This repository has been archived by the owner on Oct 31, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathtrain_sl.py
executable file
·619 lines (519 loc) · 22.6 KB
/
train_sl.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
#!/usr/bin/env python
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import atexit
import glob
import json
import logging
import os
import random
from collections import Counter
from functools import reduce
import torch
from google.protobuf.json_format import MessageToDict
from torch.utils.data import RandomSampler
from torch.utils.data.distributed import DistributedSampler
from fairdiplomacy.data.dataset import Dataset, DataFields
from fairdiplomacy.models.consts import POWERS, SEASONS
from fairdiplomacy.models.diplomacy_model.load_model import new_model
from fairdiplomacy.models.diplomacy_model.order_vocabulary import (
get_order_vocabulary,
get_order_vocabulary_idxs_by_unit,
EOS_IDX,
)
from fairdiplomacy.selfplay.metrics import Logger
logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO)
handler = logging.StreamHandler()
handler.setFormatter(logging.Formatter("%(asctime)s [%(levelname)s]: %(message)s"))
logger.addHandler(handler)
logger.propagate = False
ORDER_VOCABULARY = get_order_vocabulary()
ORDER_VOCABULARY_IDXS_BY_UNIT = get_order_vocabulary_idxs_by_unit()
def process_batch(
net,
batch,
policy_loss_fn,
value_loss_fn,
temperature=1.0,
p_teacher_force=1.0,
shuffle_locs=False,
):
"""Calculate a forward pass on a batch
Returns:
- policy_losses: [?] FloatTensor, unknown size due to unknown # of non-zero actions
- value_losses: [B] FloatTensor
- sampled_idxs: [B, S] LongTensor of sampled order idxs (< 469)
- final_sos: [B, 7] estimated final sum-of-squares share of each power
"""
assert p_teacher_force == 1
device = next(net.parameters()).device
if shuffle_locs:
y_actions = batch["y_actions"]
B, L = y_actions.shape
loc_priority = torch.rand(B, L)
loc_priority += (y_actions == -1) * 1000
perm = loc_priority.sort(dim=-1).indices
batch["y_actions"] = y_actions.gather(-1, perm)
batch["x_possible_actions"] = batch["x_possible_actions"].gather(
-2, perm.unsqueeze(-1).repeat(1, 1, 469)
)
# x_loc_idxs is B x 81, where the value in each loc is which order in
# the sequence it is (or -1 if not in the sequence)
new_x_loc_idxs = batch["x_loc_idxs"].clone()
for lidx in range(L):
mask = batch["x_loc_idxs"] == perm[:, lidx].unsqueeze(-1)
new_x_loc_idxs[mask] = lidx
batch["x_loc_idxs"] = new_x_loc_idxs
# forward pass
teacher_force_orders = (
cand_idxs_to_order_idxs(batch["y_actions"], batch["x_possible_actions"], pad_out=0)
if torch.rand(1) < p_teacher_force
else None
)
order_idxs, sampled_idxs, logits, final_sos = net(
**{k: v for k, v in batch.items() if k.startswith("x_")},
temperature=temperature,
teacher_force_orders=teacher_force_orders,
)
# x_possible_actions = batch['x_possible_actions'].to(device)
y_actions = batch["y_actions"].to(device)
# reshape and mask out <EOS> tokens from sequences
y_actions = y_actions[:, : logits.shape[1]].reshape(-1) # [B * S]
try:
logits = logits.view(len(y_actions), -1)
except RuntimeError:
logger.error(f"Bad view: {logits.shape}, {order_idxs.shape}, {y_actions.shape}")
raise
logits = logits[y_actions != EOS_IDX]
y_actions = y_actions[y_actions != EOS_IDX]
observed_logits = logits.gather(1, y_actions.unsqueeze(-1)).squeeze(-1)
if observed_logits.min() < -1e7:
min_score, min_idx = observed_logits.min(0)
logger.warning(
f"!!! Got masked order for {get_order_vocabulary()[y_actions[min_idx]]} !!!"
)
# calculate policy loss
policy_loss = policy_loss_fn(logits, y_actions)
# calculate sum-of-squares value loss
y_final_scores = batch["y_final_scores"].to(device).float().squeeze(1)
value_loss = value_loss_fn(final_sos, y_final_scores)
# a given state appears multiple times in the dataset for different powers,
# but we always compute the value loss for each power. So we need to reweight
# the value loss by 1/num_valid_powers
value_loss /= batch["valid_power_idxs"].sum(-1, keepdim=True).to(device)
return policy_loss, value_loss, sampled_idxs, final_sos
def cand_idxs_to_order_idxs(idxs, candidates, pad_out=EOS_IDX):
"""Convert from idxs in candidates to idxs in ORDER_VOCABULARY
Arguments:
- idxs: [B, S] candidate idxs, each 0 - 469, padding=EOS_IDX
- candidates: [B, S, 469] order idxs of each candidate, 0 - 13k
Return [B, S] of order idxs, 0 - 13k, padding=pad_out
"""
mask = idxs.view(-1) != EOS_IDX
flat_candidates = candidates.view(-1, candidates.shape[2])
r = torch.empty_like(idxs).fill_(pad_out).view(-1)
r[mask] = flat_candidates[mask].gather(1, idxs.view(-1)[mask].unsqueeze(1)).view(-1)
return r.view(*idxs.shape)
def calculate_accuracy(sampled_idxs, y_truth):
y_truth = y_truth[: (sampled_idxs.shape[0]), : (sampled_idxs.shape[1])].to(sampled_idxs.device)
mask = y_truth != EOS_IDX
return torch.mean((y_truth[mask] == sampled_idxs[mask]).float())
def calculate_value_accuracy(final_sos, y_final_scores):
"""Return top-1 accuracy"""
y_final_scores = y_final_scores.squeeze(1)
actual_winner = y_final_scores == y_final_scores.max(dim=1, keepdim=True).values
guessed_winner = final_sos == final_sos.max(dim=1, keepdim=True).values
return (actual_winner & guessed_winner).any(dim=1).float().mean()
def calculate_split_accuracy_counts(sampled_idxs, batch):
counts = Counter()
y_truth = batch["y_actions"][: (sampled_idxs.shape[0]), : (sampled_idxs.shape[1])].to(
sampled_idxs.device
)
x_season_idx = batch["x_season"].nonzero()[:, 1]
assert len(x_season_idx) == len(sampled_idxs)
for b in range(y_truth.shape[0]):
for s in range(y_truth.shape[1]):
if y_truth[b, s] == EOS_IDX:
continue
truth_order = ORDER_VOCABULARY[y_truth[b, s]]
correct = y_truth[b, s] == sampled_idxs[b, s]
season = SEASONS[x_season_idx[b]][0] # S/F/W
# stats by loc
loc = truth_order.split()[1]
counts["loc.{}.{}".format(loc, "y" if correct else "n")] += 1
# stats by order type
order_type = truth_order.split()[2]
counts["type.{}.{}".format(order_type, "y" if correct else "n")] += 1
# stats by order step
counts["step.{}.{}".format(s, "y" if correct else "n")] += 1
# stats by season
counts["season.{}.{}".format(season, "y" if correct else "n")] += 1
return counts
def validate(net, val_set, policy_loss_fn, value_loss_fn, batch_size, value_loss_weight: float):
net_device = next(net.parameters()).device
with torch.no_grad():
net.eval()
batch_losses = []
batch_accuracies = []
batch_acc_split_counts = []
batch_value_accuracies = []
for batch_idxs in torch.arange(len(val_set)).split(batch_size):
batch = val_set[batch_idxs]
batch = DataFields({k: v.to(net_device) for k, v in batch.items()})
y_actions = batch["y_actions"]
if y_actions.shape[0] == 0:
logger.warning(
"Got an empty validation batch! y_actions.shape={}".format(y_actions.shape)
)
continue
policy_losses, value_losses, sampled_idxs, final_sos = process_batch(
net, batch, policy_loss_fn, value_loss_fn, temperature=0.001, p_teacher_force=1.0
)
batch_losses.append((policy_losses, value_losses))
batch_accuracies.append(calculate_accuracy(sampled_idxs, y_actions))
batch_value_accuracies.append(
calculate_value_accuracy(final_sos, batch["y_final_scores"])
)
batch_acc_split_counts.append(calculate_split_accuracy_counts(sampled_idxs, batch))
net.train()
# validation loss
p_losses, v_losses = [torch.cat(x) for x in zip(*batch_losses)]
p_loss = torch.mean(p_losses)
v_loss = torch.mean(v_losses)
valid_loss = (1 - value_loss_weight) * p_loss + value_loss_weight * v_loss
# validation accuracy
weights = [len(pl) / len(p_losses) for pl, _ in batch_losses]
valid_p_accuracy = sum(a * w for (a, w) in zip(batch_accuracies, weights))
valid_v_accuracy = sum(a * w for (a, w) in zip(batch_value_accuracies, weights))
# combine accuracy splits
split_counts = reduce(
lambda x, y: Counter({k: x[k] + y[k] for k in set(x.keys()) | set(y.keys())}),
batch_acc_split_counts,
Counter(),
)
split_pcts = {
k: split_counts[k + ".y"] / (split_counts[k + ".y"] + split_counts[k + ".n"])
for k in [k.rsplit(".", 1)[0] for k in split_counts.keys()]
}
return valid_loss, p_loss, v_loss, valid_p_accuracy, valid_v_accuracy, split_pcts
def main_subproc(rank, world_size, args, train_set, val_set, extra_val_datasets):
has_gpu = torch.cuda.is_available()
if has_gpu:
# distributed training setup
mp_setup(rank, world_size)
atexit.register(mp_cleanup)
torch.cuda.set_device(rank)
else:
assert rank == 0 and world_size == 1
metric_logger = Logger(is_master=rank == 0)
global_step = 0
log_scalars = lambda **scalars: metric_logger.log_metrics(
scalars, step=global_step, sanitize=True
)
# load checkpoint if specified
if args.checkpoint and os.path.isfile(args.checkpoint):
logger.info("Loading checkpoint at {}".format(args.checkpoint))
checkpoint = torch.load(args.checkpoint, map_location="cuda:{}".format(rank))
else:
checkpoint = None
logger.info("Init model...")
net = new_model(args)
# send model to GPU
if has_gpu:
logger.debug("net.cuda({})".format(rank))
net.cuda(rank)
logger.debug("net {} DistributedDataParallel".format(rank))
net = torch.nn.parallel.DistributedDataParallel(net, device_ids=[rank])
logger.debug("net {} DistributedDataParallel done".format(rank))
# load from checkpoint if specified
if checkpoint:
logger.debug("net.load_state_dict")
net.load_state_dict(checkpoint["model"], strict=True)
# create optimizer, from checkpoint if specified
policy_loss_fn = torch.nn.CrossEntropyLoss(reduction="none")
value_loss_fn = torch.nn.MSELoss(reduction="none")
optim = torch.optim.Adam(net.parameters(), lr=args.lr)
lr_scheduler = torch.optim.lr_scheduler.StepLR(optim, step_size=1, gamma=args.lr_decay)
if checkpoint:
optim.load_state_dict(checkpoint["optim"])
# load best losses to not immediately overwrite best checkpoints
best_loss = checkpoint.get("best_loss") if checkpoint else None
best_p_loss = checkpoint.get("best_p_loss") if checkpoint else None
best_v_loss = checkpoint.get("best_v_loss") if checkpoint else None
if has_gpu:
train_set_sampler = DistributedSampler(train_set)
else:
train_set_sampler = RandomSampler(train_set)
for epoch in range(checkpoint["epoch"] + 1 if checkpoint else 0, args.num_epochs):
if has_gpu:
train_set_sampler.set_epoch(epoch)
batches = torch.tensor(list(iter(train_set_sampler)), dtype=torch.long).split(
args.batch_size
)
for batch_i, batch_idxs in enumerate(batches):
batch = train_set[batch_idxs]
logger.debug(f"Zero grad {batch_i} ...")
# check batch is not empty
if (batch["y_actions"] == EOS_IDX).all():
logger.warning("Skipping empty epoch {} batch {}".format(epoch, batch_i))
continue
# learn
logger.debug("Starting epoch {} batch {}".format(epoch, batch_i))
optim.zero_grad()
policy_losses, value_losses, _, _ = process_batch(
net,
batch,
policy_loss_fn,
value_loss_fn,
p_teacher_force=args.teacher_force,
shuffle_locs=args.shuffle_locs,
)
# backward
p_loss = torch.mean(policy_losses)
v_loss = torch.mean(value_losses)
loss = (1 - args.value_loss_weight) * p_loss + args.value_loss_weight * v_loss
loss.backward()
# clip gradients, step
value_decoder_grad_norm = torch.nn.utils.clip_grad_norm_(
getattr(net, "module", net).value_decoder.parameters(),
args.value_decoder_clip_grad_norm,
)
grad_norm = torch.nn.utils.clip_grad_norm_(net.parameters(), args.clip_grad_norm)
optim.step()
# log diagnostics
if rank == 0 and batch_i % 10 == 0:
scalars = dict(
epoch=epoch,
batch=batch_i,
loss=loss,
lr=optim.state_dict()["param_groups"][0]["lr"],
grad_norm=grad_norm,
value_decoder_grad_norm=value_decoder_grad_norm,
p_loss=p_loss,
v_loss=v_loss,
)
log_scalars(**scalars)
logger.info(
"epoch {} batch {} / {}, ".format(epoch, batch_i, len(batches))
+ " ".join(f"{k}= {v}" for k, v in scalars.items())
)
global_step += 1
if args.epoch_max_batches and batch_i + 1 >= args.epoch_max_batches:
logging.info("Exiting early due to epoch_max_batches")
break
# calculate validation loss/accuracy
if not args.skip_validation and rank == 0:
logger.info("Calculating val loss...")
(
valid_loss,
valid_p_loss,
valid_v_loss,
valid_p_accuracy,
valid_v_accuracy,
split_pcts,
) = validate(
net,
val_set,
policy_loss_fn,
value_loss_fn,
args.batch_size,
value_loss_weight=args.value_loss_weight,
)
scalars = dict(
epoch=epoch,
valid_loss=valid_loss,
valid_p_loss=valid_p_loss,
valid_v_loss=valid_v_loss,
valid_p_accuracy=valid_p_accuracy,
valid_v_accuracy=valid_v_accuracy,
)
for name, extra_val_set in extra_val_datasets.items():
(
scalars[f"valid_{name}/loss"],
scalars[f"valid_{name}/p_loss"],
scalars[f"valid_{name}/v_loss"],
scalars[f"valid_{name}/p_accuracy"],
scalars[f"valid_{name}/v_accuracy"],
_,
) = validate(
net,
extra_val_set,
policy_loss_fn,
value_loss_fn,
args.batch_size,
value_loss_weight=args.value_loss_weight,
)
log_scalars(**scalars)
logger.info("Validation " + " ".join([f"{k}= {v}" for k, v in scalars.items()]))
for k, v in sorted(split_pcts.items()):
logger.info(f"val split epoch= {epoch} batch= {batch_i}: {k} = {v}")
# save model
if args.checkpoint and rank == 0:
obj = {
"model": net.state_dict(),
"optim": optim.state_dict(),
"epoch": epoch,
"batch_i": batch_i,
"valid_p_accuracy": valid_p_accuracy,
"args": args,
"best_loss": best_loss,
"best_p_loss": best_p_loss,
"best_v_loss": best_v_loss,
}
logger.info("Saving checkpoint to {}".format(args.checkpoint))
torch.save(obj, args.checkpoint)
if epoch % 10 == 0:
torch.save(obj, args.checkpoint + ".epoch_" + str(epoch))
if best_loss is None or valid_loss < best_loss:
best_loss = valid_loss
torch.save(obj, args.checkpoint + ".best")
if best_p_loss is None or valid_p_loss < best_p_loss:
best_p_loss = valid_p_loss
torch.save(obj, args.checkpoint + ".bestp")
if best_v_loss is None or valid_v_loss < best_v_loss:
best_v_loss = valid_v_loss
torch.save(obj, args.checkpoint + ".bestv")
lr_scheduler.step()
def mp_setup(rank, world_size):
os.environ["MASTER_ADDR"] = "localhost"
os.environ["MASTER_PORT"] = "12356"
torch.distributed.init_process_group("nccl", rank=rank, world_size=world_size)
torch.manual_seed(0)
random.seed(0)
def mp_cleanup():
torch.distributed.destroy_process_group()
def get_datasets_from_cfg(args):
"""Returns a 3-tuple (train_set, val_set, extra_val_sets)"""
cache = {}
def cached_torch_load(fpath):
if fpath not in cache:
cache[fpath] = torch.load(fpath)
return cache[fpath]
# search for data and create train/val splits
if args.data_cache and os.path.exists(args.data_cache):
logger.info(f"Found dataset cache at {args.data_cache}")
train_dataset, val_dataset = cached_torch_load(args.data_cache)
else:
dataset_params = args.dataset_params
assert args.metadata_path is not None
assert dataset_params.data_dir is not None
game_metadata, min_rating, train_game_ids, val_game_ids = get_sl_db_args(
args.metadata_path, args.min_rating_percentile, args.max_games, args.val_set_pct
)
dataset_params_dict = MessageToDict(dataset_params, preserving_proto_field_name=True)
train_dataset = Dataset(
game_ids=train_game_ids,
game_metadata=game_metadata,
min_rating=min_rating,
**dataset_params_dict,
)
train_dataset.preprocess()
val_dataset = Dataset(
game_ids=val_game_ids,
game_metadata=game_metadata,
min_rating=min_rating,
**dataset_params_dict,
)
val_dataset.preprocess()
if args.data_cache:
logger.info(f"Saving datasets to {args.data_cache}")
torch.save((train_dataset, val_dataset), args.data_cache)
logger.info(f"Train dataset: {train_dataset.stats_str()}")
logger.info(f"Val dataset: {val_dataset.stats_str()}")
# possibly append more data caches to train/val with various cfg args
train_dataset = [train_dataset]
val_dataset = [val_dataset]
# only t gets added
if args.extra_train_data_caches:
for path in args.extra_train_data_caches:
train_dataset.append(cached_torch_load(path)[0])
logger.info(f"Append train dataset: {train_dataset[-1].stats_str()}")
# t, v get added to their respective data sets
if args.glob_append_data_cache:
for path in glob.glob(args.glob_append_data_cache):
t, v = cached_torch_load(path)
train_dataset.append(t)
logger.info(f"Append train dataset: {train_dataset[-1].stats_str()}")
if v is not None:
val_dataset.append(v)
logger.info(f"Append val dataset: {val_dataset[-1].stats_str()}")
# both t, v get added to val set
if args.glob_append_data_cache_as_val:
for path in glob.glob(args.glob_append_data_cache_as_val):
t, v = cached_torch_load(path)
for x in [t, v]:
if x is not None:
val_dataset.append(x)
logger.info(f"Append val dataset: {val_dataset[-1].stats_str()}")
# concat datasets
train_dataset = (
Dataset.from_merge(train_dataset) if len(train_dataset) > 1 else train_dataset[0]
)
val_dataset = Dataset.from_merge(val_dataset) if len(val_dataset) > 1 else val_dataset[0]
logger.info(f"Final dataset lens: train={len(train_dataset)} val={len(val_dataset)}")
# extra val data caches, returned separately
extra_val_datasets = {}
for name, path in args.extra_val_data_caches.items():
extra_val_datasets[name] = cached_torch_load(path)[1]
logger.info(f"Extra val dataset ({name}): {extra_val_datasets[name].stats_str()}")
# Clear the cache.
cache = {}
return train_dataset, val_dataset, extra_val_datasets
def run_with_cfg(args):
random.seed(0)
logger.warning("Args: {}, file={}".format(args, os.path.abspath(__file__)))
n_gpus = torch.cuda.device_count()
logger.info("Using {} GPUs".format(n_gpus))
train_dataset, val_dataset, extra_val_datasets = get_datasets_from_cfg(args)
# required when using multithreaded DataLoader
try:
torch.multiprocessing.set_start_method("spawn")
except RuntimeError:
pass
if args.debug_no_mp:
main_subproc(0, 1, args, train_dataset, val_dataset, extra_val_datasets)
else:
torch.multiprocessing.spawn(
main_subproc,
nprocs=n_gpus,
args=(n_gpus, args, train_dataset, val_dataset, extra_val_datasets),
)
def get_sl_db_args(metadata_path, min_rating_percentile, max_games, val_set_pct):
"""
:param metadata_path:
:param min_rating_percentile:
:param max_games:
:param val_set_pct:
:return: game_metadata, min_rating, train_game_ids and val_game_ids
"""
with open(metadata_path) as meta_f:
game_metadata = json.load(meta_f)
# convert to int game keys
game_metadata = {int(k): v for k, v in game_metadata.items()}
game_ids = list(game_metadata.keys())
# compute min rating
if min_rating_percentile > 0:
ratings = torch.tensor(
[
game[pwr]["logit_rating"]
for game in game_metadata.values()
for pwr in POWERS
if pwr in game
]
)
min_rating = ratings.sort()[0][int(len(ratings) * min_rating_percentile)]
print(
f"Only training on games with min rating of {min_rating} ({min_rating_percentile * 100} percentile)"
)
else:
min_rating = -1e9
if max_games > 0:
game_ids = game_ids[:max_games]
assert len(game_ids) > 0
logger.info(f"Found dataset of {len(game_ids)} games...")
val_game_ids = random.sample(game_ids, max(1, int(len(game_ids) * val_set_pct)))
train_game_ids = list(set(game_ids) - set(val_game_ids))
return game_metadata, min_rating, train_game_ids, val_game_ids