diff --git a/pearl/tutorials/frozen_lake/demo.ipynb b/pearl/tutorials/frozen_lake/demo.ipynb index 62484a8a..2773ceef 100644 --- a/pearl/tutorials/frozen_lake/demo.ipynb +++ b/pearl/tutorials/frozen_lake/demo.ipynb @@ -5,7 +5,7 @@ "metadata": {}, "source": [ "## FrozenLake-v1\n", - "This example shows how to use DQN to solve the FrozenLake-v1 environment from gymasium. This environment has observations as indices (tabular observation). On the other hand, Pearl assumes that states are represented as vectors. In what follows, we show how to use Pearl's OneHotObservationsFromDiscrete wrapper to convert observations to their one-hot representations." + "This example shows how to use DQN to solve the `FrozenLake-v1` environment from gymnasium. This environment has observations as indices (tabular observation)which is not suitable for learning with a neural network. In what follows, we show how to use Pearl's `OneHotObservationsFromDiscrete` wrapper to convert observations to their one-hot representations." ] }, { @@ -163,29 +163,43 @@ "custom": { "cells": [], "metadata": { - "accelerator": "GPU", - "colab": { - "gpuType": "T4", - "include_colab_link": true, - "provenance": [] + "custom": { + "cells": [], + "metadata": { + "accelerator": "GPU", + "colab": { + "gpuType": "T4", + "include_colab_link": true, + "provenance": [] + }, + "fileHeader": "", + "fileUid": "4316417e-7688-45f2-a94f-24148bfc425e", + "isAdHoc": false, + "kernelspec": { + "display_name": "pearl (local)", + "language": "python", + "name": "pearl_local" + }, + "language_info": { + "name": "python" + } + }, + "nbformat": 4, + "nbformat_minor": 2 }, "fileHeader": "", - "fileUid": "4316417e-7688-45f2-a94f-24148bfc425e", + "fileUid": "1158a851-91bb-437e-a391-aba92448f600", + "indentAmount": 2, "isAdHoc": false, - "kernelspec": { - "display_name": "pearl (local)", - "language": "python", - "name": "pearl_local" - }, "language_info": { - "name": "python" + "name": "plaintext" } }, "nbformat": 4, "nbformat_minor": 2 }, "fileHeader": "", - "fileUid": "1158a851-91bb-437e-a391-aba92448f600", + "fileUid": "ddf9fa29-09d7-404d-bc1b-62a580952524", "indentAmount": 2, "isAdHoc": false, "language_info": { @@ -196,36 +210,36 @@ "nbformat_minor": 2 }, "fileHeader": "", - "fileUid": "ddf9fa29-09d7-404d-bc1b-62a580952524", + "fileUid": "e751f6fa-be9e-4f88-9fef-36812551b013", "indentAmount": 2, "isAdHoc": false, + "kernelspec": { + "display_name": "pearl2", + "language": "python", + "name": "python3" + }, "language_info": { - "name": "plaintext" + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.18" } }, "nbformat": 4, "nbformat_minor": 2 }, "fileHeader": "", - "fileUid": "e751f6fa-be9e-4f88-9fef-36812551b013", + "fileUid": "2f37bb6d-3b54-49d8-a0ff-4e0ada2b7155", "indentAmount": 2, "isAdHoc": false, - "kernelspec": { - "display_name": "pearl2", - "language": "python", - "name": "python3" - }, "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.8.18" + "name": "plaintext" } }, "nbformat": 4,