This repository has been archived by the owner on Oct 31, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathsearchbot_agent.py
818 lines (702 loc) · 32.2 KB
/
searchbot_agent.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
from typing import Any, Dict, List, Tuple, Optional
from collections import defaultdict
import collections
import copy
import itertools
import json
import logging
import random
import warnings
import tabulate
import time
import numpy as np
import torch
from conf import agents_cfgs
from fairdiplomacy import pydipcc
from fairdiplomacy.agents.base_search_agent import (
BaseSearchAgent,
make_set_orders_dicts,
sample_orders_from_policy,
)
# fairdiplomacy.action_generation and fairdiplomacy.action_exploration
# both circularly refer fairdiplomacy.agents, so we import those modules whole
# instead of from "fairdiplomacy.action_generation import blah".
# That way, we break the circular initialization issue by not requiring the symbols
# *within* those modules to exist at import time, since they very well might not exist
# if we were only halfway through importing those when we began importing this file.
import fairdiplomacy.action_generation
import fairdiplomacy.action_exploration
from fairdiplomacy.agents.model_rollouts import ModelRollouts
from fairdiplomacy.agents.model_wrapper import ModelWrapper
from fairdiplomacy.agents.plausible_order_sampling import PlausibleOrderSampler, renormalize_policy
from fairdiplomacy.models.consts import POWERS
from fairdiplomacy.utils.sampling import sample_p_dict
from fairdiplomacy.utils.timing_ctx import TimingCtx
from fairdiplomacy.typedefs import (
Action,
JointAction,
PlausibleOrders,
Power,
PowerPolicies,
)
ActionDict = Dict[Tuple[Power, Action], float]
class CFRData:
def __init__(self, bp_policy: PowerPolicies, use_optimistic_cfr: bool):
self.use_optimistic_cfr = use_optimistic_cfr
self.sigma: ActionDict = {}
self.cum_sigma: ActionDict = defaultdict(float)
self.cum_regrets: ActionDict = defaultdict(float)
self.cum_utility: Dict[Power, float] = defaultdict(float)
self.bp_sigma: Optional[ActionDict] = defaultdict(float)
self.cum_weight = 0
self.power_plausible_orders: PlausibleOrders = {p: sorted(v) for p, v in bp_policy.items()}
if all(x <= 0 for y in bp_policy.values() for x in y.values()):
# this is a dummy policy, only the order keys should be used
self.bp_sigma = None
else:
for p, orders_to_prob in bp_policy.items():
if len(orders_to_prob) > 0 and abs(sum(orders_to_prob.values()) - 1) > 1e-3:
raise RuntimeError(f"Invalid policy for {p}: {orders_to_prob}")
for o, prob in orders_to_prob.items():
self.bp_sigma[(p, o)] = float(prob)
def strategy(self, pwr) -> List[float]:
actions = self.power_plausible_orders[pwr]
try:
return [self.sigma[(pwr, a)] for a in actions]
except KeyError:
return [1.0 / len(actions) for _ in actions]
def avg_strategy(self, pwr) -> List[float]:
actions = self.power_plausible_orders[pwr]
sigmas = [self.cum_sigma[(pwr, a)] for a in actions]
sum_sigmas = sum(sigmas)
if sum_sigmas == 0:
return [1 / len(actions) for _ in actions]
else:
return [s / sum_sigmas for s in sigmas]
def avg_utility(self, pwr):
return self.cum_utility[pwr] / self.cum_weight
def avg_action_utility(self, pwr, a):
return (self.cum_regrets[(pwr, a)] + self.cum_utility[pwr]) / self.cum_weight
def bp_strategy(self, pwr, temperature=1.0) -> List[float]:
if self.bp_sigma is None:
warnings.warn("Tried to access bp_strategy when a dummy bp policy was provided.")
return [-1.0] * len(self.power_plausible_orders[pwr])
actions = self.power_plausible_orders[pwr]
sigmas = [self.bp_sigma[(pwr, a)] ** (1.0 / temperature) for a in actions]
sum_sigmas = sum(sigmas)
assert len(actions) == 0 or sum_sigmas > 0, f"{actions} {self.bp_sigma}"
return [s / sum_sigmas for s in sigmas]
def discount_linear_cfr(self, cfr_iter):
discount_factor = (cfr_iter + 0.000001) / (cfr_iter + 1)
for pwr, actions in self.power_plausible_orders.items():
if len(actions) == 0:
continue
self.cum_utility[pwr] *= discount_factor
for action in actions:
self.cum_regrets[(pwr, action)] *= discount_factor
self.cum_sigma[(pwr, action)] *= discount_factor
# note: this isn't correct until update is called!
self.cum_weight = self.cum_weight * discount_factor + 1.0
def update(self, pwr, actions, state_utility, action_regrets, sigmas):
for action, regret, sigma in zip(actions, action_regrets, sigmas):
self.cum_regrets[(pwr, action)] += regret
self.cum_sigma[(pwr, action)] += sigma
self.cum_utility[pwr] += state_utility
if self.use_optimistic_cfr:
pos_regrets = [
max(0, self.cum_regrets[(pwr, a)] + regret)
for a, regret in zip(actions, action_regrets)
]
else:
pos_regrets = [max(0, self.cum_regrets[(pwr, a)]) for a in actions]
sum_pos_regrets = sum(pos_regrets)
if sum_pos_regrets == 0:
max_action = max(actions, key=lambda action: self.cum_regrets[(pwr, action)])
for action in actions:
self.sigma[(pwr, action)] = float(action == max_action)
else:
for action, pos_regret in zip(actions, pos_regrets):
self.sigma[(pwr, action)] = pos_regret / sum_pos_regrets
def sorted_policy(self, pwr, probs):
return dict(
sorted(zip(self.power_plausible_orders[pwr], probs), key=lambda ac_p: -ac_p[1])
)
class WeightedAverager:
def __init__(self):
self._cum = 0
self._weight = 0
self._count = 0
def accum(self, val, weight):
self._cum += val * weight
self._weight += weight
self._count += 1
def get_avg(self):
return self._cum / (self._weight + 1e-8)
def get_weight(self):
return self._weight
def get_count(self):
return self._count
class SearchBotAgent(BaseSearchAgent):
"""One-ply cfr with policy rollouts"""
def __init__(self, cfg: agents_cfgs.SearchBotAgent, *, skip_model_cache=False):
super().__init__(cfg)
self.model = ModelWrapper(
cfg.model_path,
cfg.device,
cfg.value_model_path,
cfg.max_batch_size,
half_precision=cfg.half_precision,
skip_model_cache=skip_model_cache,
)
self.model_rollouts = ModelRollouts(self.model, cfg.rollouts_cfg)
assert cfg.n_rollouts >= 0, "Set searchbot.n_rollouts"
self.n_rollouts = cfg.n_rollouts
self.cache_rollout_results = cfg.cache_rollout_results
self.precompute_cache = cfg.precompute_cache
self.enable_compute_nash_conv = cfg.enable_compute_nash_conv
self.n_plausible_orders = cfg.plausible_orders_cfg.n_plausible_orders
self.use_optimistic_cfr = cfg.use_optimistic_cfr
self.use_final_iter = cfg.use_final_iter
self.use_pruning = cfg.use_pruning
self.bp_iters = cfg.bp_iters
self.bp_prob = cfg.bp_prob
self.loser_bp_iter = cfg.loser_bp_iter
self.loser_bp_value = cfg.loser_bp_value
self.share_strategy = cfg.share_strategy
self.reset_seed_on_rollout = cfg.reset_seed_on_rollout
self.max_seconds = cfg.max_seconds
self.order_sampler = PlausibleOrderSampler(
cfg.plausible_orders_cfg, model=self.model
)
self.order_aug_cfg = cfg.order_aug
logging.info(f"Initialized SearchBotAgent: {self.__dict__}")
def get_orders(self, game, power) -> Action:
prob_distributions = self.get_all_power_prob_distributions(
game, early_exit_for_power=power
)
logging.info(f"Final strategy: {prob_distributions[power]}")
logging.info(
"JSON_PASRING played_strategy %s %s",
power,
json.dumps([(list(k), v) for k, v in prob_distributions[power].items()]),
)
if len(prob_distributions[power]) == 0:
return ()
return sample_p_dict(prob_distributions[power])
def get_orders_many_powers(
self, game, powers, timings=None, single_cfr=False, bp_policy=None
) -> JointAction:
if timings is None:
timings = TimingCtx()
if single_cfr is None:
single_cfr = self.share_strategy
with timings("get_orders_many_powers"):
# Noop to differentiate from single power call.
pass
prob_distributions: PowerPolicies = {}
if single_cfr:
inner_timings = TimingCtx()
prob_distributions = self.get_all_power_prob_distributions(
game, timings=inner_timings, bp_policy=bp_policy
)
timings += inner_timings
else:
for power in powers:
inner_timings = TimingCtx()
prob_distributions[power] = self.get_all_power_prob_distributions(
game,
early_exit_for_power=power,
timings=inner_timings,
bp_policy=bp_policy,
)[power]
timings += inner_timings
all_orders: JointAction = {}
for power in powers:
logging.info(f"Final strategy ({power}): {prob_distributions[power]}")
if len(prob_distributions[power]) == 0:
all_orders[power] = ()
else:
all_orders[power] = sample_p_dict(prob_distributions[power])
timings.pprint(logging.getLogger("timings").info)
return all_orders
def get_plausible_orders_policy(self, game):
# Determine the set of plausible actions to consider for each power
policy = self.order_sampler.sample_orders(game)
policy = augment_plausible_orders(
game,
policy,
self,
self.order_aug_cfg,
limits=self.order_sampler.get_plausible_order_limits(game),
)
return policy
def get_all_power_prob_distributions(
self,
game: pydipcc.Game,
*,
bp_policy: PowerPolicies = None,
early_exit_for_power: Optional[Power] = None,
timings: TimingCtx = None,
extra_plausible_orders=None,
) -> PowerPolicies:
"""
Computes an equilibrium policy for all powers.
Arguments:
- game: Game object encoding current game state.
- bp_policy: If set, overrides the plausible order set and blueprint policy for initialization.
Values should be probabilities, but can be set to -1 to simply specify plausible orders;
in that case, this function will raise an error if any feature uses the BP distribution (e.g. bp_iters > 0)
- early_exit_for_power: If set, then if this power has <= 1 plausible order, will exit early without computing a full equilibrium.
- timings: A TimingCtx object to measure timings
- extra_plausible_orders: Extra plausible orders to add to the model-computed set.
Returns:
- Equilibrium policy dict {power: {action: prob}}
"""
if timings is None:
timings = TimingCtx()
timings.start("one-time")
deadline: Optional[float] = (
time.monotonic() + self.max_seconds if self.max_seconds > 0 else None
)
# If there are no locations to order, bail
if early_exit_for_power and len(game.get_orderable_locations()[early_exit_for_power]) == 0:
return {early_exit_for_power: {tuple(): 1.0}}
if type(game) != pydipcc.Game:
game = pydipcc.Game.from_json(json.dumps(game.to_saved_game_format()))
# If this power has nothing to do, need to search
if early_exit_for_power and len(game.get_orderable_locations()[early_exit_for_power]) == 0:
return {early_exit_for_power: {tuple(): 1.0}}
logging.info(f"BEGINNING CFR get_all_power_prob_distributions")
rollout_results_cache = RolloutResultsCache()
if bp_policy is None:
bp_policy = self.get_plausible_orders_policy(game)
if extra_plausible_orders:
for p, orders in extra_plausible_orders.items():
bp_policy[p].update({order: 0 for order in orders})
logging.info(f"Adding extra plausible orders {p}: {orders}")
cfr_data = CFRData(bp_policy, self.use_optimistic_cfr)
del bp_policy
# If there are <=1 plausible orders, no need to search
if (
early_exit_for_power
and len(cfr_data.power_plausible_orders[early_exit_for_power]) == 0
):
return {early_exit_for_power: {tuple(): 1.0}}
if (
early_exit_for_power
and len(cfr_data.power_plausible_orders[early_exit_for_power]) == 1
):
return {
early_exit_for_power: {
list(cfr_data.power_plausible_orders[early_exit_for_power]).pop(): 1.0
}
}
if self.enable_compute_nash_conv:
logging.info("Computing nash conv for blueprint")
for temperature in (1.0, 0.5, 0.1, 0.01):
self.compute_nash_conv(
cfr_data,
f"blueprint T={temperature}",
game,
lambda power: cfr_data.bp_strategy(power, temperature=temperature),
)
def on_miss(set_orders_dicts):
nonlocal timings
inner_timings = TimingCtx()
ret = self.model_rollouts.do_rollouts(
game, set_orders_dicts, timings=inner_timings, log_timings=False
)
timings += inner_timings
return ret
# run rollouts or get from cache
if self.cache_rollout_results and self.precompute_cache:
num_active_powers = sum(
len(actions) > 1 for actions in cfr_data.power_plausible_orders.values()
)
if num_active_powers > 2:
logging.warning(
"Disabling precomputation of the CFR cache as have %d > 2 active powers",
num_active_powers,
)
else:
verbose_log_iter = False # Hack: this is used in on_miss
joint_orders = sample_all_joint_orders(cfr_data.power_plausible_orders)
rollout_results_cache.get(joint_orders, on_miss)
sampled_action_history = []
rollout_result_history = []
power_is_loser = {} # make typechecker happy
for cfr_iter in range(self.n_rollouts):
if cfr_iter > 0 and deadline is not None and time.monotonic() >= deadline:
logging.info(f"Early exit from CFR after {cfr_iter} iterations by timeout")
break
timings.start("start")
# do verbose logging on 2^x iters
verbose_log_iter = (
(cfr_iter & (cfr_iter + 1) == 0 and cfr_iter > self.n_rollouts / 8)
or cfr_iter == self.n_rollouts - 1
or (cfr_iter + 1) == self.bp_iters
)
self.maybe_do_pruning(cfr_iter=cfr_iter, cfr_data=cfr_data)
cfr_data.discount_linear_cfr(cfr_iter)
timings.start("query_policy")
# get policy probs for all powers
power_is_loser = {
pwr: self.is_loser(cfr_data, pwr, cfr_iter, actions)
for (pwr, actions) in cfr_data.power_plausible_orders.items()
}
power_action_ps: Dict[Power, List[float]] = {
pwr: (
cfr_data.bp_strategy(pwr)
if (
cfr_iter < self.bp_iters
or np.random.rand() < self.bp_prob
or power_is_loser[pwr]
)
else cfr_data.strategy(pwr)
)
for (pwr, actions) in cfr_data.power_plausible_orders.items()
}
timings.start("apply_orders")
# sample policy for all powers
idxs, power_sampled_orders = sample_orders_from_policy(
cfr_data.power_plausible_orders, power_action_ps
)
sampled_action_history.append(power_sampled_orders)
set_orders_dicts = make_set_orders_dicts(
cfr_data.power_plausible_orders, power_sampled_orders
)
timings.stop()
all_rollout_results = (
rollout_results_cache.get(set_orders_dicts, on_miss)
if self.cache_rollout_results
else on_miss(set_orders_dicts)
)
timings.start("cfr")
for pwr, actions in cfr_data.power_plausible_orders.items():
if len(actions) == 0:
continue
# pop this power's results
results, all_rollout_results = (
all_rollout_results[: len(actions)],
all_rollout_results[len(actions) :],
)
rollout_result_history.append((cfr_iter, pwr, results))
# logging.info(f"Results {pwr} = {results}")
# calculate regrets
action_utilities: List[float] = [r[1][pwr] for r in results]
state_utility: float = np.dot(power_action_ps[pwr], action_utilities)
action_regrets = [(u - state_utility) for u in action_utilities]
# log some action values
if verbose_log_iter:
self.log_cfr_iter_state(
game=game,
pwr=pwr,
actions=actions,
cfr_data=cfr_data,
cfr_iter=cfr_iter,
power_is_loser=power_is_loser,
state_utility=state_utility,
action_utilities=action_utilities,
power_sampled_orders=power_sampled_orders,
)
# update cfr data structures
# FIXME: shouldn't this happen before `log_cfr_iter_state`? (not a big deal)
cfr_data.update(
pwr, actions, state_utility, action_regrets, cfr_data.strategy(pwr)
)
if self.enable_compute_nash_conv and verbose_log_iter:
logging.info(f"Computing nash conv for iter {cfr_iter}")
self.compute_nash_conv(
cfr_data, f"cfr iter {cfr_iter}", game, cfr_data.avg_strategy
)
if self.cache_rollout_results and (cfr_iter + 1) % 10 == 0:
logging.info(f"{rollout_results_cache}")
timings.start("to_dict")
# return prob. distributions for each power
ret = {}
for p in POWERS:
final_ps = cfr_data.strategy(p)
avg_ps = cfr_data.avg_strategy(p)
bp_ps = cfr_data.bp_strategy(p)
ps = bp_ps if power_is_loser[p] else (final_ps if self.use_final_iter else avg_ps)
ret[p] = cfr_data.sorted_policy(p, ps)
logging.info(
"Values: %s", {p: f"{x:.3f}" for p, x in zip(POWERS, self.model.get_values(game))}
)
timings.stop()
timings.pprint(logging.getLogger("timings").info)
return ret
def maybe_do_pruning(self, *, cfr_iter, **kwargs):
if not self.use_pruning:
return
if cfr_iter == 1 + int(self.n_rollouts / 4):
self.prune_actions(
cfr_iter=cfr_iter, ave_regret_thresh=-0.06, ave_strat_thresh=0.002, **kwargs
)
if cfr_iter == 1 + int(self.n_rollouts / 2):
self.prune_actions(
cfr_iter=cfr_iter, ave_regret_thresh=-0.03, ave_strat_thresh=0.001, **kwargs
)
@classmethod
def prune_actions(cls, *, cfr_iter, cfr_data, ave_regret_thresh, ave_strat_thresh):
for pwr, actions in cfr_data.power_plausible_orders.items():
paired_list = []
for action in actions:
ave_regret = cfr_data.cum_regrets[(pwr, action)] / cfr_data.cum_weight
new_pair = (action, ave_regret)
paired_list.append(new_pair)
paired_list.sort(key=lambda tup: tup[1])
for (action, ave_regret) in paired_list:
ave_strat = cfr_data.cum_sigma[(pwr, action)] / cfr_data.cum_weight
if (
ave_regret < ave_regret_thresh
and ave_strat < ave_strat_thresh
and cfr_data.sigma[(pwr, action)] == 0
):
cfr_data.cum_sigma[(pwr, action)] = 0
logging.info(
"pruning on iter {} action {} with ave regret {} and ave strat {}".format(
cfr_iter, action, ave_regret, ave_strat
)
)
actions.remove(action)
def log_cfr_iter_state(
self,
*,
game,
pwr,
actions,
cfr_data,
cfr_iter,
power_is_loser,
state_utility,
action_utilities,
power_sampled_orders,
):
logging.info(
f"<> [ {cfr_iter+1} / {self.n_rollouts} ] {pwr} {game.phase} avg_utility={cfr_data.avg_utility(pwr):.5f} cur_utility={state_utility:.5f} "
f"is_loser= {int(power_is_loser[pwr])}"
)
logging.info(f">> {pwr} cur action at {cfr_iter+1}: {power_sampled_orders[pwr]}")
logging.info(f" {'probs':8s} {'bp_p':8s} {'avg_u':8s} {'cur_u':8s} orders")
action_probs: List[float] = cfr_data.avg_strategy(pwr)
bp_probs: List[float] = cfr_data.bp_strategy(pwr)
avg_utilities = [cfr_data.avg_action_utility(pwr, a) for a in actions]
sorted_metrics = sorted(
zip(actions, action_probs, bp_probs, avg_utilities, action_utilities),
key=lambda ac: -ac[1],
)
for orders, p, bp_p, avg_u, cur_u in sorted_metrics:
logging.info(f"|> {p:8.5f} {bp_p:8.5f} {avg_u:8.5f} {cur_u:8.5f} {orders}")
def compute_nash_conv(self, cfr_data, label, game, strat_f):
"""For each power, compute EV of each action assuming opponent ave policies"""
# get policy probs for all powers
power_action_ps: Dict[Power, List[float]] = {
pwr: strat_f(pwr) for (pwr, actions) in cfr_data.power_plausible_orders.items()
}
logging.info("Policies: {}".format(power_action_ps))
total_action_utilities: Dict[Tuple[Power, Action], float] = defaultdict(float)
temp_action_utilities: Dict[Tuple[Power, Action], float] = defaultdict(float)
total_state_utility: Dict[Power, float] = defaultdict(float)
max_state_utility: Dict[Power, float] = defaultdict(float)
for pwr, actions in cfr_data.power_plausible_orders.items():
total_state_utility[pwr] = 0
max_state_utility[pwr] = 0
# total_state_utility = [0 for u in idxs]
nash_conv = 0
br_iters = 100
for _ in range(br_iters):
# sample policy for all powers
idxs, power_sampled_orders = sample_orders_from_policy(
cfr_data.power_plausible_orders, power_action_ps
)
# for each power: compare all actions against sampled opponent action
set_orders_dicts = make_set_orders_dicts(
cfr_data.power_plausible_orders, power_sampled_orders
)
all_rollout_results = self.model_rollouts.do_rollouts(game, set_orders_dicts)
for pwr, actions in cfr_data.power_plausible_orders.items():
if len(actions) == 0:
continue
# pop this power's results
results, all_rollout_results = (
all_rollout_results[: len(actions)],
all_rollout_results[len(actions) :],
)
for r in results:
action = r[0][pwr]
val = r[1][pwr]
temp_action_utilities[(pwr, action)] = val
total_action_utilities[(pwr, action)] += val
# logging.info("results for power={}".format(pwr))
# for i in range(len(cfr_data.power_plausible_orders[pwr])):
# action = cfr_data.power_plausible_orders[pwr][i]
# util = action_utilities[i]
# logging.info("{} {} = {}".format(pwr,action,util))
# for action in cfr_data.power_plausible_orders[pwr]:
# logging.info("{} {} = {}".format(pwr,action,action_utilities))
# logging.info("action utilities={}".format(action_utilities))
# logging.info("Results={}".format(results))
# state_utility = np.dot(power_action_ps[pwr], action_utilities)
# action_regrets = [(u - state_utility) for u in action_utilities]
# logging.info("Action utilities={}".format(temp_action_utilities))
# for action in actions:
# total_action_utilities[(pwr,action)] += temp_action_utilities[(pwr,action)]
# logging.info("Total action utilities={}".format(total_action_utilities))
# total_state_utility[pwr] += state_utility
# total_state_utility[:] = [x / 100 for x in total_state_utility]
for pwr, actions in cfr_data.power_plausible_orders.items():
# ps = self.avg_strategy(pwr, cfr_data.power_plausible_orders[pwr])
for i in range(len(actions)):
action = actions[i]
total_action_utilities[(pwr, action)] /= br_iters
if total_action_utilities[(pwr, action)] > max_state_utility[pwr]:
max_state_utility[pwr] = total_action_utilities[(pwr, action)]
total_state_utility[pwr] += (
total_action_utilities[(pwr, action)] * power_action_ps[pwr][i]
)
for pwr, actions in cfr_data.power_plausible_orders.items():
logging.info(
"results for power={} value={} diff={}".format(
pwr,
total_state_utility[pwr],
(max_state_utility[pwr] - total_state_utility[pwr]),
)
)
nash_conv += max_state_utility[pwr] - total_state_utility[pwr]
for i in range(len(actions)):
action = actions[i]
logging.info(
"{} {} = {} (prob {})".format(
pwr, action, total_action_utilities[(pwr, action)], power_action_ps[pwr][i]
)
)
logging.info(f"Nash conv for {label} = {nash_conv}")
def eval_policy_values(
self, game: pydipcc.Game, policy: PowerPolicies, n_rollouts: int = 1000,
) -> Dict[Power, float]:
"""Compute the EV of a {pwr: policy} dict at a state by running `n_rollouts rollouts.
Returns:
- {power: avg_sos}
"""
power_actions = {pwr: list(p.keys()) for pwr, p in policy.items()}
power_action_probs = {pwr: list(p.values()) for pwr, p in policy.items()}
set_orders_dicts = [
sample_orders_from_policy(power_actions, power_action_probs)[1]
for _i in range(n_rollouts)
]
rollout_results = self.model_rollouts.do_rollouts(game, set_orders_dicts)
def mean(L: List[float]):
return sum(L) / len(L)
utilities = {
pwr: mean([values[pwr] for order, values in rollout_results]) for pwr in POWERS
}
return utilities
def is_loser(self, cfr_data, pwr, cfr_iter, plausible_orders):
if cfr_iter >= self.loser_bp_iter and self.loser_bp_value > 0:
for action in plausible_orders:
if cfr_data.avg_action_utility(pwr, action) > self.loser_bp_value:
return False
return True
return False
class RolloutResultsCache:
def __init__(self):
self.cache = {}
self.hits = 0
self.calls = 0
def get(
self, set_orders_dicts: List[Dict[Power, Action]], onmiss_fn
) -> List[Tuple[Dict[Power, Action], Dict[Power, float]]]:
joint_actions = tuple(frozenset(d.items()) for d in set_orders_dicts)
n_unique = len(frozenset(joint_actions))
self.calls += n_unique
unknown_order_dicts = [
set_orders_dicts[i]
for i, joint_action in enumerate(joint_actions)
if joint_action not in self.cache
]
# Minor optimization. Orders may have duplicates.
unknown_order_dicts = list({frozenset(x.items()): x for x in unknown_order_dicts}.values())
self.hits += n_unique - len(unknown_order_dicts)
for r in onmiss_fn(unknown_order_dicts):
set_order_dict, _ = r
joint_action = frozenset(set_order_dict.items())
self.cache[joint_action] = r
results = [self.cache[joint_action] for joint_action in joint_actions]
return results
def __repr__(self):
return "RolloutResultsCache[hits/calls = {} / {} = {:.3f}]".format(
self.hits, self.calls, self.hits / self.calls
)
def augment_plausible_orders(
game: pydipcc.Game,
power_plausible_orders: PowerPolicies,
agent: SearchBotAgent,
cfg: agents_cfgs.SearchBotAgent.PlausibleOrderAugmentation,
*,
limits: Optional[List[int]],
) -> PowerPolicies:
policy_model = agent.model.model
augmentation_type = cfg.WhichOneof("augmentation_type")
if augmentation_type is None:
return power_plausible_orders
if not game.current_short_phase.endswith("M"):
# FIXME(akhti): maybe add a flag for this.
return power_plausible_orders
cfg = getattr(cfg, augmentation_type)
if augmentation_type == "do":
policy, _ = fairdiplomacy.action_exploration.double_oracle_fva(
game, agent, double_oracle_cfg=cfg
)
return policy
assert augmentation_type == "random"
# Creating a copy.
power_plausible_orders = dict(power_plausible_orders)
alive_powers = [p for p, score in zip(POWERS, game.get_square_scores()) if score > 1e-3]
for power in alive_powers:
actions = fairdiplomacy.action_generation.generate_order_by_column_from_model(
policy_model, game, power
)
logging.info(
"Found %s actions for %s. Not in plausible: %s",
len(actions),
power,
len(frozenset(actions).difference(power_plausible_orders[power])),
)
max_actions = limits[POWERS.index(power)]
# Creating space for new orders.
orig_size = len(power_plausible_orders[power])
power_plausible_orders[power] = dict(
collections.Counter(power_plausible_orders[power]).most_common(
max(cfg.min_actions_to_keep, max_actions - cfg.max_actions_to_drop)
)
)
random.shuffle(actions)
logging.info("Addding extra plausible orders for %s", power)
if orig_size != len(power_plausible_orders[power]):
logging.info(
" (deleted %d least probable actions)",
orig_size - len(power_plausible_orders[power]),
)
for action in actions:
if len(power_plausible_orders[power]) >= max_actions:
break
if action not in power_plausible_orders[power]:
power_plausible_orders[power][action] = 0
logging.info(" %s", action)
renormalize_policy(power_plausible_orders)
return power_plausible_orders
def sample_all_joint_orders(power_actions: Dict[Power, List[Action]]) -> List[Dict[Power, Action]]:
power_actions = dict(power_actions)
for pwr in list(power_actions):
if not power_actions[pwr]:
power_actions[pwr] = [tuple()]
all_orders = []
powers, action_sets = zip(*power_actions.items())
for joint_action in itertools.product(*action_sets):
all_orders.append(dict(zip(powers, joint_action)))
return all_orders