+
+Expand source code
+
+# Copyright (c) Meta Platforms, Inc. and affiliates.
+# All rights reserved.
+#
+# This source code is licensed under the license found in the
+# LICENSE file in the root directory of this source tree.
+
+from collections import defaultdict
+from copy import deepcopy
+from dataclasses import dataclass, field
+from itertools import chain
+import logging
+import math
+from pathlib import Path
+import random
+import re
+import typing as tp
+import warnings
+
+import einops
+from num2words import num2words
+import spacy
+from transformers import RobertaTokenizer, T5EncoderModel, T5Tokenizer # type: ignore
+import torch
+from torch import nn
+import torch.nn.functional as F
+from torch.nn.utils.rnn import pad_sequence
+
+from .chroma import ChromaExtractor
+from .streaming import StreamingModule
+from .transformer import create_sin_embedding
+from ..data.audio import audio_read
+from ..data.audio_dataset import SegmentInfo
+from ..data.audio_utils import convert_audio
+from ..environment import AudioCraftEnvironment
+from ..quantization import ResidualVectorQuantizer
+from ..utils.autocast import TorchAutocast
+from ..utils.cache import EmbeddingCache
+from ..utils.utils import collate, hash_trick, length_to_mask, load_clap_state_dict, warn_once
+
+
+logger = logging.getLogger(__name__)
+TextCondition = tp.Optional[str] # a text condition can be a string or None (if doesn't exist)
+ConditionType = tp.Tuple[torch.Tensor, torch.Tensor] # condition, mask
+
+
+class WavCondition(tp.NamedTuple):
+ wav: torch.Tensor
+ length: torch.Tensor
+ sample_rate: tp.List[int]
+ path: tp.List[tp.Optional[str]] = []
+ seek_time: tp.List[tp.Optional[float]] = []
+
+
+class JointEmbedCondition(tp.NamedTuple):
+ wav: torch.Tensor
+ text: tp.List[tp.Optional[str]]
+ length: torch.Tensor
+ sample_rate: tp.List[int]
+ path: tp.List[tp.Optional[str]] = []
+ seek_time: tp.List[tp.Optional[float]] = []
+
+
+@dataclass
+class ConditioningAttributes:
+ text: tp.Dict[str, tp.Optional[str]] = field(default_factory=dict)
+ wav: tp.Dict[str, WavCondition] = field(default_factory=dict)
+ joint_embed: tp.Dict[str, JointEmbedCondition] = field(default_factory=dict)
+
+ def __getitem__(self, item):
+ return getattr(self, item)
+
+ @property
+ def text_attributes(self):
+ return self.text.keys()
+
+ @property
+ def wav_attributes(self):
+ return self.wav.keys()
+
+ @property
+ def joint_embed_attributes(self):
+ return self.joint_embed.keys()
+
+ @property
+ def attributes(self):
+ return {
+ "text": self.text_attributes,
+ "wav": self.wav_attributes,
+ "joint_embed": self.joint_embed_attributes,
+ }
+
+ def to_flat_dict(self):
+ return {
+ **{f"text.{k}": v for k, v in self.text.items()},
+ **{f"wav.{k}": v for k, v in self.wav.items()},
+ **{f"joint_embed.{k}": v for k, v in self.joint_embed.items()}
+ }
+
+ @classmethod
+ def from_flat_dict(cls, x):
+ out = cls()
+ for k, v in x.items():
+ kind, att = k.split(".")
+ out[kind][att] = v
+ return out
+
+
+class SegmentWithAttributes(SegmentInfo):
+ """Base class for all dataclasses that are used for conditioning.
+ All child classes should implement `to_condition_attributes` that converts
+ the existing attributes to a dataclass of type ConditioningAttributes.
+ """
+ def to_condition_attributes(self) -> ConditioningAttributes:
+ raise NotImplementedError()
+
+
+def nullify_condition(condition: ConditionType, dim: int = 1):
+ """Transform an input condition to a null condition.
+ The way it is done by converting it to a single zero vector similarly
+ to how it is done inside WhiteSpaceTokenizer and NoopTokenizer.
+
+ Args:
+ condition (ConditionType): A tuple of condition and mask (tuple[torch.Tensor, torch.Tensor])
+ dim (int): The dimension that will be truncated (should be the time dimension)
+ WARNING!: dim should not be the batch dimension!
+ Returns:
+ ConditionType: A tuple of null condition and mask
+ """
+ assert dim != 0, "dim cannot be the batch dimension!"
+ assert isinstance(condition, tuple) and \
+ isinstance(condition[0], torch.Tensor) and \
+ isinstance(condition[1], torch.Tensor), "'nullify_condition' got an unexpected input type!"
+ cond, mask = condition
+ B = cond.shape[0]
+ last_dim = cond.dim() - 1
+ out = cond.transpose(dim, last_dim)
+ out = 0. * out[..., :1]
+ out = out.transpose(dim, last_dim)
+ mask = torch.zeros((B, 1), device=out.device).int()
+ assert cond.dim() == out.dim()
+ return out, mask
+
+
+def nullify_wav(cond: WavCondition) -> WavCondition:
+ """Transform a WavCondition to a nullified WavCondition.
+ It replaces the wav by a null tensor, forces its length to 0, and replaces metadata by dummy attributes.
+
+ Args:
+ cond (WavCondition): Wav condition with wav, tensor of shape [B, T].
+ Returns:
+ WavCondition: Nullified wav condition.
+ """
+ null_wav, _ = nullify_condition((cond.wav, torch.zeros_like(cond.wav)), dim=cond.wav.dim() - 1)
+ return WavCondition(
+ wav=null_wav,
+ length=torch.tensor([0] * cond.wav.shape[0], device=cond.wav.device),
+ sample_rate=cond.sample_rate,
+ path=[None] * cond.wav.shape[0],
+ seek_time=[None] * cond.wav.shape[0],
+ )
+
+
+def nullify_joint_embed(embed: JointEmbedCondition) -> JointEmbedCondition:
+ """Nullify the joint embedding condition by replacing it by a null tensor, forcing its length to 0,
+ and replacing metadata by dummy attributes.
+
+ Args:
+ cond (JointEmbedCondition): Joint embedding condition with wav and text, wav tensor of shape [B, C, T].
+ """
+ null_wav, _ = nullify_condition((embed.wav, torch.zeros_like(embed.wav)), dim=embed.wav.dim() - 1)
+ return JointEmbedCondition(
+ wav=null_wav, text=[None] * len(embed.text),
+ length=torch.LongTensor([0]).to(embed.wav.device),
+ sample_rate=embed.sample_rate,
+ path=[None] * embed.wav.shape[0],
+ seek_time=[0] * embed.wav.shape[0],
+ )
+
+
+class Tokenizer:
+ """Base tokenizer implementation
+ (in case we want to introduce more advances tokenizers in the future).
+ """
+ def __call__(self, texts: tp.List[tp.Optional[str]]) -> tp.Tuple[torch.Tensor, torch.Tensor]:
+ raise NotImplementedError()
+
+
+class WhiteSpaceTokenizer(Tokenizer):
+ """This tokenizer should be used for natural language descriptions.
+ For example:
+ ["he didn't, know he's going home.", 'shorter sentence'] =>
+ [[78, 62, 31, 4, 78, 25, 19, 34],
+ [59, 77, 0, 0, 0, 0, 0, 0]]
+ """
+ PUNCTUATION = "?:!.,;"
+
+ def __init__(self, n_bins: int, pad_idx: int = 0, language: str = "en_core_web_sm",
+ lemma: bool = True, stopwords: bool = True) -> None:
+ self.n_bins = n_bins
+ self.pad_idx = pad_idx
+ self.lemma = lemma
+ self.stopwords = stopwords
+ try:
+ self.nlp = spacy.load(language)
+ except IOError:
+ spacy.cli.download(language) # type: ignore
+ self.nlp = spacy.load(language)
+
+ @tp.no_type_check
+ def __call__(self, texts: tp.List[tp.Optional[str]],
+ return_text: bool = False) -> tp.Tuple[torch.Tensor, torch.Tensor]:
+ """Take a list of strings and convert them to a tensor of indices.
+
+ Args:
+ texts (list[str]): List of strings.
+ return_text (bool, optional): Whether to return text as additional tuple item. Defaults to False.
+ Returns:
+ tuple[torch.Tensor, torch.Tensor]:
+ - Indices of words in the LUT.
+ - And a mask indicating where the padding tokens are
+ """
+ output, lengths = [], []
+ texts = deepcopy(texts)
+ for i, text in enumerate(texts):
+ # if current sample doesn't have a certain attribute, replace with pad token
+ if text is None:
+ output.append(torch.Tensor([self.pad_idx]))
+ lengths.append(0)
+ continue
+
+ # convert numbers to words
+ text = re.sub(r"(\d+)", lambda x: num2words(int(x.group(0))), text) # type: ignore
+ # normalize text
+ text = self.nlp(text) # type: ignore
+ # remove stopwords
+ if self.stopwords:
+ text = [w for w in text if not w.is_stop] # type: ignore
+ # remove punctuation
+ text = [w for w in text if w.text not in self.PUNCTUATION] # type: ignore
+ # lemmatize if needed
+ text = [getattr(t, "lemma_" if self.lemma else "text") for t in text] # type: ignore
+
+ texts[i] = " ".join(text)
+ lengths.append(len(text))
+ # convert to tensor
+ tokens = torch.Tensor([hash_trick(w, self.n_bins) for w in text])
+ output.append(tokens)
+
+ mask = length_to_mask(torch.IntTensor(lengths)).int()
+ padded_output = pad_sequence(output, padding_value=self.pad_idx).int().t()
+ if return_text:
+ return padded_output, mask, texts # type: ignore
+ return padded_output, mask
+
+
+class NoopTokenizer(Tokenizer):
+ """This tokenizer should be used for global conditioners such as: artist, genre, key, etc.
+ The difference between this and WhiteSpaceTokenizer is that NoopTokenizer does not split
+ strings, so "Jeff Buckley" will get it's own index. Whereas WhiteSpaceTokenizer will
+ split it to ["Jeff", "Buckley"] and return an index per word.
+
+ For example:
+ ["Queen", "ABBA", "Jeff Buckley"] => [43, 55, 101]
+ ["Metal", "Rock", "Classical"] => [0, 223, 51]
+ """
+ def __init__(self, n_bins: int, pad_idx: int = 0):
+ self.n_bins = n_bins
+ self.pad_idx = pad_idx
+
+ def __call__(self, texts: tp.List[tp.Optional[str]]) -> tp.Tuple[torch.Tensor, torch.Tensor]:
+ output, lengths = [], []
+ for text in texts:
+ # if current sample doesn't have a certain attribute, replace with pad token
+ if text is None:
+ output.append(self.pad_idx)
+ lengths.append(0)
+ else:
+ output.append(hash_trick(text, self.n_bins))
+ lengths.append(1)
+
+ tokens = torch.LongTensor(output).unsqueeze(1)
+ mask = length_to_mask(torch.IntTensor(lengths)).int()
+ return tokens, mask
+
+
+class BaseConditioner(nn.Module):
+ """Base model for all conditioner modules.
+ We allow the output dim to be different than the hidden dim for two reasons:
+ 1) keep our LUTs small when the vocab is large;
+ 2) make all condition dims consistent.
+
+ Args:
+ dim (int): Hidden dim of the model.
+ output_dim (int): Output dim of the conditioner.
+ """
+ def __init__(self, dim: int, output_dim: int):
+ super().__init__()
+ self.dim = dim
+ self.output_dim = output_dim
+ self.output_proj = nn.Linear(dim, output_dim)
+
+ def tokenize(self, *args, **kwargs) -> tp.Any:
+ """Should be any part of the processing that will lead to a synchronization
+ point, e.g. BPE tokenization with transfer to the GPU.
+
+ The returned value will be saved and return later when calling forward().
+ """
+ raise NotImplementedError()
+
+ def forward(self, inputs: tp.Any) -> ConditionType:
+ """Gets input that should be used as conditioning (e.g, genre, description or a waveform).
+ Outputs a ConditionType, after the input data was embedded as a dense vector.
+
+ Returns:
+ ConditionType:
+ - A tensor of size [B, T, D] where B is the batch size, T is the length of the
+ output embedding and D is the dimension of the embedding.
+ - And a mask indicating where the padding tokens.
+ """
+ raise NotImplementedError()
+
+
+class TextConditioner(BaseConditioner):
+ ...
+
+
+class LUTConditioner(TextConditioner):
+ """Lookup table TextConditioner.
+
+ Args:
+ n_bins (int): Number of bins.
+ dim (int): Hidden dim of the model (text-encoder/LUT).
+ output_dim (int): Output dim of the conditioner.
+ tokenizer (str): Name of the tokenizer.
+ pad_idx (int, optional): Index for padding token. Defaults to 0.
+ """
+ def __init__(self, n_bins: int, dim: int, output_dim: int, tokenizer: str, pad_idx: int = 0):
+ super().__init__(dim, output_dim)
+ self.embed = nn.Embedding(n_bins, dim)
+ self.tokenizer: Tokenizer
+ if tokenizer == 'whitespace':
+ self.tokenizer = WhiteSpaceTokenizer(n_bins, pad_idx=pad_idx)
+ elif tokenizer == 'noop':
+ self.tokenizer = NoopTokenizer(n_bins, pad_idx=pad_idx)
+ else:
+ raise ValueError(f"unrecognized tokenizer `{tokenizer}`.")
+
+ def tokenize(self, x: tp.List[tp.Optional[str]]) -> tp.Tuple[torch.Tensor, torch.Tensor]:
+ device = self.embed.weight.device
+ tokens, mask = self.tokenizer(x)
+ tokens, mask = tokens.to(device), mask.to(device)
+ return tokens, mask
+
+ def forward(self, inputs: tp.Tuple[torch.Tensor, torch.Tensor]) -> ConditionType:
+ tokens, mask = inputs
+ embeds = self.embed(tokens)
+ embeds = self.output_proj(embeds)
+ embeds = (embeds * mask.unsqueeze(-1))
+ return embeds, mask
+
+
+class T5Conditioner(TextConditioner):
+ """T5-based TextConditioner.
+
+ Args:
+ name (str): Name of the T5 model.
+ output_dim (int): Output dim of the conditioner.
+ finetune (bool): Whether to fine-tune T5 at train time.
+ device (str): Device for T5 Conditioner.
+ autocast_dtype (tp.Optional[str], optional): Autocast dtype.
+ word_dropout (float, optional): Word dropout probability.
+ normalize_text (bool, optional): Whether to apply text normalization.
+ """
+ MODELS = ["t5-small", "t5-base", "t5-large", "t5-3b", "t5-11b",
+ "google/flan-t5-small", "google/flan-t5-base", "google/flan-t5-large",
+ "google/flan-t5-xl", "google/flan-t5-xxl"]
+ MODELS_DIMS = {
+ "t5-small": 512,
+ "t5-base": 768,
+ "t5-large": 1024,
+ "t5-3b": 1024,
+ "t5-11b": 1024,
+ "google/flan-t5-small": 512,
+ "google/flan-t5-base": 768,
+ "google/flan-t5-large": 1024,
+ "google/flan-t5-3b": 1024,
+ "google/flan-t5-11b": 1024,
+ }
+
+ def __init__(self, name: str, output_dim: int, finetune: bool, device: str,
+ autocast_dtype: tp.Optional[str] = 'float32', word_dropout: float = 0.,
+ normalize_text: bool = False):
+ assert name in self.MODELS, f"Unrecognized t5 model name (should in {self.MODELS})"
+ super().__init__(self.MODELS_DIMS[name], output_dim)
+ self.device = device
+ self.name = name
+ self.finetune = finetune
+ self.word_dropout = word_dropout
+ if autocast_dtype is None or self.device == 'cpu':
+ self.autocast = TorchAutocast(enabled=False)
+ if self.device != 'cpu':
+ logger.warning("T5 has no autocast, this might lead to NaN")
+ else:
+ dtype = getattr(torch, autocast_dtype)
+ assert isinstance(dtype, torch.dtype)
+ logger.info(f"T5 will be evaluated with autocast as {autocast_dtype}")
+ self.autocast = TorchAutocast(enabled=True, device_type=self.device, dtype=dtype)
+ # Let's disable logging temporarily because T5 will vomit some errors otherwise.
+ # thanks https://gist.github.com/simon-weber/7853144
+ previous_level = logging.root.manager.disable
+ logging.disable(logging.ERROR)
+ with warnings.catch_warnings():
+ warnings.simplefilter("ignore")
+ try:
+ self.t5_tokenizer = T5Tokenizer.from_pretrained(name)
+ t5 = T5EncoderModel.from_pretrained(name).train(mode=finetune)
+ finally:
+ logging.disable(previous_level)
+ if finetune:
+ self.t5 = t5
+ else:
+ # this makes sure that the t5 models is not part
+ # of the saved checkpoint
+ self.__dict__['t5'] = t5.to(device)
+
+ self.normalize_text = normalize_text
+ if normalize_text:
+ self.text_normalizer = WhiteSpaceTokenizer(1, lemma=True, stopwords=True)
+
+ def tokenize(self, x: tp.List[tp.Optional[str]]) -> tp.Dict[str, torch.Tensor]:
+ # if current sample doesn't have a certain attribute, replace with empty string
+ entries: tp.List[str] = [xi if xi is not None else "" for xi in x]
+ if self.normalize_text:
+ _, _, entries = self.text_normalizer(entries, return_text=True)
+ if self.word_dropout > 0. and self.training:
+ new_entries = []
+ for entry in entries:
+ words = [word for word in entry.split(" ") if random.random() >= self.word_dropout]
+ new_entries.append(" ".join(words))
+ entries = new_entries
+
+ empty_idx = torch.LongTensor([i for i, xi in enumerate(entries) if xi == ""])
+
+ inputs = self.t5_tokenizer(entries, return_tensors='pt', padding=True).to(self.device)
+ mask = inputs['attention_mask']
+ mask[empty_idx, :] = 0 # zero-out index where the input is non-existant
+ return inputs
+
+ def forward(self, inputs: tp.Dict[str, torch.Tensor]) -> ConditionType:
+ mask = inputs['attention_mask']
+ with torch.set_grad_enabled(self.finetune), self.autocast:
+ embeds = self.t5(**inputs).last_hidden_state
+ embeds = self.output_proj(embeds.to(self.output_proj.weight))
+ embeds = (embeds * mask.unsqueeze(-1))
+ return embeds, mask
+
+
+class WaveformConditioner(BaseConditioner):
+ """Base class for all conditioners that take a waveform as input.
+ Classes that inherit must implement `_get_wav_embedding` that outputs
+ a continuous tensor, and `_downsampling_factor` that returns the down-sampling
+ factor of the embedding model.
+
+ Args:
+ dim (int): The internal representation dimension.
+ output_dim (int): Output dimension.
+ device (tp.Union[torch.device, str]): Device.
+ """
+ def __init__(self, dim: int, output_dim: int, device: tp.Union[torch.device, str]):
+ super().__init__(dim, output_dim)
+ self.device = device
+
+ def tokenize(self, x: WavCondition) -> WavCondition:
+ wav, length, sample_rate, path, seek_time = x
+ assert length is not None
+ return WavCondition(wav.to(self.device), length.to(self.device), sample_rate, path, seek_time)
+
+ def _get_wav_embedding(self, x: WavCondition) -> torch.Tensor:
+ """Gets as input a WavCondition and returns a dense embedding."""
+ raise NotImplementedError()
+
+ def _downsampling_factor(self):
+ """Returns the downsampling factor of the embedding model."""
+ raise NotImplementedError()
+
+ def forward(self, x: WavCondition) -> ConditionType:
+ """Extract condition embedding and mask from a waveform and its metadata.
+ Args:
+ x (WavCondition): Waveform condition containing raw waveform and metadata.
+ Returns:
+ ConditionType: a dense vector representing the conditioning along with its mask
+ """
+ wav, lengths, *_ = x
+ with torch.no_grad():
+ embeds = self._get_wav_embedding(x)
+ embeds = embeds.to(self.output_proj.weight)
+ embeds = self.output_proj(embeds)
+
+ if lengths is not None:
+ lengths = lengths / self._downsampling_factor()
+ mask = length_to_mask(lengths, max_len=embeds.shape[1]).int() # type: ignore
+ else:
+ mask = torch.ones_like(embeds)
+ embeds = (embeds * mask.unsqueeze(2).to(self.device))
+
+ return embeds, mask
+
+
+class ChromaStemConditioner(WaveformConditioner):
+ """Chroma conditioner based on stems.
+ The ChromaStemConditioner uses DEMUCS to first filter out drums and bass, as
+ the drums and bass often dominate the chroma leading to the chroma features
+ not containing information about the melody.
+
+ Args:
+ output_dim (int): Output dimension for the conditioner.
+ sample_rate (int): Sample rate for the chroma extractor.
+ n_chroma (int): Number of chroma bins for the chroma extractor.
+ radix2_exp (int): Size of stft window for the chroma extractor (power of 2, e.g. 12 -> 2^12).
+ duration (int): duration used during training. This is later used for correct padding
+ in case we are using chroma as prefix.
+ match_len_on_eval (bool, optional): if True then all chromas are padded to the training
+ duration. Defaults to False.
+ eval_wavs (str, optional): path to a dataset manifest with waveform, this waveforms are used as
+ conditions during eval (for cases where we don't want to leak test conditions like MusicCaps).
+ Defaults to None.
+ n_eval_wavs (int, optional): limits the number of waveforms used for conditioning. Defaults to 0.
+ device (tp.Union[torch.device, str], optional): Device for the conditioner.
+ **kwargs: Additional parameters for the chroma extractor.
+ """
+ def __init__(self, output_dim: int, sample_rate: int, n_chroma: int, radix2_exp: int,
+ duration: float, match_len_on_eval: bool = True, eval_wavs: tp.Optional[str] = None,
+ n_eval_wavs: int = 0, cache_path: tp.Optional[tp.Union[str, Path]] = None,
+ device: tp.Union[torch.device, str] = 'cpu', **kwargs):
+ from demucs import pretrained
+ super().__init__(dim=n_chroma, output_dim=output_dim, device=device)
+ self.autocast = TorchAutocast(enabled=device != 'cpu', device_type=self.device, dtype=torch.float32)
+ self.sample_rate = sample_rate
+ self.match_len_on_eval = match_len_on_eval
+ self.duration = duration
+ self.__dict__['demucs'] = pretrained.get_model('htdemucs').to(device)
+ stem_sources: list = self.demucs.sources # type: ignore
+ self.stem_indices = torch.LongTensor([stem_sources.index('vocals'), stem_sources.index('other')]).to(device)
+ self.chroma = ChromaExtractor(sample_rate=sample_rate, n_chroma=n_chroma,
+ radix2_exp=radix2_exp, **kwargs).to(device)
+ self.chroma_len = self._get_chroma_len()
+ self.eval_wavs: tp.Optional[torch.Tensor] = self._load_eval_wavs(eval_wavs, n_eval_wavs)
+ self.cache = None
+ if cache_path is not None:
+ self.cache = EmbeddingCache(Path(cache_path) / 'wav', self.device,
+ compute_embed_fn=self._get_full_chroma_for_cache,
+ extract_embed_fn=self._extract_chroma_chunk)
+
+ def _downsampling_factor(self) -> int:
+ return self.chroma.winhop
+
+ def _load_eval_wavs(self, path: tp.Optional[str], num_samples: int) -> tp.Optional[torch.Tensor]:
+ """Load pre-defined waveforms from a json.
+ These waveforms will be used for chroma extraction during evaluation.
+ This is done to make the evaluation on MusicCaps fair (we shouldn't see the chromas of MusicCaps).
+ """
+ if path is None:
+ return None
+
+ logger.info(f"Loading evaluation wavs from {path}")
+ from audiocraft.data.audio_dataset import AudioDataset
+ dataset: AudioDataset = AudioDataset.from_meta(
+ path, segment_duration=self.duration, min_audio_duration=self.duration,
+ sample_rate=self.sample_rate, channels=1)
+
+ if len(dataset) > 0:
+ eval_wavs = dataset.collater([dataset[i] for i in range(num_samples)]).to(self.device)
+ logger.info(f"Using {len(eval_wavs)} evaluation wavs for chroma-stem conditioner")
+ return eval_wavs
+ else:
+ raise ValueError("Could not find evaluation wavs, check lengths of wavs")
+
+ def reset_eval_wavs(self, eval_wavs: tp.Optional[torch.Tensor]) -> None:
+ self.eval_wavs = eval_wavs
+
+ def has_eval_wavs(self) -> bool:
+ return self.eval_wavs is not None
+
+ def _sample_eval_wavs(self, num_samples: int) -> torch.Tensor:
+ """Sample wavs from a predefined list."""
+ assert self.eval_wavs is not None, "Cannot sample eval wavs as no eval wavs provided."
+ total_eval_wavs = len(self.eval_wavs)
+ out = self.eval_wavs
+ if num_samples > total_eval_wavs:
+ out = self.eval_wavs.repeat(num_samples // total_eval_wavs + 1, 1, 1)
+ return out[torch.randperm(len(out))][:num_samples]
+
+ def _get_chroma_len(self) -> int:
+ """Get length of chroma during training."""
+ dummy_wav = torch.zeros((1, int(self.sample_rate * self.duration)), device=self.device)
+ dummy_chr = self.chroma(dummy_wav)
+ return dummy_chr.shape[1]
+
+ @torch.no_grad()
+ def _get_stemmed_wav(self, wav: torch.Tensor, sample_rate: int) -> torch.Tensor:
+ """Get parts of the wav that holds the melody, extracting the main stems from the wav."""
+ from demucs.apply import apply_model
+ from demucs.audio import convert_audio
+ with self.autocast:
+ wav = convert_audio(
+ wav, sample_rate, self.demucs.samplerate, self.demucs.audio_channels) # type: ignore
+ stems = apply_model(self.demucs, wav, device=self.device)
+ stems = stems[:, self.stem_indices] # extract relevant stems for melody conditioning
+ mix_wav = stems.sum(1) # merge extracted stems to single waveform
+ mix_wav = convert_audio(mix_wav, self.demucs.samplerate, self.sample_rate, 1) # type: ignore
+ return mix_wav
+
+ @torch.no_grad()
+ def _extract_chroma(self, wav: torch.Tensor) -> torch.Tensor:
+ """Extract chroma features from the waveform."""
+ with self.autocast:
+ return self.chroma(wav)
+
+ @torch.no_grad()
+ def _compute_wav_embedding(self, wav: torch.Tensor, sample_rate: int) -> torch.Tensor:
+ """Compute wav embedding, applying stem and chroma extraction."""
+ # avoid 0-size tensors when we are working with null conds
+ if wav.shape[-1] == 1:
+ return self._extract_chroma(wav)
+ stems = self._get_stemmed_wav(wav, sample_rate)
+ chroma = self._extract_chroma(stems)
+ return chroma
+
+ @torch.no_grad()
+ def _get_full_chroma_for_cache(self, path: tp.Union[str, Path], x: WavCondition, idx: int) -> torch.Tensor:
+ """Extract chroma from the whole audio waveform at the given path."""
+ wav, sr = audio_read(path)
+ wav = wav[None].to(self.device)
+ wav = convert_audio(wav, sr, self.sample_rate, to_channels=1)
+ chroma = self._compute_wav_embedding(wav, self.sample_rate)[0]
+ return chroma
+
+ def _extract_chroma_chunk(self, full_chroma: torch.Tensor, x: WavCondition, idx: int) -> torch.Tensor:
+ """Extract a chunk of chroma from the full chroma derived from the full waveform."""
+ wav_length = x.wav.shape[-1]
+ seek_time = x.seek_time[idx]
+ assert seek_time is not None, (
+ "WavCondition seek_time is required "
+ "when extracting chroma chunks from pre-computed chroma.")
+ full_chroma = full_chroma.float()
+ frame_rate = self.sample_rate / self._downsampling_factor()
+ target_length = int(frame_rate * wav_length / self.sample_rate)
+ index = int(frame_rate * seek_time)
+ out = full_chroma[index: index + target_length]
+ out = F.pad(out[None], (0, 0, 0, target_length - out.shape[0]))[0]
+ return out.to(self.device)
+
+ @torch.no_grad()
+ def _get_wav_embedding(self, x: WavCondition) -> torch.Tensor:
+ """Get the wav embedding from the WavCondition.
+ The conditioner will either extract the embedding on-the-fly computing it from the condition wav directly
+ or will rely on the embedding cache to load the pre-computed embedding if relevant.
+ """
+ sampled_wav: tp.Optional[torch.Tensor] = None
+ if not self.training and self.eval_wavs is not None:
+ warn_once(logger, "Using precomputed evaluation wavs!")
+ sampled_wav = self._sample_eval_wavs(len(x.wav))
+
+ no_undefined_paths = all(p is not None for p in x.path)
+ no_nullified_cond = x.wav.shape[-1] > 1
+ if sampled_wav is not None:
+ chroma = self._compute_wav_embedding(sampled_wav, self.sample_rate)
+ elif self.cache is not None and no_undefined_paths and no_nullified_cond:
+ paths = [Path(p) for p in x.path if p is not None]
+ chroma = self.cache.get_embed_from_cache(paths, x)
+ else:
+ assert all(sr == x.sample_rate[0] for sr in x.sample_rate), "All sample rates in batch should be equal."
+ chroma = self._compute_wav_embedding(x.wav, x.sample_rate[0])
+
+ if self.match_len_on_eval:
+ B, T, C = chroma.shape
+ if T > self.chroma_len:
+ chroma = chroma[:, :self.chroma_len]
+ logger.debug(f"Chroma was truncated to match length! ({T} -> {chroma.shape[1]})")
+ elif T < self.chroma_len:
+ n_repeat = int(math.ceil(self.chroma_len / T))
+ chroma = chroma.repeat(1, n_repeat, 1)
+ chroma = chroma[:, :self.chroma_len]
+ logger.debug(f"Chroma was repeated to match length! ({T} -> {chroma.shape[1]})")
+
+ return chroma
+
+ def tokenize(self, x: WavCondition) -> WavCondition:
+ """Apply WavConditioner tokenization and populate cache if needed."""
+ x = super().tokenize(x)
+ no_undefined_paths = all(p is not None for p in x.path)
+ if self.cache is not None and no_undefined_paths:
+ paths = [Path(p) for p in x.path if p is not None]
+ self.cache.populate_embed_cache(paths, x)
+ return x
+
+
+class JointEmbeddingConditioner(BaseConditioner):
+ """Joint embedding conditioning supporting both audio or text conditioning.
+
+ Args:
+ dim (int): Dimension.
+ output_dim (int): Output dimension.
+ device (str): Device.
+ attribute (str): Attribute used by the conditioner.
+ autocast_dtype (str): Autocast for the conditioner.
+ quantize (bool): Whether to quantize the CLAP embedding.
+ n_q (int): Number of residual quantizers (used if quantize is true).
+ bins (int): Quantizers' codebooks size (used if quantize is true).
+ kwargs: Additional parameters for residual vector quantizer.
+ """
+ def __init__(self, dim: int, output_dim: int, device: str, attribute: str,
+ autocast_dtype: tp.Optional[str] = 'float32', quantize: bool = True,
+ n_q: int = 12, bins: int = 1024, **kwargs):
+ super().__init__(dim=dim, output_dim=output_dim)
+ self.device = device
+ self.attribute = attribute
+ if autocast_dtype is None or device == 'cpu':
+ self.autocast = TorchAutocast(enabled=False)
+ logger.warning("JointEmbeddingConditioner has no autocast, this might lead to NaN.")
+ else:
+ dtype = getattr(torch, autocast_dtype)
+ assert isinstance(dtype, torch.dtype)
+ logger.info(f"JointEmbeddingConditioner will be evaluated with autocast as {autocast_dtype}.")
+ self.autocast = TorchAutocast(enabled=True, device_type=self.device, dtype=dtype)
+ # residual vector quantizer to discretize the conditioned embedding
+ self.quantizer: tp.Optional[ResidualVectorQuantizer] = None
+ if quantize:
+ self.quantizer = ResidualVectorQuantizer(dim, n_q=n_q, bins=bins, **kwargs)
+
+ def _get_embed(self, x: JointEmbedCondition) -> tp.Tuple[torch.Tensor, torch.Tensor]:
+ """Get joint embedding in latent space from the inputs.
+
+ Returns:
+ tuple[torch.Tensor, torch.Tensor]: Tensor for the latent embedding
+ and corresponding empty indexes.
+ """
+ raise NotImplementedError()
+
+ def forward(self, x: JointEmbedCondition) -> ConditionType:
+ with self.autocast:
+ embed, empty_idx = self._get_embed(x)
+ if self.quantizer is not None:
+ embed = embed.view(-1, self.dim, 1)
+ q_res = self.quantizer(embed, frame_rate=1)
+ out_embed = q_res.x.view(-1, self.dim)
+ else:
+ out_embed = embed
+ out_embed = self.output_proj(out_embed).view(-1, 1, self.output_dim)
+ mask = torch.ones(*out_embed.shape[:2], device=out_embed.device)
+ mask[empty_idx, :] = 0 # zero-out index where the input is non-existant
+ out_embed = (out_embed * mask.unsqueeze(-1))
+ return out_embed, mask
+
+ def tokenize(self, x: JointEmbedCondition) -> JointEmbedCondition:
+ return x
+
+
+class CLAPEmbeddingConditioner(JointEmbeddingConditioner):
+ """Joint Embedding conditioner based on pre-trained CLAP model.
+
+ This CLAP-based conditioner supports a caching mechanism
+ over the computed embeddings for faster training.
+
+ Args:
+ dim (int): Dimension.
+ output_dim (int): Output dimension.
+ device (str): Device.
+ attribute (str): Attribute used by the conditioner.
+ quantize (bool): Whether to quantize the CLAP embedding.
+ n_q (int): Number of residual quantizers (used if quantize is true).
+ bins (int): Quantizers' codebooks size (used if quantize is true).
+ checkpoint (str): Path to CLAP checkpoint.
+ model_arch (str): CLAP model architecture.
+ enable_fusion (bool): Enable fusion for CLAP model.
+ sample_rate (int): Sample rate used by CLAP model.
+ max_audio_length (float): Maximum audio length for CLAP model.
+ audio_stride (float): Stride to use for getting a CLAP embedding on the full sequence.
+ normalize (bool): Whether to normalize the CLAP embedding.
+ text_p (float): Probability of using text representation instead of audio at train time.
+ batch_size (Optional[int]): Batch size for CLAP embedding computation.
+ autocast_dtype (str): Autocast for the conditioner.
+ cache_path (Optional[str]): Path for pre-computed embeddings caching.
+ kwargs: Additional parameters for residual vector quantizer.
+ """
+ def __init__(self, dim: int, output_dim: int, device: str, attribute: str,
+ quantize: bool, n_q: int, bins: int, checkpoint: tp.Union[str, Path], model_arch: str,
+ enable_fusion: bool, sample_rate: int, max_audio_length: int, audio_stride: int,
+ normalize: bool, text_p: bool, batch_size: tp.Optional[int] = None,
+ autocast_dtype: tp.Optional[str] = 'float32', cache_path: tp.Optional[str] = None, **kwargs):
+ try:
+ import laion_clap # type: ignore
+ except ImportError:
+ raise ImportError("Please install CLAP to use the CLAPEmbeddingConditioner: 'pip install laion_clap'")
+ warnings.warn("Sample rate for CLAP conditioner was fixed in version v1.1.0, (from 44.1 to 48 kHz). "
+ "Please retrain all models.")
+ checkpoint = AudioCraftEnvironment.resolve_reference_path(checkpoint)
+ clap_tokenize = RobertaTokenizer.from_pretrained('roberta-base')
+ clap_model = laion_clap.CLAP_Module(enable_fusion=enable_fusion, amodel=model_arch)
+ load_clap_state_dict(clap_model, checkpoint)
+ clap_model.eval()
+ clap_model.to(device)
+ super().__init__(dim=dim, output_dim=output_dim, device=device, attribute=attribute,
+ autocast_dtype=autocast_dtype, quantize=quantize, n_q=n_q, bins=bins,
+ **kwargs)
+ self.checkpoint = checkpoint
+ self.enable_fusion = enable_fusion
+ self.model_arch = model_arch
+ self.clap: laion_clap.CLAP_Module
+ self.clap_tokenize: RobertaTokenizer
+ self.clap_sample_rate = sample_rate
+ self.clap_max_frames = int(self.clap_sample_rate * max_audio_length)
+ self.clap_stride = int(self.clap_sample_rate * audio_stride)
+ self.batch_size = batch_size or 1
+ self.normalize = normalize
+ self.text_p = text_p
+ self.__dict__['clap_tokenize'] = clap_tokenize
+ self.__dict__['clap'] = clap_model
+ self.wav_cache, self.text_cache = None, None
+ if cache_path is not None:
+ self.wav_cache = EmbeddingCache(Path(cache_path) / 'wav', self.device,
+ compute_embed_fn=self._get_wav_embedding_for_cache,
+ extract_embed_fn=self._extract_wav_embedding_chunk)
+ self.text_cache = EmbeddingCache(Path(cache_path) / 'text', self.device,
+ compute_embed_fn=self._get_text_embedding_for_cache)
+
+ def _tokenizer(self, texts: tp.Union[str, tp.List[str]]) -> dict:
+ # we use the default params from CLAP module here as well
+ return self.clap_tokenize(texts, padding="max_length", truncation=True, max_length=77, return_tensors="pt")
+
+ def _compute_text_embedding(self, text: tp.List[str]) -> torch.Tensor:
+ """Compute text embedding from CLAP model on a given a batch of text.
+
+ Args:
+ text (list[str]): List of text for the batch, with B items.
+ Returns:
+ torch.Tensor: CLAP embedding derived from text, of shape [B, 1, D], with D the CLAP embedding dimension.
+ """
+ with torch.no_grad():
+ embed = self.clap.get_text_embedding(text, tokenizer=self._tokenizer, use_tensor=True)
+ return embed.view(embed.size(0), 1, embed.size(-1))
+
+ def _get_text_embedding_for_cache(self, path: tp.Union[Path, str],
+ x: JointEmbedCondition, idx: int) -> torch.Tensor:
+ """Get text embedding function for the cache."""
+ text = x.text[idx]
+ text = text if text is not None else ""
+ return self._compute_text_embedding([text])[0]
+
+ def _preprocess_wav(self, wav: torch.Tensor, length: torch.Tensor, sample_rates: tp.List[int]) -> torch.Tensor:
+ """Preprocess wav to expected format by CLAP model.
+
+ Args:
+ wav (torch.Tensor): Audio wav, of shape [B, C, T].
+ length (torch.Tensor): Actual length of the audio for each item in the batch, of shape [B].
+ sample_rates (list[int]): Sample rates for each sample in the batch
+ Returns:
+ torch.Tensor: Audio wav of shape [B, T].
+ """
+ assert wav.dim() == 3, "Expecting wav to be [B, C, T]"
+ if sample_rates is not None:
+ _wav = []
+ for i, audio in enumerate(wav):
+ sr = sample_rates[i]
+ audio = convert_audio(audio, from_rate=sr, to_rate=self.clap_sample_rate, to_channels=1)
+ _wav.append(audio)
+ wav = torch.stack(_wav, dim=0)
+ wav = wav.mean(dim=1)
+ return wav
+
+ def _compute_wav_embedding(self, wav: torch.Tensor, length: torch.Tensor,
+ sample_rates: tp.List[int], reduce_mean: bool = False) -> torch.Tensor:
+ """Compute audio wave embedding from CLAP model.
+
+ Since CLAP operates on a fixed sequence length audio inputs and we need to process longer audio sequences,
+ we calculate the wav embeddings on `clap_max_frames` windows with `clap_stride`-second stride and
+ average the resulting embeddings.
+
+ Args:
+ wav (torch.Tensor): Audio wav, of shape [B, C, T].
+ length (torch.Tensor): Actual length of the audio for each item in the batch, of shape [B].
+ sample_rates (list[int]): Sample rates for each sample in the batch.
+ reduce_mean (bool): Whether to get the average tensor.
+ Returns:
+ torch.Tensor: Audio embedding of shape [B, F, D], F being the number of chunks, D the dimension.
+ """
+ with torch.no_grad():
+ wav = self._preprocess_wav(wav, length, sample_rates)
+ B, T = wav.shape
+ if T >= self.clap_max_frames:
+ wav = wav.unfold(-1, self.clap_max_frames, self.clap_stride) # [B, F, T]
+ else:
+ wav = wav.view(-1, 1, T) # [B, F, T] with F=1
+ wav = einops.rearrange(wav, 'b f t -> (b f) t')
+ embed_list = []
+ for i in range(0, wav.size(0), self.batch_size):
+ _wav = wav[i:i+self.batch_size, ...]
+ _embed = self.clap.get_audio_embedding_from_data(_wav, use_tensor=True)
+ embed_list.append(_embed)
+ embed = torch.cat(embed_list, dim=0)
+ embed = einops.rearrange(embed, '(b f) d -> b f d', b=B)
+ if reduce_mean:
+ embed = embed.mean(dim=1, keepdim=True)
+ return embed # [B, F, D] with F=1 if reduce_mean is True
+
+ def _get_wav_embedding_for_cache(self, path: tp.Union[str, Path],
+ x: JointEmbedCondition, idx: int) -> torch.Tensor:
+ """Compute audio wave embedding for the cache.
+ The embedding is computed on a given audio read from file.
+
+ Args:
+ path (str or Path): Path to the full audio file.
+ Returns:
+ torch.Tensor: Single-item tensor of shape [F, D], F being the number of chunks, D the dimension.
+ """
+ wav, sr = audio_read(path) # [C, T]
+ wav = wav.unsqueeze(0).to(self.device) # [1, C, T]
+ wav_len = torch.LongTensor([wav.shape[-1]]).to(self.device)
+ embed = self._compute_wav_embedding(wav, wav_len, [sr], reduce_mean=False) # [B, F, D]
+ return embed.squeeze(0) # [F, D]
+
+ def _extract_wav_embedding_chunk(self, full_embed: torch.Tensor, x: JointEmbedCondition, idx: int) -> torch.Tensor:
+ """Extract the chunk of embedding matching the seek_time and length from the full CLAP audio embedding.
+
+ Args:
+ full_embed (torch.Tensor): CLAP embedding computed on the full wave, of shape [F, D].
+ x (JointEmbedCondition): Joint embedding condition for the full batch.
+ idx (int): Index considered for the given embedding to extract.
+ Returns:
+ torch.Tensor: Wav embedding averaged on sliding window, of shape [1, D].
+ """
+ sample_rate = x.sample_rate[idx]
+ seek_time = x.seek_time[idx]
+ seek_time = 0. if seek_time is None else seek_time
+ clap_stride = int(self.clap_stride / self.clap_sample_rate) * sample_rate
+ end_seek_time = seek_time + self.clap_max_frames / self.clap_sample_rate
+ start_offset = int(seek_time * sample_rate // clap_stride)
+ end_offset = int(end_seek_time * sample_rate // clap_stride)
+ wav_embed = full_embed[start_offset:end_offset, ...]
+ wav_embed = wav_embed.mean(dim=0, keepdim=True)
+ return wav_embed.to(self.device) # [F, D]
+
+ def _get_text_embedding(self, x: JointEmbedCondition) -> torch.Tensor:
+ """Get CLAP embedding from a batch of text descriptions."""
+ no_nullified_cond = x.wav.shape[-1] > 1 # we don't want to read from cache when condition dropout
+ if self.text_cache is not None and no_nullified_cond:
+ assert all(p is not None for p in x.path), "Cache requires all JointEmbedCondition paths to be provided"
+ paths = [Path(p) for p in x.path if p is not None]
+ embed = self.text_cache.get_embed_from_cache(paths, x)
+ else:
+ text = [xi if xi is not None else "" for xi in x.text]
+ embed = self._compute_text_embedding(text)
+ if self.normalize:
+ embed = torch.nn.functional.normalize(embed, p=2.0, dim=-1)
+ return embed
+
+ def _get_wav_embedding(self, x: JointEmbedCondition) -> torch.Tensor:
+ """Get CLAP embedding from a batch of audio tensors (and corresponding sample rates)."""
+ no_undefined_paths = all(p is not None for p in x.path)
+ no_nullified_cond = x.wav.shape[-1] > 1 # we don't want to read from cache when condition dropout
+ if self.wav_cache is not None and no_undefined_paths and no_nullified_cond:
+ paths = [Path(p) for p in x.path if p is not None]
+ embed = self.wav_cache.get_embed_from_cache(paths, x)
+ else:
+ embed = self._compute_wav_embedding(x.wav, x.length, x.sample_rate, reduce_mean=True)
+ if self.normalize:
+ embed = torch.nn.functional.normalize(embed, p=2.0, dim=-1)
+ return embed
+
+ def tokenize(self, x: JointEmbedCondition) -> JointEmbedCondition:
+ # Trying to limit as much as possible sync points when the cache is warm.
+ no_undefined_paths = all(p is not None for p in x.path)
+ if self.wav_cache is not None and no_undefined_paths:
+ assert all([p is not None for p in x.path]), "Cache requires all JointEmbedCondition paths to be provided"
+ paths = [Path(p) for p in x.path if p is not None]
+ self.wav_cache.populate_embed_cache(paths, x)
+ if self.text_cache is not None and no_undefined_paths:
+ assert all([p is not None for p in x.path]), "Cache requires all JointEmbedCondition paths to be provided"
+ paths = [Path(p) for p in x.path if p is not None]
+ self.text_cache.populate_embed_cache(paths, x)
+ return x
+
+ def _get_embed(self, x: JointEmbedCondition) -> tp.Tuple[torch.Tensor, torch.Tensor]:
+ """Extract shared latent representation from either the wav or the text using CLAP."""
+ # decide whether to use text embedding at train time or not
+ use_text_embed = random.random() < self.text_p
+ if self.training and not use_text_embed:
+ embed = self._get_wav_embedding(x)
+ empty_idx = torch.LongTensor([]) # we assume we always have the audio wav
+ else:
+ embed = self._get_text_embedding(x)
+ empty_idx = torch.LongTensor([i for i, xi in enumerate(x.text) if xi is None or xi == ""])
+ return embed, empty_idx
+
+
+def dropout_condition(sample: ConditioningAttributes, condition_type: str, condition: str) -> ConditioningAttributes:
+ """Utility function for nullifying an attribute inside an ConditioningAttributes object.
+ If the condition is of type "wav", then nullify it using `nullify_condition` function.
+ If the condition is of any other type, set its value to None.
+ Works in-place.
+ """
+ if condition_type not in ['text', 'wav', 'joint_embed']:
+ raise ValueError(
+ "dropout_condition got an unexpected condition type!"
+ f" expected 'text', 'wav' or 'joint_embed' but got '{condition_type}'"
+ )
+
+ if condition not in getattr(sample, condition_type):
+ raise ValueError(
+ "dropout_condition received an unexpected condition!"
+ f" expected wav={sample.wav.keys()} and text={sample.text.keys()}"
+ f" but got '{condition}' of type '{condition_type}'!"
+ )
+
+ if condition_type == 'wav':
+ wav_cond = sample.wav[condition]
+ sample.wav[condition] = nullify_wav(wav_cond)
+ elif condition_type == 'joint_embed':
+ embed = sample.joint_embed[condition]
+ sample.joint_embed[condition] = nullify_joint_embed(embed)
+ else:
+ sample.text[condition] = None
+
+ return sample
+
+
+class DropoutModule(nn.Module):
+ """Base module for all dropout modules."""
+ def __init__(self, seed: int = 1234):
+ super().__init__()
+ self.rng = torch.Generator()
+ self.rng.manual_seed(seed)
+
+
+class AttributeDropout(DropoutModule):
+ """Dropout with a given probability per attribute.
+ This is different from the behavior of ClassifierFreeGuidanceDropout as this allows for attributes
+ to be dropped out separately. For example, "artist" can be dropped while "genre" remains.
+ This is in contrast to ClassifierFreeGuidanceDropout where if "artist" is dropped "genre"
+ must also be dropped.
+
+ Args:
+ p (tp.Dict[str, float]): A dict mapping between attributes and dropout probability. For example:
+ ...
+ "genre": 0.1,
+ "artist": 0.5,
+ "wav": 0.25,
+ ...
+ active_on_eval (bool, optional): Whether the dropout is active at eval. Default to False.
+ seed (int, optional): Random seed.
+ """
+ def __init__(self, p: tp.Dict[str, tp.Dict[str, float]], active_on_eval: bool = False, seed: int = 1234):
+ super().__init__(seed=seed)
+ self.active_on_eval = active_on_eval
+ # construct dict that return the values from p otherwise 0
+ self.p = {}
+ for condition_type, probs in p.items():
+ self.p[condition_type] = defaultdict(lambda: 0, probs)
+
+ def forward(self, samples: tp.List[ConditioningAttributes]) -> tp.List[ConditioningAttributes]:
+ """
+ Args:
+ samples (list[ConditioningAttributes]): List of conditions.
+ Returns:
+ list[ConditioningAttributes]: List of conditions after certain attributes were set to None.
+ """
+ if not self.training and not self.active_on_eval:
+ return samples
+
+ samples = deepcopy(samples)
+ for condition_type, ps in self.p.items(): # for condition types [text, wav]
+ for condition, p in ps.items(): # for attributes of each type (e.g., [artist, genre])
+ if torch.rand(1, generator=self.rng).item() < p:
+ for sample in samples:
+ dropout_condition(sample, condition_type, condition)
+ return samples
+
+ def __repr__(self):
+ return f"AttributeDropout({dict(self.p)})"
+
+
+class ClassifierFreeGuidanceDropout(DropoutModule):
+ """Classifier Free Guidance dropout.
+ All attributes are dropped with the same probability.
+
+ Args:
+ p (float): Probability to apply condition dropout during training.
+ seed (int): Random seed.
+ """
+ def __init__(self, p: float, seed: int = 1234):
+ super().__init__(seed=seed)
+ self.p = p
+
+ def forward(self, samples: tp.List[ConditioningAttributes]) -> tp.List[ConditioningAttributes]:
+ """
+ Args:
+ samples (list[ConditioningAttributes]): List of conditions.
+ Returns:
+ list[ConditioningAttributes]: List of conditions after all attributes were set to None.
+ """
+ if not self.training:
+ return samples
+
+ # decide on which attributes to drop in a batched fashion
+ drop = torch.rand(1, generator=self.rng).item() < self.p
+ if not drop:
+ return samples
+
+ # nullify conditions of all attributes
+ samples = deepcopy(samples)
+ for condition_type in ["wav", "text"]:
+ for sample in samples:
+ for condition in sample.attributes[condition_type]:
+ dropout_condition(sample, condition_type, condition)
+ return samples
+
+ def __repr__(self):
+ return f"ClassifierFreeGuidanceDropout(p={self.p})"
+
+
+class ConditioningProvider(nn.Module):
+ """Prepare and provide conditions given all the supported conditioners.
+
+ Args:
+ conditioners (dict): Dictionary of conditioners.
+ device (torch.device or str, optional): Device for conditioners and output condition types.
+ """
+ def __init__(self, conditioners: tp.Dict[str, BaseConditioner], device: tp.Union[torch.device, str] = "cpu"):
+ super().__init__()
+ self.device = device
+ self.conditioners = nn.ModuleDict(conditioners)
+
+ @property
+ def joint_embed_conditions(self):
+ return [m.attribute for m in self.conditioners.values() if isinstance(m, JointEmbeddingConditioner)]
+
+ @property
+ def has_joint_embed_conditions(self):
+ return len(self.joint_embed_conditions) > 0
+
+ @property
+ def text_conditions(self):
+ return [k for k, v in self.conditioners.items() if isinstance(v, TextConditioner)]
+
+ @property
+ def wav_conditions(self):
+ return [k for k, v in self.conditioners.items() if isinstance(v, WaveformConditioner)]
+
+ @property
+ def has_wav_condition(self):
+ return len(self.wav_conditions) > 0
+
+ def tokenize(self, inputs: tp.List[ConditioningAttributes]) -> tp.Dict[str, tp.Any]:
+ """Match attributes/wavs with existing conditioners in self, and compute tokenize them accordingly.
+ This should be called before starting any real GPU work to avoid synchronization points.
+ This will return a dict matching conditioner names to their arbitrary tokenized representations.
+
+ Args:
+ inputs (list[ConditioningAttributes]): List of ConditioningAttributes objects containing
+ text and wav conditions.
+ """
+ assert all([isinstance(x, ConditioningAttributes) for x in inputs]), (
+ "Got unexpected types input for conditioner! should be tp.List[ConditioningAttributes]",
+ f" but types were {set([type(x) for x in inputs])}"
+ )
+
+ output = {}
+ text = self._collate_text(inputs)
+ wavs = self._collate_wavs(inputs)
+ joint_embeds = self._collate_joint_embeds(inputs)
+
+ assert set(text.keys() | wavs.keys() | joint_embeds.keys()).issubset(set(self.conditioners.keys())), (
+ f"Got an unexpected attribute! Expected {self.conditioners.keys()}, ",
+ f"got {text.keys(), wavs.keys(), joint_embeds.keys()}"
+ )
+
+ for attribute, batch in chain(text.items(), wavs.items(), joint_embeds.items()):
+ output[attribute] = self.conditioners[attribute].tokenize(batch)
+ return output
+
+ def forward(self, tokenized: tp.Dict[str, tp.Any]) -> tp.Dict[str, ConditionType]:
+ """Compute pairs of `(embedding, mask)` using the configured conditioners and the tokenized representations.
+ The output is for example:
+ {
+ "genre": (torch.Tensor([B, 1, D_genre]), torch.Tensor([B, 1])),
+ "description": (torch.Tensor([B, T_desc, D_desc]), torch.Tensor([B, T_desc])),
+ ...
+ }
+
+ Args:
+ tokenized (dict): Dict of tokenized representations as returned by `tokenize()`.
+ """
+ output = {}
+ for attribute, inputs in tokenized.items():
+ condition, mask = self.conditioners[attribute](inputs)
+ output[attribute] = (condition, mask)
+ return output
+
+ def _collate_text(self, samples: tp.List[ConditioningAttributes]) -> tp.Dict[str, tp.List[tp.Optional[str]]]:
+ """Given a list of ConditioningAttributes objects, compile a dictionary where the keys
+ are the attributes and the values are the aggregated input per attribute.
+ For example:
+ Input:
+ [
+ ConditioningAttributes(text={"genre": "Rock", "description": "A rock song with a guitar solo"}, wav=...),
+ ConditioningAttributes(text={"genre": "Hip-hop", "description": "A hip-hop verse"}, wav=...),
+ ]
+ Output:
+ {
+ "genre": ["Rock", "Hip-hop"],
+ "description": ["A rock song with a guitar solo", "A hip-hop verse"]
+ }
+
+ Args:
+ samples (list of ConditioningAttributes): List of ConditioningAttributes samples.
+ Returns:
+ dict[str, list[str, optional]]: A dictionary mapping an attribute name to text batch.
+ """
+ out: tp.Dict[str, tp.List[tp.Optional[str]]] = defaultdict(list)
+ texts = [x.text for x in samples]
+ for text in texts:
+ for condition in self.text_conditions:
+ out[condition].append(text[condition])
+ return out
+
+ def _collate_wavs(self, samples: tp.List[ConditioningAttributes]) -> tp.Dict[str, WavCondition]:
+ """Generate a dict where the keys are attributes by which we fetch similar wavs,
+ and the values are Tensors of wavs according to said attributes.
+
+ *Note*: by the time the samples reach this function, each sample should have some waveform
+ inside the "wav" attribute. It should be either:
+ 1. A real waveform
+ 2. A null waveform due to the sample having no similar waveforms (nullified by the dataset)
+ 3. A null waveform due to it being dropped in a dropout module (nullified by dropout)
+
+ Args:
+ samples (list of ConditioningAttributes): List of ConditioningAttributes samples.
+ Returns:
+ dict[str, WavCondition]: A dictionary mapping an attribute name to wavs.
+ """
+ wavs = defaultdict(list)
+ lengths = defaultdict(list)
+ sample_rates = defaultdict(list)
+ paths = defaultdict(list)
+ seek_times = defaultdict(list)
+ out: tp.Dict[str, WavCondition] = {}
+
+ for sample in samples:
+ for attribute in self.wav_conditions:
+ wav, length, sample_rate, path, seek_time = sample.wav[attribute]
+ assert wav.dim() == 3, f"Got wav with dim={wav.dim()}, but expected 3 [1, C, T]"
+ assert wav.size(0) == 1, f"Got wav [B, C, T] with shape={wav.shape}, but expected B == 1"
+ # mono-channel conditioning
+ wav = wav.mean(1, keepdim=True) # [1, 1, T]
+ wavs[attribute].append(wav.flatten()) # [T]
+ lengths[attribute].append(length)
+ sample_rates[attribute].extend(sample_rate)
+ paths[attribute].extend(path)
+ seek_times[attribute].extend(seek_time)
+
+ # stack all wavs to a single tensor
+ for attribute in self.wav_conditions:
+ stacked_wav, _ = collate(wavs[attribute], dim=0)
+ out[attribute] = WavCondition(
+ stacked_wav.unsqueeze(1), torch.cat(lengths[attribute]), sample_rates[attribute],
+ paths[attribute], seek_times[attribute])
+
+ return out
+
+ def _collate_joint_embeds(self, samples: tp.List[ConditioningAttributes]) -> tp.Dict[str, JointEmbedCondition]:
+ """Generate a dict where the keys are attributes by which we compute joint embeddings,
+ and the values are Tensors of pre-computed embeddings and the corresponding text attributes.
+
+ Args:
+ samples (list[ConditioningAttributes]): List of ConditioningAttributes samples.
+ Returns:
+ A dictionary mapping an attribute name to joint embeddings.
+ """
+ texts = defaultdict(list)
+ wavs = defaultdict(list)
+ lengths = defaultdict(list)
+ sample_rates = defaultdict(list)
+ paths = defaultdict(list)
+ seek_times = defaultdict(list)
+ channels: int = 0
+
+ out = {}
+ for sample in samples:
+ for attribute in self.joint_embed_conditions:
+ wav, text, length, sample_rate, path, seek_time = sample.joint_embed[attribute]
+ assert wav.dim() == 3
+ if channels == 0:
+ channels = wav.size(1)
+ else:
+ assert channels == wav.size(1), "not all audio has same number of channels in batch"
+ assert wav.size(0) == 1, "Expecting single-wav batch in the collate method"
+ wav = einops.rearrange(wav, "b c t -> (b c t)") # [1, C, T] => [C * T]
+ wavs[attribute].append(wav)
+ texts[attribute].extend(text)
+ lengths[attribute].append(length)
+ sample_rates[attribute].extend(sample_rate)
+ paths[attribute].extend(path)
+ seek_times[attribute].extend(seek_time)
+
+ for attribute in self.joint_embed_conditions:
+ stacked_texts = texts[attribute]
+ stacked_paths = paths[attribute]
+ stacked_seek_times = seek_times[attribute]
+ stacked_wavs = pad_sequence(wavs[attribute]).to(self.device)
+ stacked_wavs = einops.rearrange(stacked_wavs, "(c t) b -> b c t", c=channels)
+ stacked_sample_rates = sample_rates[attribute]
+ stacked_lengths = torch.cat(lengths[attribute]).to(self.device)
+ assert stacked_lengths.size(0) == stacked_wavs.size(0)
+ assert len(stacked_sample_rates) == stacked_wavs.size(0)
+ assert len(stacked_texts) == stacked_wavs.size(0)
+ out[attribute] = JointEmbedCondition(
+ text=stacked_texts, wav=stacked_wavs,
+ length=stacked_lengths, sample_rate=stacked_sample_rates,
+ path=stacked_paths, seek_time=stacked_seek_times)
+
+ return out
+
+
+class ConditionFuser(StreamingModule):
+ """Condition fuser handles the logic to combine the different conditions
+ to the actual model input.
+
+ Args:
+ fuse2cond (tp.Dict[str, str]): A dictionary that says how to fuse
+ each condition. For example:
+ {
+ "prepend": ["description"],
+ "sum": ["genre", "bpm"],
+ "cross": ["description"],
+ }
+ cross_attention_pos_emb (bool, optional): Use positional embeddings in cross attention.
+ cross_attention_pos_emb_scale (int): Scale for positional embeddings in cross attention if used.
+ """
+ FUSING_METHODS = ["sum", "prepend", "cross", "input_interpolate"]
+
+ def __init__(self, fuse2cond: tp.Dict[str, tp.List[str]], cross_attention_pos_emb: bool = False,
+ cross_attention_pos_emb_scale: float = 1.0):
+ super().__init__()
+ assert all(
+ [k in self.FUSING_METHODS for k in fuse2cond.keys()]
+ ), f"Got invalid fuse method, allowed methods: {self.FUSING_METHODS}"
+ self.cross_attention_pos_emb = cross_attention_pos_emb
+ self.cross_attention_pos_emb_scale = cross_attention_pos_emb_scale
+ self.fuse2cond: tp.Dict[str, tp.List[str]] = fuse2cond
+ self.cond2fuse: tp.Dict[str, str] = {}
+ for fuse_method, conditions in fuse2cond.items():
+ for condition in conditions:
+ self.cond2fuse[condition] = fuse_method
+
+ def forward(
+ self,
+ input: torch.Tensor,
+ conditions: tp.Dict[str, ConditionType]
+ ) -> tp.Tuple[torch.Tensor, tp.Optional[torch.Tensor]]:
+ """Fuse the conditions to the provided model input.
+
+ Args:
+ input (torch.Tensor): Transformer input.
+ conditions (dict[str, ConditionType]): Dict of conditions.
+ Returns:
+ tuple[torch.Tensor, torch.Tensor]: The first tensor is the transformer input
+ after the conditions have been fused. The second output tensor is the tensor
+ used for cross-attention or None if no cross attention inputs exist.
+ """
+ B, T, _ = input.shape
+
+ if 'offsets' in self._streaming_state:
+ first_step = False
+ offsets = self._streaming_state['offsets']
+ else:
+ first_step = True
+ offsets = torch.zeros(input.shape[0], dtype=torch.long, device=input.device)
+
+ assert set(conditions.keys()).issubset(set(self.cond2fuse.keys())), \
+ f"given conditions contain unknown attributes for fuser, " \
+ f"expected {self.cond2fuse.keys()}, got {conditions.keys()}"
+ cross_attention_output = None
+ for cond_type, (cond, cond_mask) in conditions.items():
+ op = self.cond2fuse[cond_type]
+ if op == 'sum':
+ input += cond
+ elif op == 'input_interpolate':
+ cond = einops.rearrange(cond, "b t d -> b d t")
+ cond = F.interpolate(cond, size=input.shape[1])
+ input += einops.rearrange(cond, "b d t -> b t d")
+ elif op == 'prepend':
+ if first_step:
+ input = torch.cat([cond, input], dim=1)
+ elif op == 'cross':
+ if cross_attention_output is not None:
+ cross_attention_output = torch.cat([cross_attention_output, cond], dim=1)
+ else:
+ cross_attention_output = cond
+ else:
+ raise ValueError(f"unknown op ({op})")
+
+ if self.cross_attention_pos_emb and cross_attention_output is not None:
+ positions = torch.arange(
+ cross_attention_output.shape[1],
+ device=cross_attention_output.device
+ ).view(1, -1, 1)
+ pos_emb = create_sin_embedding(positions, cross_attention_output.shape[-1])
+ cross_attention_output = cross_attention_output + self.cross_attention_pos_emb_scale * pos_emb
+
+ if self._is_streaming:
+ self._streaming_state['offsets'] = offsets + T
+
+ return input, cross_attention_output
+
+