This repository has been archived by the owner on Oct 31, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathdiplomacy_model.py
1326 lines (1162 loc) · 51.3 KB
/
diplomacy_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
from typing import Tuple, Optional, Union
import logging
import math
import numpy as np
import torch
import torch.nn.functional as F
from torch import nn
from torch.distributions.categorical import Categorical
from fairdiplomacy.models.consts import POWERS, LOCS, LOGIT_MASK_VAL, MAX_SEQ_LEN, N_SCS
from fairdiplomacy.utils.cat_pad_sequences import cat_pad_sequences
from fairdiplomacy.utils.padded_embedding import PaddedEmbedding
from fairdiplomacy.utils.timing_ctx import TimingCtx
from fairdiplomacy.utils.order_idxs import local_order_idxs_to_global
from fairdiplomacy.models.diplomacy_model.order_vocabulary import get_order_vocabulary, EOS_IDX
EOS_TOKEN = get_order_vocabulary()[EOS_IDX]
# If teacher forcing orders have this id, then a sampled order will be used for
# this position.
NO_ORDER_ID = -2
class DiplomacyModel(nn.Module):
def __init__(
self,
*,
board_state_size, # 35
# prev_orders_size, # 40
inter_emb_size, # 120
power_emb_size, # 60
season_emb_size, # 20,
num_blocks, # 16
A, # 81x81
master_alignments,
orders_vocab_size, # 13k
lstm_size, # 200
order_emb_size, # 80
prev_order_emb_size, # 20
lstm_dropout=0,
lstm_layers=1,
encoder_dropout=0,
value_dropout,
learnable_A=False,
learnable_alignments=False,
use_simple_alignments=False,
avg_embedding=False,
value_decoder_init_scale=1.0,
featurize_output=False,
relfeat_output=False,
featurize_prev_orders=False,
residual_linear=False,
merged_gnn=False,
encoder_layerdrop=0,
value_softmax=False,
separate_value_encoder=False,
use_global_pooling=False,
encoder_cfg=None,
pad_spatial_size_to_multiple=1,
all_powers,
has_policy=True,
has_value=True,
):
super().__init__()
self.orders_vocab_size = orders_vocab_size
self.featurize_prev_orders = featurize_prev_orders
self.prev_order_enc_size = prev_order_emb_size
if has_policy and featurize_prev_orders:
order_feats, _srcs, _dsts = compute_order_features()
self.register_buffer("order_feats", order_feats)
self.prev_order_enc_size += self.order_feats.shape[-1]
self.separate_value_encoder = separate_value_encoder
self.value_encoder = None
self.has_policy = has_policy
self.has_value = has_value
self.spatial_size = A.size()[0]
encoder_kind = encoder_cfg.WhichOneof("encoder")
if encoder_kind == "transformer":
if pad_spatial_size_to_multiple > 1:
self.spatial_size = (
(self.spatial_size + pad_spatial_size_to_multiple - 1)
// pad_spatial_size_to_multiple
* pad_spatial_size_to_multiple
)
encoder_cfg = getattr(encoder_cfg, encoder_kind)
encoder_kwargs = dict(
board_state_size=board_state_size + len(POWERS) + season_emb_size + 1,
prev_orders_size=board_state_size
+ self.prev_order_enc_size
+ len(POWERS)
+ season_emb_size
+ 1,
spatial_size=self.spatial_size,
inter_emb_size=inter_emb_size,
encoder_cfg=encoder_cfg,
)
if has_policy or has_value and not separate_value_encoder:
self.encoder = TransformerEncoder(**encoder_kwargs)
if has_value and separate_value_encoder:
self.value_encoder = TransformerEncoder(**encoder_kwargs)
elif encoder_kind is None: # None == graph encoder
if pad_spatial_size_to_multiple > 1:
raise ValueError(
"pad_spatial_size_to_multiple > 1 not supported for graph conv encoder"
)
encoder_kwargs = dict(
board_state_size=board_state_size + len(POWERS) + season_emb_size + 1,
prev_orders_size=board_state_size
+ self.prev_order_enc_size
+ len(POWERS)
+ season_emb_size
+ 1,
inter_emb_size=inter_emb_size,
num_blocks=num_blocks,
A=A,
dropout=encoder_dropout,
learnable_A=learnable_A,
residual_linear=residual_linear,
merged_gnn=merged_gnn,
layerdrop=encoder_layerdrop,
use_global_pooling=use_global_pooling,
)
if has_policy or has_value and not separate_value_encoder:
self.encoder = DiplomacyModelEncoder(**encoder_kwargs)
if has_value and separate_value_encoder:
self.value_encoder = DiplomacyModelEncoder(**encoder_kwargs)
else:
assert False
if has_policy:
self.policy_decoder = LSTMDiplomacyModelDecoder(
inter_emb_size=inter_emb_size,
spatial_size=self.spatial_size,
orders_vocab_size=orders_vocab_size,
lstm_size=lstm_size,
order_emb_size=order_emb_size,
lstm_dropout=lstm_dropout,
lstm_layers=lstm_layers,
master_alignments=master_alignments,
learnable_alignments=learnable_alignments,
use_simple_alignments=use_simple_alignments,
avg_embedding=avg_embedding,
power_emb_size=power_emb_size,
featurize_output=featurize_output,
relfeat_output=relfeat_output,
)
if has_value:
self.value_decoder = ValueDecoder(
inter_emb_size=inter_emb_size,
spatial_size=self.spatial_size,
init_scale=value_decoder_init_scale,
dropout=value_dropout,
softmax=value_softmax,
)
# These are used by both value and policy, regardless of separate_value_encoder
self.season_lin = nn.Linear(3, season_emb_size)
self.prev_order_embedding = nn.Embedding(
orders_vocab_size, prev_order_emb_size, padding_idx=0
)
self.all_powers = all_powers
def forward(
self,
*,
x_board_state,
x_prev_state,
x_prev_orders,
x_season,
x_in_adj_phase,
x_build_numbers,
x_loc_idxs,
x_possible_actions,
temperature,
top_p=1.0,
batch_repeat_interleave=None,
teacher_force_orders=None,
x_power=None,
need_policy=True,
need_value=True,
pad_to_max=False,
x_scoring_system=None,
x_year_encoded=None,
) -> Tuple[
Optional[torch.Tensor],
Optional[torch.Tensor],
Optional[torch.Tensor],
Optional[torch.Tensor],
]:
"""
TODO(alerer): fix the docs.
Arguments:
- x_bo: [B, 81, 35]
- x_pb: [B, 2, 100], long
- x_po: [B, 81, 40]
- x_season_1h: [B, 3]
- in_adj_phase: [B], bool
- x_build_numbers: [B, 7]
- loc_idxs: int8, [B, 81] or [B, 7, 81]
- all_cand_idxs: long, [B, S, 469] or [B, 7, S, 469]
- temperature: softmax temp, lower = more deterministic; must be either
a float or a tensor of [B, 1]
- top_p: probability mass to samples from, lower = more spiky; must
be either a float or a tensor of [B, 1]
- batch_repeat_interleave: if set to a value k, will behave as if [B] dimension was
was actually [B*k] in size, with each element repeated k times
(e.g. [1,2,3] k=2 -> [1,1,2,2,3,3]), on all tensors EXCEPT teacher_force_orders
- teacher_force_orders: [B, S] or [B, num_samples, S] long or None,
ORDER idxs, NOT candidate idxs, 0-padded. If batch_repeat_interleave is None,
then the first form expected. Otherwise, the shape is expected
with num_samples == batch_repeat_interleave.
- x_power: [B, S] long, [B, 7, S] long, or None
- need_policy: if not set, global_order_idxs, local_order_idxs, and logits will be None.
- need_value: if not set, final_sos in Result will be None
- pad_to_max, if set, will pad all output tensors to [..., MAX_SEQ_LEN, 469]. Use that
to make torch.nn.DataPatallel to work.
if x_power is None or [B, 7, 34] Long, the model will decode for all 7 powers.
- loc_idxs, all_cand_idxs, and teacher_force_orders must have an
extra axis at dim=1 with size 7
- global_order_idxs and order_scores will be returned with an extra axis
at dim=1 with size 7
- if x_power is [B, 7, 34] Long, non-A phases are expected to be encoded in [:,0,:]
else x_power must be [B, S] Long and only one power's sequence will be decoded
Returns:
- global_order_idxs [B, S] or [B, 7, S]: idx in ORDER_VOCABULARY of sampled
orders for each power
- local_order_idxs [B, S] or [B, 7, S]: idx in all_cand_idxs of sampled
orders for each power
- logits [B, S, C] or [B, 7, S, C]: masked pre-softmax logits of each
candidate order, 0 < S <= 17, 0 < C <= 469
- final_sos [B, 7]: estimated sum of squares share for each power
"""
del x_scoring_system # Not used.
del x_year_encoded # Not used.
# following https://arxiv.org/pdf/2006.04635.pdf , Appendix C
B, NUM_LOCS, _ = x_board_state.shape
# Preemptively make sure that dtypes of things match, to try to limit the chance of bugs
# if the inputs were built in an ad-hoc way when are trying to run in fp16.
assert x_board_state.dtype == x_prev_state.dtype
assert x_board_state.dtype == x_build_numbers.dtype
assert x_board_state.dtype == x_season.dtype
assert not (need_policy and not self.has_policy)
assert not (need_value and not self.has_value)
assert need_policy or need_value
# A. get season and prev order embs
x_season_emb = self.season_lin(x_season)
x_prev_order_emb = self.prev_order_embedding(x_prev_orders[:, 0])
if self.featurize_prev_orders:
x_prev_order_emb = torch.cat(
(x_prev_order_emb, self.order_feats[x_prev_orders[:, 0]]), dim=-1
)
# B. insert the prev orders into the correct board location (which is in the second column of x_po)
x_prev_order_exp = x_board_state.new_zeros(B, NUM_LOCS, self.prev_order_enc_size)
prev_order_loc_idxs = torch.arange(B, device=x_board_state.device).repeat_interleave(
x_prev_orders.shape[-1]
) * NUM_LOCS + x_prev_orders[:, 1].reshape(-1)
x_prev_order_exp.view(-1, self.prev_order_enc_size).index_add_(
0, prev_order_loc_idxs, x_prev_order_emb.view(-1, self.prev_order_enc_size)
)
# concatenate the subcomponents into board state and prev state, following the paper
x_build_numbers_exp = x_build_numbers[:, None].expand(-1, NUM_LOCS, -1)
x_season_emb_exp = x_season_emb[:, None].expand(-1, NUM_LOCS, -1)
vestigial_zeros = torch.zeros((B, NUM_LOCS, 1), device=x_board_state.device)
x_bo_hat = torch.cat(
(x_board_state, x_build_numbers_exp, x_season_emb_exp, vestigial_zeros), dim=-1
)
x_po_hat = torch.cat(
(
x_prev_state,
x_prev_order_exp,
x_build_numbers_exp,
x_season_emb_exp,
vestigial_zeros,
),
dim=-1,
)
assert x_bo_hat.size()[1] == x_po_hat.size()[1]
if self.spatial_size != x_bo_hat.size()[1]:
# pad (batch, 81, channels) -> (batch, spatial_size, channels)
assert self.spatial_size > x_bo_hat.size()[1]
assert len(x_bo_hat.size()) == 3
x_bo_hat = F.pad(x_bo_hat, (0, 0, 0, self.spatial_size - x_bo_hat.size()[1]))
if self.spatial_size != x_po_hat.size()[1]:
# pad (batch, 81, channels) -> (batch, spatial_size, channels)
assert self.spatial_size > x_po_hat.size()[1]
assert len(x_po_hat.size()) == 3
x_po_hat = F.pad(x_po_hat, (0, 0, 0, self.spatial_size - x_po_hat.size()[1]))
if need_policy:
encoded_for_policy = self.encoder(x_bo_hat, x_po_hat)
else:
encoded_for_policy = None
if need_value:
if self.separate_value_encoder:
encoded_for_value = self.value_encoder(x_bo_hat, x_po_hat)
elif encoded_for_policy is not None:
encoded_for_value = encoded_for_policy
else:
encoded_for_value = self.encoder(x_bo_hat, x_po_hat)
else:
encoded_for_value = None
if encoded_for_value is not None:
final_sos = self.value_decoder(encoded_for_value)
if batch_repeat_interleave is not None:
final_sos = torch.repeat_interleave(final_sos, batch_repeat_interleave, dim=0)
else:
final_sos = None
all_powers = x_power is not None and len(x_power.shape) == 3
if not need_policy:
global_order_idxs = local_order_idxs = logits = None
elif x_power is None or all_powers:
global_order_idxs, local_order_idxs, logits = self.forward_all_powers(
enc=encoded_for_policy,
in_adj_phase=x_in_adj_phase,
loc_idxs=x_loc_idxs,
cand_idxs=x_possible_actions,
temperature=temperature,
top_p=top_p,
batch_repeat_interleave=batch_repeat_interleave,
teacher_force_orders=teacher_force_orders,
power=x_power,
)
else:
global_order_idxs, local_order_idxs, logits = self.forward_one_power(
enc=encoded_for_policy,
in_adj_phase=x_in_adj_phase,
loc_idxs=x_loc_idxs,
cand_idxs=x_possible_actions,
temperature=temperature,
top_p=top_p,
batch_repeat_interleave=batch_repeat_interleave,
teacher_force_orders=teacher_force_orders,
power=x_power,
)
if pad_to_max and need_policy:
max_seq_len = N_SCS if all_powers else MAX_SEQ_LEN
global_order_idxs = _pad_last_dims(global_order_idxs, [max_seq_len], EOS_IDX)
local_order_idxs = _pad_last_dims(local_order_idxs, [max_seq_len], EOS_IDX)
logits = _pad_last_dims(logits, [max_seq_len, 469], LOGIT_MASK_VAL)
return global_order_idxs, local_order_idxs, logits, final_sos
def forward_one_power(
self,
*,
enc,
in_adj_phase,
loc_idxs,
cand_idxs,
power,
temperature,
top_p,
batch_repeat_interleave,
teacher_force_orders,
):
assert len(loc_idxs.shape) == 2, loc_idxs.shape
assert len(cand_idxs.shape) == 3, cand_idxs.shape
if batch_repeat_interleave is not None:
if teacher_force_orders is not None:
assert (
teacher_force_orders.shape[1] == batch_repeat_interleave
), teacher_force_orders.shape
teacher_force_orders = teacher_force_orders.view(
-1, *teacher_force_orders.shape[2:]
)
(
enc,
in_adj_phase,
loc_idxs,
cand_idxs,
power,
temperature,
top_p,
) = apply_batch_repeat_interleave(
(enc, in_adj_phase, loc_idxs, cand_idxs, power, temperature, top_p,),
batch_repeat_interleave,
)
global_order_idxs, local_order_idxs, logits = self.policy_decoder(
enc,
in_adj_phase,
loc_idxs,
cand_idxs,
temperature=temperature,
top_p=top_p,
teacher_force_orders=teacher_force_orders,
power=power,
)
return global_order_idxs, local_order_idxs, logits
def forward_all_powers(
self,
*,
enc,
in_adj_phase,
loc_idxs,
cand_idxs,
temperature,
teacher_force_orders,
top_p,
batch_repeat_interleave,
log_timings=False,
power=None,
):
timings = TimingCtx()
assert len(loc_idxs.shape) == 3
assert len(cand_idxs.shape) == 4
with timings("policy_decoder_prep"):
if batch_repeat_interleave is not None:
if teacher_force_orders is not None:
assert (
teacher_force_orders.shape[1] == batch_repeat_interleave
), teacher_force_orders.shape
teacher_force_orders = teacher_force_orders.view(
-1, *teacher_force_orders.shape[2:]
)
(
enc,
in_adj_phase,
loc_idxs,
cand_idxs,
power,
temperature,
top_p,
) = apply_batch_repeat_interleave(
(enc, in_adj_phase, loc_idxs, cand_idxs, power, temperature, top_p,),
batch_repeat_interleave,
)
NPOWERS = len(POWERS)
enc_repeat = enc.repeat_interleave(NPOWERS, dim=0)
in_adj_phase = in_adj_phase.repeat_interleave(NPOWERS, dim=0)
loc_idxs = loc_idxs.view(-1, loc_idxs.shape[2])
cand_idxs = cand_idxs.view(-1, *cand_idxs.shape[2:])
temperature = repeat_interleave_if_tensor(temperature, NPOWERS, dim=0)
top_p = repeat_interleave_if_tensor(top_p, NPOWERS, dim=0)
teacher_force_orders = (
teacher_force_orders.view(-1, *teacher_force_orders.shape[2:])
if teacher_force_orders is not None
else None
)
if power is None:
# N.B. use repeat, not repeat_interleave, for power only. Each
# batch is contiguous, and we want a sequence of power idxs for each batch
power = (
torch.arange(NPOWERS, device=enc.device)
.view(-1, 1)
.repeat(enc.shape[0], cand_idxs.shape[1])
)
else:
# This is all-powers encoding: validate shape and use power idxs from input
assert len(power.shape) == 3, power.shape
assert power.shape[1] == NPOWERS, power.shape
assert power.shape[2] == N_SCS, power.shape
power = power.view(-1, N_SCS)
with timings("policy_decoder"):
# [B, 17, 469] -> [B, 17].
valid_mask = (cand_idxs != EOS_IDX).any(dim=-1)
# [B, 17] -> [B].
phase_has_orders = valid_mask.any(-1)
def pack(maybe_tensor):
if isinstance(maybe_tensor, torch.Tensor):
return maybe_tensor[phase_has_orders]
return maybe_tensor
def unpack(tensor, fill_value):
B = len(phase_has_orders)
new_tensor = tensor.new_full((B,) + tensor.shape[1:], fill_value)
new_tensor[phase_has_orders] = tensor
return new_tensor
# FIXME(akhti): it is faster to do the packing at the same time as
# we are doing repeating.
enc_repeat = pack(enc_repeat)
in_adj_phase = pack(in_adj_phase)
loc_idxs = pack(loc_idxs)
cand_idxs = pack(cand_idxs)
power = pack(power)
temperature = pack(temperature)
top_p = pack(top_p)
teacher_force_orders = pack(teacher_force_orders)
global_order_idxs, local_order_idxs, logits = self.policy_decoder(
enc_repeat,
in_adj_phase,
loc_idxs,
cand_idxs,
temperature=temperature,
top_p=top_p,
teacher_force_orders=teacher_force_orders,
power=power,
)
global_order_idxs = unpack(global_order_idxs, EOS_IDX)
local_order_idxs = unpack(local_order_idxs, EOS_IDX)
logits = unpack(logits, LOGIT_MASK_VAL)
with timings("finish"):
# reshape
valid_mask = valid_mask.view(-1, NPOWERS, *valid_mask.shape[1:])
global_order_idxs = global_order_idxs.view(-1, NPOWERS, *global_order_idxs.shape[1:])
local_order_idxs = local_order_idxs.view(-1, NPOWERS, *local_order_idxs.shape[1:])
logits = logits.view(-1, NPOWERS, *logits.shape[1:])
# mask out garbage outputs
eos_fill = torch.empty_like(global_order_idxs, requires_grad=False).fill_(EOS_IDX)
global_order_idxs = torch.where(valid_mask, global_order_idxs, eos_fill)
local_order_idxs = torch.where(valid_mask, local_order_idxs, eos_fill)
if log_timings:
logging.debug(f"Timings[model, B={enc.shape[0]}]: {timings}")
return global_order_idxs, local_order_idxs, logits
def compute_alignments(loc_idxs, step, A):
alignments = torch.matmul(((loc_idxs == step) | (loc_idxs == -2)).to(A.dtype), A)
alignments /= torch.sum(alignments, dim=1, keepdim=True) + 1e-5
# alignments = torch.where(
# torch.isnan(alignments), torch.zeros_like(alignments), alignments
# )
return alignments
def repeat_interleave_if_tensor(x, reps, dim):
if hasattr(x, "repeat_interleave"):
return x.repeat_interleave(reps, dim=dim)
return x
def apply_batch_repeat_interleave(tensors, batch_repeat_interleave):
return tuple(
repeat_interleave_if_tensor(tensor, batch_repeat_interleave, dim=0) for tensor in tensors
)
class LSTMDiplomacyModelDecoder(nn.Module):
def __init__(
self,
*,
inter_emb_size,
spatial_size,
orders_vocab_size,
lstm_size,
order_emb_size,
lstm_dropout,
lstm_layers,
master_alignments,
learnable_alignments=False,
use_simple_alignments=False,
avg_embedding=False,
power_emb_size,
featurize_output=False,
relfeat_output=False,
):
super().__init__()
self.lstm_size = lstm_size
self.lstm_layers = lstm_layers
self.spatial_size = spatial_size
self.order_emb_size = order_emb_size
self.lstm_dropout = lstm_dropout
self.avg_embedding = avg_embedding
self.power_emb_size = power_emb_size
self.order_embedding = nn.Embedding(orders_vocab_size, order_emb_size)
self.cand_embedding = PaddedEmbedding(orders_vocab_size, lstm_size, padding_idx=EOS_IDX)
self.power_lin = nn.Linear(len(POWERS), power_emb_size)
self.lstm = nn.LSTM(
2 * inter_emb_size + order_emb_size + power_emb_size,
lstm_size,
batch_first=True,
num_layers=self.lstm_layers,
)
assert not (
use_simple_alignments and learnable_alignments
), "use_simple_alignments and learnable_alignments are incompatible"
self.use_simple_alignments = use_simple_alignments
# if avg_embedding is True, alignments are not used, and pytorch
# `comp`lains about unused parameters, so only set self.master_alignments
# when avg_embedding is False
if not avg_embedding:
self.master_alignments = nn.Parameter(master_alignments).requires_grad_(
learnable_alignments
)
self.featurize_output = featurize_output
if featurize_output:
order_feats, srcs, dsts = compute_order_features()
self.register_buffer("order_feats", order_feats)
order_decoder_input_sz = self.order_feats.shape[1]
self.order_feat_lin = nn.Linear(order_decoder_input_sz, order_emb_size)
# this one has to stay as separate w, b
# for backwards compatibility
self.order_decoder_w = nn.Linear(order_decoder_input_sz, lstm_size) # FIXME
self.order_decoder_b = nn.Linear(order_decoder_input_sz, 1)
self.relfeat_output = relfeat_output
if relfeat_output:
assert featurize_output, "Can't have relfeat_output without featurize_output (yet)"
order_feats, srcs, dsts = compute_order_features()
self.register_buffer("order_srcs", srcs)
self.register_buffer("order_dsts", dsts)
order_relfeat_input_sz = 2 * inter_emb_size
self.order_relfeat_src_decoder_w = nn.Linear(order_relfeat_input_sz, lstm_size + 1)
self.order_relfeat_dst_decoder_w = nn.Linear(order_relfeat_input_sz, lstm_size + 1)
self.order_emb_relfeat_src_decoder_w = nn.Linear(order_emb_size, lstm_size + 1)
self.order_emb_relfeat_dst_decoder_w = nn.Linear(order_emb_size, lstm_size + 1)
def get_order_loc_feats(self, cand_order_locs, enc_w, out_w, enc_lin=None):
B, L, D = enc_w.shape
flat_order_locs = cand_order_locs.view(-1)
valid = (flat_order_locs > 0).nonzero(as_tuple=False).squeeze(-1)
# offsets of the order into the flattened enc_w tensor
order_offsets = (
cand_order_locs + torch.arange(B, device=cand_order_locs.device).view(B, 1) * L
)
valid_order_offsets = order_offsets.view(-1)[valid]
valid_order_w = enc_w.view(-1, D)[valid_order_offsets]
if enc_lin:
valid_order_w = enc_lin(valid_order_w)
out_w.view(-1, out_w.shape[-1]).index_add_(0, valid, valid_order_w)
def forward(
self,
enc,
in_adj_phase,
loc_idxs,
all_cand_idxs,
power,
temperature=1.0,
top_p=1.0,
teacher_force_orders=None,
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
timings = TimingCtx()
with timings("dec.prep"):
device = enc.device
if (loc_idxs == -1).all():
return (
torch.empty(*all_cand_idxs.shape[:2], dtype=torch.long, device=device).fill_(
EOS_IDX
),
torch.empty(*all_cand_idxs.shape[:2], dtype=torch.long, device=device).fill_(
EOS_IDX
),
enc.new_zeros(*all_cand_idxs.shape),
)
# embedding for the last decoded order
order_emb = enc.new_zeros(enc.shape[0], self.order_emb_size)
# power embeddings for each lstm step
assert tuple(power.shape) == tuple(
all_cand_idxs.shape[:2]
), f"{power.shape} != {all_cand_idxs.shape[:2]}"
# clamp power to avoid -1 padding crashing one_hot
power_1h = torch.nn.functional.one_hot(power.long().clamp(0), len(POWERS)).to(
enc.dtype
)
all_power_embs = self.power_lin(power_1h)
# return values: chosen order idxs, candidate idxs, and logits
all_global_order_idxs = []
all_local_order_idxs = []
all_logits = []
order_enc = enc.new_zeros(enc.shape[0], self.spatial_size, self.order_emb_size)
self.lstm.flatten_parameters()
hidden = (
enc.new_zeros(self.lstm_layers, enc.shape[0], self.lstm_size),
enc.new_zeros(self.lstm_layers, enc.shape[0], self.lstm_size),
)
# reuse same dropout weights for all steps
dropout_in = (
enc.new_zeros(
enc.shape[0], 1, enc.shape[2] + self.order_emb_size + self.power_emb_size,
)
.bernoulli_(1 - self.lstm_dropout)
.div_(1 - self.lstm_dropout)
.requires_grad_(False)
)
dropout_out = (
enc.new_zeros(enc.shape[0], 1, self.lstm_size)
.bernoulli_(1 - self.lstm_dropout)
.div_(1 - self.lstm_dropout)
.requires_grad_(False)
)
# find max # of valid cand idxs per step
max_cand_per_step = (all_cand_idxs != EOS_IDX).sum(dim=2).max(dim=0).values # [S]
if self.relfeat_output:
src_relfeat_w = self.order_relfeat_src_decoder_w(enc)
dst_relfeat_w = self.order_relfeat_dst_decoder_w(enc)
for step in range(all_cand_idxs.shape[1]):
with timings("dec.power_emb"):
power_emb = all_power_embs[:, step]
with timings("dec.loc_enc"):
num_cands = max_cand_per_step[step]
cand_idxs = all_cand_idxs[:, step, :num_cands].long().contiguous()
if self.avg_embedding:
# no attention: average across loc embeddings
loc_enc = torch.mean(enc, dim=1)
else:
if self.use_simple_alignments:
alignments = ((loc_idxs == step) | (loc_idxs == -2)).to(enc.dtype)
else:
# do static attention
alignments = compute_alignments(loc_idxs, step, self.master_alignments)
if self.spatial_size != alignments.size()[1]:
# pad (batch, 81) -> (batch, spatial_size)
assert self.spatial_size > alignments.size()[1]
assert len(alignments.size()) == 2
alignments = F.pad(
alignments, (0, self.spatial_size - alignments.size()[1])
)
# print('alignments', alignments.mean(), alignments.std())
loc_enc = torch.matmul(alignments.unsqueeze(1), enc).squeeze(1)
with timings("dec.lstm"):
input_list = [loc_enc, order_emb, power_emb]
lstm_input = torch.cat(input_list, dim=1).unsqueeze(1)
if self.training and self.lstm_dropout > 0.0:
lstm_input = lstm_input * dropout_in
out, hidden = self.lstm(lstm_input, hidden)
if self.training and self.lstm_dropout > 0.0:
out = out * dropout_out
out = out.squeeze(1).unsqueeze(2)
with timings("dec.cand_emb"):
cand_emb = self.cand_embedding(cand_idxs)
with timings("dec.logits"):
logits = torch.matmul(cand_emb, out).squeeze(2) # [B, <=469]
if self.featurize_output:
# a) featurize based on one-hot features
cand_order_feats = self.order_feats[cand_idxs]
order_w = torch.cat(
(
self.order_decoder_w(cand_order_feats),
self.order_decoder_b(cand_order_feats),
),
dim=-1,
)
if self.relfeat_output:
cand_srcs = self.order_srcs[cand_idxs]
cand_dsts = self.order_dsts[cand_idxs]
# b) featurize based on the src and dst encoder features
self.get_order_loc_feats(cand_srcs, src_relfeat_w, order_w)
self.get_order_loc_feats(cand_dsts, dst_relfeat_w, order_w)
# c) featurize based on the src and dst order embeddings
self.get_order_loc_feats(
cand_srcs,
order_enc,
order_w,
enc_lin=self.order_emb_relfeat_src_decoder_w,
)
self.get_order_loc_feats(
cand_dsts,
order_enc,
order_w,
enc_lin=self.order_emb_relfeat_dst_decoder_w,
)
# add some ones to out so that the last element of order_w is a bias
out_with_ones = torch.cat((out, out.new_ones(out.shape[0], 1, 1)), dim=1)
order_scores_featurized = torch.bmm(order_w, out_with_ones)
logits += order_scores_featurized.squeeze(-1)
with timings("dec.invalid_mask"):
# unmask where there are no actions or the sampling will crash. The
# losses at these points will be masked out later, so this is safe.
invalid_mask = ~(cand_idxs != EOS_IDX).any(dim=1)
if invalid_mask.all():
# early exit
# logging.debug(f"Breaking at step {step} because no more orders to give")
for _step in range(step, all_cand_idxs.shape[1]): # fill in garbage
all_global_order_idxs.append(
torch.empty(
all_cand_idxs.shape[0],
dtype=torch.long,
device=all_cand_idxs.device,
).fill_(EOS_IDX)
)
all_local_order_idxs.append(
torch.empty(
all_cand_idxs.shape[0],
dtype=torch.long,
device=all_cand_idxs.device,
).fill_(EOS_IDX)
)
break
cand_mask = cand_idxs != EOS_IDX
cand_mask[invalid_mask] = 1
with timings("dec.logits_mask"):
# make logits for invalid actions a large negative
# We also deliberately call float() here, not to(enc.dtype), because even in fp16
# once we have logits we want to cast up to fp32 for doing the masking, temperature,
# and softmax.
logits = torch.min(logits, cand_mask.float() * 1e9 + LOGIT_MASK_VAL)
all_logits.append(logits)
with timings("dec.logits_temp_top_p"):
with torch.no_grad():
filtered_logits = logits.detach().clone()
top_p_min = top_p.min().item() if isinstance(top_p, torch.Tensor) else top_p
if top_p_min < 0.999:
filtered_logits.masked_fill_(
top_p_filtering(filtered_logits, top_p=top_p), -1e9
)
filtered_logits /= temperature
with timings("dec.sample"):
local_order_idxs = Categorical(logits=filtered_logits).sample()
all_local_order_idxs.append(local_order_idxs)
with timings("dec.order_idxs"):
# skip clamp_and_mask since it is handled elsewhere and is slow
global_order_idxs = local_order_idxs_to_global(
local_order_idxs, cand_idxs, clamp_and_mask=False
)
all_global_order_idxs.append(global_order_idxs)
with timings("dec.order_emb"):
sampled_order_input = global_order_idxs.masked_fill(
global_order_idxs == EOS_IDX, 0
)
if teacher_force_orders is None:
order_input = sampled_order_input
else:
order_input = torch.where(
teacher_force_orders[:, step] == NO_ORDER_ID,
sampled_order_input,
teacher_force_orders[:, step],
)
order_emb = self.order_embedding(order_input)
if self.featurize_output:
order_emb += self.order_feat_lin(self.order_feats[order_input])
if self.relfeat_output:
order_enc = order_enc + order_emb[:, None] * alignments[:, :, None]
with timings("dec.fin"):
stacked_global_order_idxs = torch.stack(all_global_order_idxs, dim=1)
stacked_local_order_idxs = torch.stack(all_local_order_idxs, dim=1)
stacked_logits = cat_pad_sequences(
[x.unsqueeze(1) for x in all_logits],
seq_dim=2,
cat_dim=1,
pad_value=LOGIT_MASK_VAL,
)
r = stacked_global_order_idxs, stacked_local_order_idxs, stacked_logits
# logging.debug(f"Timings[dec, {enc.shape[0]}x{step}] {timings}")
return r
def _pad_last_dims(tensor, partial_new_shape, pad_value):
assert len(tensor.shape) >= len(partial_new_shape), (tensor.shape, partial_new_shape)
new_shape = list(tensor.shape)[: len(tensor.shape) - len(partial_new_shape)] + list(
partial_new_shape
)
new_tensor = tensor.new_full(new_shape, pad_value)
new_tensor[[slice(None, D) for D in tensor.shape]].copy_(tensor)
return new_tensor
def top_p_filtering(
logits: torch.Tensor, top_p: Union[float, torch.Tensor], min_tokens_to_keep=1
) -> torch.Tensor:
"""Filter a distribution of logits using nucleus (top-p) filtering.
From: https://gist.github.com/thomwolf/1a5a29f6962089e871b94cbd09daf317
Args:
logits: tensor of shape [batch_size, vocab]. Logits distribution shape
top_p: float or tensor of shape [batch_size, 1]. Keep the top tokens
with cumulative probability >= top_p (nucleus filtering). Nucleus
filtering is described in Holtzman et al.
(http://arxiv.org/abs/1904.09751)
min_tokens_to_keep: int, make sure we keep at least
min_tokens_to_keep per batch example in the output
Returns:
top_p_mask: boolean tensor of shape [batch_size, vocab] with elements to remove.
"""
sorted_logits, sorted_indices = torch.sort(logits, descending=True)
cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1)
# Remove tokens with cumulative probability above the threshold (token with 0 are kept)
sorted_indices_to_remove = cumulative_probs > top_p
if min_tokens_to_keep > 1:
# Keep at least min_tokens_to_keep (set to min_tokens_to_keep-1 because we add the first one below)
sorted_indices_to_remove[..., :min_tokens_to_keep] = 0
# Shift the indices to the right to keep also the first token above the threshold
sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone()
sorted_indices_to_remove[..., 0] = 0
# scatter sorted tensors to original indexing
indices_to_remove = sorted_indices_to_remove.scatter(
1, sorted_indices, sorted_indices_to_remove
)
return indices_to_remove
class DiplomacyModelEncoder(nn.Module):
def __init__(
self,
*,
board_state_size, # 35
prev_orders_size, # 40
inter_emb_size, # 120
num_blocks, # 16
A, # 81x81
dropout,
learnable_A=False,
residual_linear=False,
merged_gnn=False,
layerdrop=0,
use_global_pooling=False,
):
super().__init__()
# board state blocks
self.board_blocks = nn.ModuleList()
self.board_blocks.append(
DiplomacyModelBlock(
in_size=board_state_size,
out_size=inter_emb_size,
A=A,
residual=False,
learnable_A=learnable_A,
dropout=dropout,
residual_linear=residual_linear,
use_global_pooling=use_global_pooling,
)
)
for _ in range(num_blocks - 1):
self.board_blocks.append(
DiplomacyModelBlock(