response_v,self.beta_v});
pred=output[1]
pred_response=output[2]
else
local output=self.MeMM:forward({
self.context_v,self.question_v,self.answer_v,
self.context_mask,self.answer_mask});
pred=output
end
return pred,pred_response
end
function online_memmnet:Backward(d_pred,d_pred_response)
local grad_inputs;
local d_context_v,d_question_v,d_answer_v
if self.params.FP then
grad_inputs=self.MeMM:backward({
self.context_v,self.question_v,self.answer_v,
self.context_mask,self.answer_mask,
self.response_v,self.beta_v},
{d_pred,d_pred_response})
else
grad_inputs=self.MeMM:backward({
self.context_v,self.question_v,self.answer_v,
self.context_mask,self.answer_mask},d_pred);
end
local d_context_v=grad_inputs[1];
local d_question_v=grad_inputs[2];
local d_answer_v=grad_inputs[3];
d_context_v=self:Reshape3Dto2D(d_context_v)
d_answer_v=self:Reshape3Dto2D(d_answer_v)
if self.params.FP then
local d_response_v=grad_inputs[6];
local d_beta_v=grad_inputs[7];
d_response_v=self:Reshape3Dto2D(d_response_v)
d_beta_v=self:Reshape3Dto2D(d_beta_v)
self.LookUpTable:backward({
self.context_word,self.query_word,self.answer_word,
self.response_word,self.beta_word},
{d_context_v,d_question_v,d_answer_v,
d_response_v,d_beta_v})
else
self.LookUpTable:backward({
self.context_word,self.query_word,self.answer_word},
{d_context_v,d_question_v,d_answer_v})
end
end
function online_memmnet:test(file)
self.total_instance_RBI=0
local options_in_total=0;
local batch_data_;
if file=="dev" then
batch_data_=self.Data.devData;
self.model_flag="dev";
elseif file=="test" then
self.model_flag="test"
batch_data_=self.Data.testData;
end
local right=0;
local output_f
for i=1,torch.floor(#batch_data_/self.params.batch_size) do
self.total_instance_RBI=self.total_instance_RBI+self.params.batch_size
local Begin=(i-1)*self.params.batch_size+1;
local End=i*self.params.batch_size;
if End>#batch_data_ then
End=#batch_data_;
end
batch_data={}
for j=Begin,End do
batch_data[j-Begin+1]=batch_data_[j];
end
self.n_instance=#batch_data
self:prepareData(batch_data)
local pred,_=self:Forward()
local max_p,max_index=torch.max(pred,2);
for j=1,self.params.batch_size do
local AnswerCandidate=batch_data[j].AnswerCandidate;
local predict_index=max_index[j][1]
if not (#batch_data[j].answers==1 and batch_data[j].answers[1]==1)
and batch_data[j].answers[AnswerCandidate[predict_index]]~=nil then
right=right+1;
end
end
end
self.model_flag="train"
return right/self.total_instance_RBI;
end
function online_memmnet:update()
local lr=self.current_lr;
local grad_norm=0;
for i=1,#self.Modules do
local p,dp=self.Modules[i]:parameters()
for j,m in pairs(dp) do
grad_norm=grad_norm+m:norm()^2;
end
end
grad_norm=grad_norm^0.5;
if grad_norm>self.params.thres then
lr=lr*self.params.thres/grad_norm;
end
for i=1,#self.Modules do
self.Modules[i]:updateParameters(lr);
end
self.word_table.weight[1]:zero()
for i,v in pairs(self.Modules[1].modules) do
if v.weight~=nil then
v.weight[1]:zero();
end
end
end
return online_memmnet