forked from thu-ml/zhusuan
-
Notifications
You must be signed in to change notification settings - Fork 0
/
lntm_mcem.py
234 lines (195 loc) · 8.93 KB
/
lntm_mcem.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""
Logistic-normal topic models using Monte-Carlo EM
Dense implementation, O(n_docs*n_topics*n_vocab)
"""
from __future__ import absolute_import
from __future__ import print_function
from __future__ import division
import sys
import os
import time
import tensorflow as tf
from six.moves import range, zip
from functools import partial
import numpy as np
import zhusuan as zs
from examples import conf
from examples.utils import dataset
# Delta in LNTM is corresponding to eta in LDA(Blei et al., 2003),
# which governs the prior of parameter in topic->word categorical distribution.
# Larger log_delta leads to sparser topics.
log_delta = 10.0
def lntm(observed, n_chains, n_docs, n_topics, n_vocab, eta_mean, eta_logstd):
with zs.BayesianNet(observed=observed) as model:
eta_mean = tf.tile(tf.expand_dims(eta_mean, 0), [n_docs, 1])
# eta/theta: Unnormalized/normalized document-topic matrix
eta = zs.Normal('eta', eta_mean, logstd=eta_logstd, n_samples=n_chains,
group_ndims=1)
theta = tf.nn.softmax(eta)
# beta/phi: Unnormalized/normalized topic-word matrix
beta = zs.Normal('beta', tf.zeros([n_topics, n_vocab]),
logstd=log_delta, group_ndims=1)
phi = tf.nn.softmax(beta)
# doc_word: Document-word matrix
doc_word = tf.matmul(tf.reshape(theta, [-1, n_topics]), phi)
doc_word = tf.reshape(doc_word, [n_chains, n_docs, n_vocab])
x = zs.UnnormalizedMultinomial('x', tf.log(doc_word),
normalize_logits=False,
dtype=tf.float32)
return model
if __name__ == "__main__":
tf.set_random_seed(1237)
# Load nips dataset
data_name = 'nips'
data_path = os.path.join(conf.data_dir, data_name + '.pkl.gz')
X, vocab = dataset.load_uci_bow(data_name, data_path)
training_size = 1200
X_train = X[:training_size, :]
X_test = X[training_size:, :]
# Define model training parameters
batch_size = 100
n_topics = 100
n_vocab = X_train.shape[1]
n_chains = 1
num_e_steps = 5
hmc = zs.HMC(step_size=1e-3, n_leapfrogs=20, adapt_step_size=True,
target_acceptance_rate=0.6)
epochs = 100
learning_rate_0 = 1.0
t0 = 10
# Padding
rem = batch_size - X_train.shape[0] % batch_size
if rem < batch_size:
X_train = np.vstack((X_train, np.zeros((rem, n_vocab))))
iters = X_train.shape[0] // batch_size
Eta = np.zeros((n_chains, X_train.shape[0], n_topics), dtype=np.float32)
Eta_mean = np.zeros(n_topics, dtype=np.float32)
Eta_logstd = np.zeros(n_topics, dtype=np.float32)
# Build the computation graph
x = tf.placeholder(tf.float32, shape=[batch_size, n_vocab], name='x')
eta_mean = tf.placeholder(tf.float32, shape=[n_topics], name='eta_mean')
eta_logstd = tf.placeholder(tf.float32, shape=[n_topics],
name='eta_logstd')
eta = tf.Variable(tf.zeros([n_chains, batch_size, n_topics]), name='eta')
eta_ph = tf.placeholder(tf.float32, shape=[n_chains, batch_size, n_topics],
name='eta_ph')
beta = tf.Variable(tf.zeros([n_topics, n_vocab]), name='beta')
phi = tf.nn.softmax(beta)
init_eta_ph = tf.assign(eta, eta_ph)
def e_obj(observed, n_chains, n_docs):
model = lntm(observed, n_chains, n_docs, n_topics, n_vocab,
eta_mean, eta_logstd)
return model.local_log_prob('eta') + model.local_log_prob('x')
# E step: sample eta using HMC
sample_op, hmc_info = hmc.sample(partial(e_obj, n_chains=n_chains,
n_docs=batch_size),
observed={'x': x, 'beta': beta},
latent={'eta': eta})
# M step: optimize beta
model = lntm({'x': x, 'eta': eta, 'beta': beta}, n_chains, batch_size,
n_topics, n_vocab, eta_mean, eta_logstd)
log_p_beta, log_px = model.local_log_prob(['beta', 'x'])
log_likelihood = tf.reduce_sum(tf.reduce_mean(log_px, axis=0))
log_joint = tf.reduce_sum(log_p_beta) + log_likelihood
learning_rate_ph = tf.placeholder(tf.float32, shape=[], name='lr')
optimizer = tf.train.AdamOptimizer(learning_rate_ph)
infer = optimizer.minimize(-log_joint, var_list=[beta])
params = tf.trainable_variables()
for i in params:
print(i.name, i.get_shape())
# Below is the evaluation part.
# Variables whose name starts with '_' is only used in the evaluation part,
# to be distinguished from those variables used in the training part above.
n_docs_test = X_test.shape[0]
_n_chains = 25
_n_temperatures = 1000
_x = tf.placeholder(tf.float32, shape=[n_docs_test, n_vocab], name='x')
_eta = tf.Variable(tf.zeros([_n_chains, n_docs_test, n_topics]),
name='eta')
def _log_prior(observed):
return lntm(observed, _n_chains, n_docs_test, n_topics, n_vocab,
eta_mean, eta_logstd).local_log_prob('eta')
_prior_samples = {'eta': lntm({}, _n_chains, n_docs_test, n_topics,
n_vocab, eta_mean, eta_logstd).outputs('eta')}
_hmc = zs.HMC(step_size=0.01, n_leapfrogs=20, adapt_step_size=True,
target_acceptance_rate=0.6)
_ais = zs.evaluation.AIS(_log_prior,
partial(e_obj, n_chains=_n_chains,
n_docs=n_docs_test),
_prior_samples, _hmc,
observed={'x': _x, 'beta': beta},
latent={'eta': _eta},
n_chains=_n_chains,
n_temperatures=_n_temperatures)
# -------------------
# Run the inference
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
for epoch in range(1, epochs + 1):
time_epoch = -time.time()
learning_rate = learning_rate_0 * (t0 / (t0 + epoch))**2
perm = list(range(X_train.shape[0]))
np.random.shuffle(perm)
X_train = X_train[perm, :]
Eta = Eta[:, perm, :]
lls = []
accs = []
for t in range(iters):
x_batch = X_train[t*batch_size: (t+1)*batch_size]
old_eta = Eta[:, t*batch_size: (t+1)*batch_size, :]
# E step
sess.run(init_eta_ph, feed_dict={eta_ph: old_eta})
for j in range(num_e_steps):
_, new_eta, acc = sess.run(
[sample_op, hmc_info.samples['eta'],
hmc_info.acceptance_rate],
feed_dict={x: x_batch,
eta_mean: Eta_mean,
eta_logstd: Eta_logstd})
accs.append(acc)
# Store eta for the persistent chain
if j + 1 == num_e_steps:
Eta[:, t*batch_size: (t+1)*batch_size, :] = new_eta
# M step
_, ll = sess.run(
[infer, log_likelihood],
feed_dict={x: x_batch,
eta_mean: Eta_mean,
eta_logstd: Eta_logstd,
learning_rate_ph: learning_rate})
lls.append(ll)
# Update hyper-parameters
Eta_mean = np.mean(Eta, axis=(0, 1))
Eta_logstd = np.log(np.std(Eta, axis=(0, 1)) + 1e-6)
time_epoch += time.time()
print('Epoch {} ({:.1f}s): Perplexity = {:.2f}, acc = {:.3f}, '
'eta mean = {:.2f}, logstd = {:.2f}'
.format(epoch, time_epoch,
np.exp(-np.sum(lls) / np.sum(X_train)),
np.mean(accs), np.mean(Eta_mean),
np.mean(Eta_logstd)))
# Output topics
p = sess.run(phi)
for k in range(n_topics):
rank = list(zip(list(p[k, :]), range(n_vocab)))
rank.sort()
rank.reverse()
sys.stdout.write('Topic {}, eta mean = {:.2f} stdev = {:.2f}: '
.format(k, Eta_mean[k], np.exp(Eta_logstd[k])))
for i in range(10):
sys.stdout.write(vocab[rank[i][1]] + ' ')
sys.stdout.write('\n')
# Run AIS
print("Evaluating test perplexity using AIS...")
time_ais = -time.time()
ll_lb = _ais.run(sess, feed_dict={_x: X_test,
eta_mean: Eta_mean,
eta_logstd: Eta_logstd})
time_ais += time.time()
print('>> Test (AIS) ({:.1f}s)\n'
'>> log likelihood lower bound = {}\n'
'>> perplexity upper bound = {}'
.format(time_ais, ll_lb,
np.exp(-ll_lb * n_docs_test / np.sum(X_test))))