forked from leenachennuru/objRecognition
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathobjectDetectionold.py
193 lines (139 loc) · 6.14 KB
/
objectDetectionold.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
#!/usr/bin/env python
import roslib; #roslib.load_manifest('rbx_vision')
import rospy
import rospkg
import sys
import cv2
import cv
from sensor_msgs.msg import Image, CameraInfo
from cv_bridge import CvBridge, CvBridgeError
import numpy as np
import testSegmented as tS
from phri_common_msgs.msg import ImgCoordArray as IC
from phri_common_msgs.msg import ImgCoordinates as IM
global codeBookCenters
global svm
codeBookCenters = None
svm = None
predictionArray = None
centroidArray = None
labels = None
class objectDetection():
def __init__(self):
self.nodeName = "object_detection"
rospy.init_node(self.nodeName)
# What we do during shutdown
rospy.on_shutdown(self.cleanup)
# Create the OpenCV display window for the RGB image
self.cv_window_name = self.nodeName
cv.NamedWindow(self.cv_window_name, cv.CV_WINDOW_NORMAL)
cv.MoveWindow(self.cv_window_name, 25, 75)
# And one for the depth image
cv.NamedWindow("Depth Image", cv.CV_WINDOW_NORMAL)
cv.MoveWindow("Depth Image", 25, 350)
'''Initialize ros publisher'''
# topic where we publish
self.msgPub = rospy.Publisher("vis_imgCoord",
IC, queue_size = 10)
# Create the cv_bridge object
self.bridge = CvBridge()
self.codeBookCenters = codeBookCenters
self.svm = svm
# Subscribe to the camera image and depth topics and set
# the appropriate callbacks
self.imageSub = rospy.Subscriber("/camera/rgb/image_rect_color",
Image, self.imageCallback, queue_size=1)
self.depthSub = rospy.Subscriber("/camera/depth/image_rect", Image, self.depthCallback, queue_size=1)
rospy.loginfo("Waiting for image topics...")
def imageCallback(self, rosImage):
global predictionArray, centroidArray,labels
# Use cv_bridge() to convert the ROS image to OpenCV format
print 'started image callback'
try:
frame = self.bridge.imgmsg_to_cv2(rosImage, "bgr8")
except CvBridgeError, e:
print e
# Convert the image to a Numpy array since most cv2 functions
# require Numpy arrays.
frame = np.array(frame, dtype=np.uint8)
# Process the frame using the process_image() function
predictionArray, centroidArray,labels = self.processImage(frame, self.codeBookCenters, self.svm)
# Display the image.
cv2.imshow(self.nodeName, frame)
# Process any keyboard commands
self.keystroke = cv.WaitKey(5)
if 32 <= self.keystroke and self.keystroke < 128:
cc = chr(self.keystroke).lower()
if cc == 'q':
# The user has press the q key, so exit
rospy.signal_shutdown("User hit q key to quit.")
def depthCallback(self, rosImage):
global predictionArray, centroidArray
objectLocations3D = []
# Use cv_bridge() to convert the ROS image to OpenCV format
try:
depthImage = self.bridge.imgmsg_to_cv2(rosImage, "16UC1")
# The depth image is a single-channel float32 image
except CvBridgeError, e:
print e
# Convert the depth image to a Numpy array since most cv2 functions
# require Numpy arrays.
depthArray = np.array(depthImage, dtype=np.float32)
# Normalize the depth image to fall between 0 (black) and 1 (white)
depthDisplayImage = cv2.normalize(depthArray, depthArray, 0, 1, cv2.NORM_MINMAX)
# Display the result
cv2.imshow("Depth Image", depthDisplayImage)
#depth_display_image = self.process_depth_image(depth_array)
msg = IC()
depthDisplayImage = depthDisplayImage[:,:,0];
if centroidArray != None:
msg.labelCoord = ()
for i in range(np.size(centroidArray,0)):
msg1 = IM
depthValue = self.getDepth(depthDisplayImage,centroidArray[i][0],centroidArray[i][1])
msg1.label = labels[i]
msg1.x = centroidArray[i][0]
msg1.y = centroidArray[i][1]
msg1.z = depthValue
#pixelLocation3D = (labels[i],centroidArray[i][0],centroidArray[i][1],depthValue)
#objectLocations3D.append(pixelLocation #
msg.stamp = rospy.Time.now()
msg.labelCoord = msg.labelCoord + (msg1,)
#print objectLocations3D
#msg.header.stamp = rospy.Time.now()
#msg.labelCoord = msg1
# Publish new image
self.msgPub.publish(msg)
#### Create CompressedIamge ###
#self.subscriber.unregister()
def processImage(self, frame, codeBookCenters, svm):
predictionArray, centroidArray,labels = tS.processAndClassify(frame, codeBookCenters, svm)
return predictionArray, centroidArray,labels
def processDepthImage(self, frame):
# Just return the raw image for this demo
return frame
def cleanup(self):
print "Shutting down vision node."
cv2.destroyAllWindows()
### Create CompressedIamge ####
def getDepth(self,image,x,y):
try:
return image[y][x]
except:
print "Error occured in getDepth...\n"
return -1
def main(args):
try:
objectDetection()
rospy.spin()
except KeyboardInterrupt:
print "Shutting down vision node."
cv.DestroyAllWindows()
if __name__ == '__main__':
rospack = rospkg.RosPack()
path_to_package = rospack.get_path("object_recognition")
svm = cv2.SVM()
svm.load(path_to_package + "/Scripts/SVM/svmNoise.dat")
codeBookCentersPath = "/Scripts/CodeBook/codeBookFinal.npy"
codeBookCenters = np.load(path_to_package + codeBookCentersPath)
main(sys.argv)