This repository has been archived by the owner on Oct 31, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 18
/
parsers.py
423 lines (396 loc) · 12.6 KB
/
parsers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import argparse
from symbolicregression.envs import ENVS
from symbolicregression.utils import bool_flag
def get_parser():
"""
Generate a parameters parser.
"""
# parse parameters
parser = argparse.ArgumentParser(description="Function prediction", add_help=False)
# main parameters
parser.add_argument(
"--dump_path", type=str, default="", help="Experiment dump path"
)
parser.add_argument(
"--refinements_types",
type=str,
default="method=BFGS_batchsize=256_metric=/_mse",
help="What refinement to use. Should separate by _ each arg and value by =. None does not do any refinement",
)
parser.add_argument(
"--eval_dump_path", type=str, default=None, help="Evaluation dump path"
)
parser.add_argument(
"--save_results", type=bool, default=True, help="Should we save results?"
)
parser.add_argument("--exp_name", type=str, default="debug", help="Experiment name")
parser.add_argument(
"--print_freq", type=int, default=100, help="Print every n steps"
)
parser.add_argument(
"--save_periodic",
type=int,
default=25,
help="Save the model periodically (0 to disable)",
)
parser.add_argument("--exp_id", type=str, default="", help="Experiment ID")
# float16 / AMP API
parser.add_argument(
"--fp16", type=bool_flag, default=False, help="Run model with float16"
)
parser.add_argument(
"--amp",
type=int,
default=-1,
help="Use AMP wrapper for float16 / distributed / gradient accumulation. Level of optimization. -1 to disable.",
)
parser.add_argument(
"--rescale", type=bool, default=True, help="Whether to rescale at inference.",
)
# model parameters
parser.add_argument(
"--embedder_type",
type=str,
default="LinearPoint",
help="[TNet, LinearPoint, Flat, AttentionPoint] How to pre-process sequences before passing to a transformer.",
)
parser.add_argument(
"--emb_emb_dim", type=int, default=64, help="Embedder embedding layer size"
)
parser.add_argument(
"--enc_emb_dim", type=int, default=512, help="Encoder embedding layer size"
)
parser.add_argument(
"--dec_emb_dim", type=int, default=512, help="Decoder embedding layer size"
)
parser.add_argument(
"--n_emb_layers", type=int, default=1, help="Number of layers in the embedder",
)
parser.add_argument(
"--n_enc_layers",
type=int,
default=2,
help="Number of Transformer layers in the encoder",
)
parser.add_argument(
"--n_dec_layers",
type=int,
default=16,
help="Number of Transformer layers in the decoder",
)
parser.add_argument(
"--n_enc_heads",
type=int,
default=16,
help="Number of Transformer encoder heads",
)
parser.add_argument(
"--n_dec_heads",
type=int,
default=16,
help="Number of Transformer decoder heads",
)
parser.add_argument(
"--emb_expansion_factor",
type=int,
default=1,
help="Expansion factor for embedder",
)
parser.add_argument(
"--n_enc_hidden_layers",
type=int,
default=1,
help="Number of FFN layers in Transformer encoder",
)
parser.add_argument(
"--n_dec_hidden_layers",
type=int,
default=1,
help="Number of FFN layers in Transformer decoder",
)
parser.add_argument(
"--norm_attention",
type=bool_flag,
default=False,
help="Normalize attention and train temperaturee in Transformer",
)
parser.add_argument("--dropout", type=float, default=0, help="Dropout")
parser.add_argument(
"--attention_dropout",
type=float,
default=0,
help="Dropout in the attention layer",
)
parser.add_argument(
"--share_inout_emb",
type=bool_flag,
default=True,
help="Share input and output embeddings",
)
parser.add_argument(
"--enc_positional_embeddings",
type=str,
default=None,
help="Use none/learnable/sinusoidal/alibi embeddings",
)
parser.add_argument(
"--dec_positional_embeddings",
type=str,
default="learnable",
help="Use none/learnable/sinusoidal/alibi embeddings",
)
parser.add_argument(
"--env_base_seed",
type=int,
default=0,
help="Base seed for environments (-1 to use timestamp seed)",
)
parser.add_argument(
"--test_env_seed", type=int, default=1, help="Test seed for environments"
)
parser.add_argument(
"--batch_size", type=int, default=256, help="Number of sentences per batch"
)
parser.add_argument(
"--batch_size_eval",
type=int,
default=64,
help="Number of sentences per batch during evaluation (if None, set to 1.5*batch_size)",
)
parser.add_argument(
"--optimizer",
type=str,
default="adam_inverse_sqrt,warmup_updates=10000",
help="Optimizer (SGD / RMSprop / Adam, etc.)",
)
parser.add_argument("--lr", type=float, default=1e-4, help="Learning rate")
parser.add_argument(
"--clip_grad_norm",
type=float,
default=0.5,
help="Clip gradients norm (0 to disable)",
)
parser.add_argument(
"--n_steps_per_epoch", type=int, default=3000, help="Number of steps per epoch",
)
parser.add_argument(
"--max_epoch", type=int, default=100000, help="Number of epochs"
)
parser.add_argument(
"--stopping_criterion",
type=str,
default="",
help="Stopping criterion, and number of non-increase before stopping the experiment",
)
parser.add_argument(
"--accumulate_gradients",
type=int,
default=1,
help="Accumulate model gradients over N iterations (N times larger batch sizes)",
)
parser.add_argument(
"--num_workers",
type=int,
default=10,
help="Number of CPU workers for DataLoader",
)
parser.add_argument(
"--train_noise_gamma",
type=float,
default=0.0,
help="Should we train with additional output noise",
)
parser.add_argument(
"--ablation_to_keep",
type=str,
default=None,
help="which ablation should we do",
)
parser.add_argument(
"--max_input_points",
type=int,
default=200,
help="split into chunks of size max_input_points at eval",
)
parser.add_argument(
"--n_trees_to_refine", type=int, default=10, help="refine top n trees"
)
# export data / reload it
parser.add_argument(
"--export_data",
type=bool_flag,
default=False,
help="Export data and disable training.",
)
parser.add_argument(
"--reload_data",
type=str,
default="",
help="Load dataset from the disk (task1,train_path1,valid_path1,test_path1;task2,train_path2,valid_path2,test_path2)",
)
parser.add_argument(
"--reload_size",
type=int,
default=-1,
help="Reloaded training set size (-1 for everything)",
)
parser.add_argument(
"--batch_load",
type=bool_flag,
default=False,
help="Load training set by batches (of size reload_size).",
)
# environment parameters
parser.add_argument(
"--env_name", type=str, default="functions", help="Environment name"
)
ENVS[parser.parse_known_args()[0].env_name].register_args(parser)
# tasks
parser.add_argument("--tasks", type=str, default="functions", help="Tasks")
# beam search configuration
parser.add_argument(
"--beam_eval",
type=bool_flag,
default=True,
help="Evaluate with beam search decoding.",
)
parser.add_argument(
"--max_generated_output_len",
type=int,
default=200,
help="Max generated output length",
)
parser.add_argument(
"--beam_eval_train",
type=int,
default=0,
help="At training time, number of validation equations to test the model on using beam search (-1 for everything, 0 to disable)",
)
parser.add_argument(
"--beam_size",
type=int,
default=1,
help="Beam size, default = 1 (greedy decoding)",
)
parser.add_argument(
"--beam_type", type=str, default="sampling", help="Beam search or sampling",
)
parser.add_argument(
"--beam_temperature",
type=int,
default=0.1,
help="Beam temperature for sampling",
)
parser.add_argument(
"--beam_length_penalty",
type=float,
default=1,
help="Length penalty, values < 1.0 favor shorter sentences, while values > 1.0 favor longer ones.",
)
parser.add_argument(
"--beam_early_stopping",
type=bool_flag,
default=True,
help="Early stopping, stop as soon as we have `beam_size` hypotheses, although longer ones may have better scores.",
)
parser.add_argument("--beam_selection_metrics", type=int, default=1)
parser.add_argument("--max_number_bags", type=int, default=1)
# reload pretrained model / checkpoint
parser.add_argument(
"--reload_model", type=str, default="", help="Reload a pretrained model"
)
parser.add_argument(
"--reload_checkpoint", type=str, default="", help="Reload a checkpoint"
)
# evaluation
parser.add_argument(
"--validation_metrics",
type=str,
default="r2_zero,r2,accuracy_l1_biggio,accuracy_l1_1e-3,accuracy_l1_1e-2,accuracy_l1_1e-1,_complexity",
help="What metrics should we report? accuracy_tolerance/_l1_error/r2/_complexity/_relative_complexity/is_symbolic_solution",
)
parser.add_argument(
"--debug_train_statistics",
type=bool,
default=False,
help="whether we should print infos distributions",
)
parser.add_argument(
"--eval_noise_gamma",
type=float,
default=0.0,
help="Should we evaluate with additional output noise",
)
parser.add_argument(
"--eval_size", type=int, default=10000, help="Size of valid and test samples"
)
parser.add_argument(
"--eval_noise_type",
type=str,
default="additive",
choices=["additive", "multiplicative"],
help="Type of noise added at test time",
)
parser.add_argument(
"--eval_noise", type=float, default=0, help="Size of valid and test samples"
)
parser.add_argument(
"--eval_only", type=bool_flag, default=False, help="Only run evaluations"
)
parser.add_argument(
"--eval_from_exp", type=str, default="", help="Path of experiment to use"
)
parser.add_argument(
"--eval_data", type=str, default="", help="Path of data to eval"
)
parser.add_argument(
"--eval_verbose", type=int, default=0, help="Export evaluation details"
)
parser.add_argument(
"--eval_verbose_print",
type=bool_flag,
default=False,
help="Print evaluation details",
)
parser.add_argument(
"--eval_input_length_modulo",
type=int,
default=-1,
help="Compute accuracy for all input lengths modulo X. -1 is equivalent to no ablation",
)
parser.add_argument("--eval_on_pmlb", type=bool, default=True)
parser.add_argument("--eval_in_domain", type=bool, default=True)
# debug
parser.add_argument(
"--debug_slurm",
type=bool_flag,
default=False,
help="Debug multi-GPU / multi-node within a SLURM job",
)
parser.add_argument("--debug", help="Enable all debug flags", action="store_true")
# CPU / multi-gpu / multi-node
parser.add_argument("--cpu", type=bool_flag, default=False, help="Run on CPU")
parser.add_argument(
"--local_rank", type=int, default=-1, help="Multi-GPU - Local rank"
)
parser.add_argument(
"--master_port",
type=int,
default=-1,
help="Master port (for multi-node SLURM jobs)",
)
parser.add_argument(
"--windows",
type=bool_flag,
default=False,
help="Windows version (no multiprocessing for eval)",
)
parser.add_argument(
"--nvidia_apex", type=bool_flag, default=False, help="NVIDIA version of apex"
)
return parser