Skip to content

Latest commit

 

History

History
305 lines (232 loc) · 8.44 KB

0516.最长回文子序列.md

File metadata and controls

305 lines (232 loc) · 8.44 KB

参与本项目,贡献其他语言版本的代码,拥抱开源,让更多学习算法的小伙伴们受益!

516.最长回文子序列

力扣题目链接

给定一个字符串 s ,找到其中最长的回文子序列,并返回该序列的长度。可以假设 s 的最大长度为 1000 。

示例 1: 输入: "bbbab" 输出: 4 一个可能的最长回文子序列为 "bbbb"。

示例 2: 输入:"cbbd" 输出: 2 一个可能的最长回文子序列为 "bb"。

提示:

  • 1 <= s.length <= 1000
  • s 只包含小写英文字母

算法公开课

《代码随想录》算法视频公开课动态规划再显神通,LeetCode:516.最长回文子序列,相信结合视频再看本篇题解,更有助于大家对本题的理解

思路

我们刚刚做过了 动态规划:回文子串,求的是回文子串,而本题要求的是回文子序列, 要搞清楚这两者之间的区别。

回文子串是要连续的,回文子序列可不是连续的! 回文子串,回文子序列都是动态规划经典题目。

回文子串,可以做这两题:

  • 647.回文子串
  • 5.最长回文子串

思路其实是差不多的,但本题要比求回文子串简单一点,因为情况少了一点。

动规五部曲分析如下:

  1. 确定dp数组(dp table)以及下标的含义

dp[i][j]:字符串s在[i, j]范围内最长的回文子序列的长度为dp[i][j]

  1. 确定递推公式

在判断回文子串的题目中,关键逻辑就是看s[i]与s[j]是否相同。

如果s[i]与s[j]相同,那么dp[i][j] = dp[i + 1][j - 1] + 2;

如图: 516.最长回文子序列

(如果这里看不懂,回忆一下dp[i][j]的定义)

如果s[i]与s[j]不相同,说明s[i]和s[j]的同时加入 并不能增加[i,j]区间回文子序列的长度,那么分别加入s[i]、s[j]看看哪一个可以组成最长的回文子序列。

加入s[j]的回文子序列长度为dp[i + 1][j]。

加入s[i]的回文子序列长度为dp[i][j - 1]。

那么dp[i][j]一定是取最大的,即:dp[i][j] = max(dp[i + 1][j], dp[i][j - 1]);

516.最长回文子序列1

代码如下:

if (s[i] == s[j]) {
    dp[i][j] = dp[i + 1][j - 1] + 2;
} else {
    dp[i][j] = max(dp[i + 1][j], dp[i][j - 1]);
}
  1. dp数组如何初始化

首先要考虑当i 和j 相同的情况,从递推公式:dp[i][j] = dp[i + 1][j - 1] + 2; 可以看出 递推公式是计算不到 i 和j相同时候的情况。

所以需要手动初始化一下,当i与j相同,那么dp[i][j]一定是等于1的,即:一个字符的回文子序列长度就是1。

其他情况dp[i][j]初始为0就行,这样递推公式:dp[i][j] = max(dp[i + 1][j], dp[i][j - 1]); 中dp[i][j]才不会被初始值覆盖。

vector<vector<int>> dp(s.size(), vector<int>(s.size(), 0));
for (int i = 0; i < s.size(); i++) dp[i][i] = 1;
  1. 确定遍历顺序

从递归公式中,可以看出,dp[i][j] 依赖于 dp[i + 1][j - 1] ,dp[i + 1][j] 和 dp[i][j - 1],如图:

所以遍历i的时候一定要从下到上遍历,这样才能保证下一行的数据是经过计算的

j的话,可以正常从左向右遍历。

代码如下:

for (int i = s.size() - 1; i >= 0; i--) {
    for (int j = i + 1; j < s.size(); j++) {
        if (s[i] == s[j]) {
            dp[i][j] = dp[i + 1][j - 1] + 2;
        } else {
            dp[i][j] = max(dp[i + 1][j], dp[i][j - 1]);
        }
    }
}
  1. 举例推导dp数组

输入s:"cbbd" 为例,dp数组状态如图:

516.最长回文子序列3

红色框即:dp[0][s.size() - 1]; 为最终结果。

以上分析完毕,C++代码如下:

class Solution {
public:
    int longestPalindromeSubseq(string s) {
        vector<vector<int>> dp(s.size(), vector<int>(s.size(), 0));
        for (int i = 0; i < s.size(); i++) dp[i][i] = 1;
        for (int i = s.size() - 1; i >= 0; i--) {
            for (int j = i + 1; j < s.size(); j++) {
                if (s[i] == s[j]) {
                    dp[i][j] = dp[i + 1][j - 1] + 2;
                } else {
                    dp[i][j] = max(dp[i + 1][j], dp[i][j - 1]);
                }
            }
        }
        return dp[0][s.size() - 1];
    }
};
  • 时间复杂度: O(n^2)
  • 空间复杂度: O(n^2)

其他语言版本

Java:

public class Solution {
    public int longestPalindromeSubseq(String s) {
        int len = s.length();
        int[][] dp = new int[len + 1][len + 1];
        for (int i = len - 1; i >= 0; i--) { // 从后往前遍历 保证情况不漏
            dp[i][i] = 1; // 初始化
            for (int j = i + 1; j < len; j++) {
                if (s.charAt(i) == s.charAt(j)) {
                    dp[i][j] = dp[i + 1][j - 1] + 2;
                } else {
                    dp[i][j] = Math.max(dp[i + 1][j], Math.max(dp[i][j], dp[i][j - 1]));
                }
            }
        }
        return dp[0][len - 1];
    }
}

Python:

class Solution:
    def longestPalindromeSubseq(self, s: str) -> int:
        dp = [[0] * len(s) for _ in range(len(s))]
        for i in range(len(s)):
            dp[i][i] = 1
        for i in range(len(s)-1, -1, -1):
            for j in range(i+1, len(s)):
                if s[i] == s[j]:
                    dp[i][j] = dp[i+1][j-1] + 2
                else:
                    dp[i][j] = max(dp[i+1][j], dp[i][j-1])
        return dp[0][-1]

Go:

func longestPalindromeSubseq(s string) int {
	size := len(s)
	max := func(a, b int) int {
		if a > b {
			return a
		}
		return b
	}
	dp := make([][]int, size)
	for i := 0; i < size; i++ {
		dp[i] = make([]int, size)
		dp[i][i] = 1
	}
	for i := size - 1; i >= 0; i-- {
		for j := i + 1; j < size; j++ {
			if s[i] == s[j] {
				dp[i][j] = dp[i+1][j-1] + 2
			} else {
				dp[i][j] = max(dp[i][j-1], dp[i+1][j])
			}
		}
	}
	return dp[0][size-1]
}

JavaScript:

const longestPalindromeSubseq = (s) => {
    const strLen = s.length;
    let dp = Array.from(Array(strLen), () => Array(strLen).fill(0));

    for(let i = 0; i < strLen; i++) {
        dp[i][i] = 1;
    }

    for(let i = strLen - 1; i >= 0; i--) {
        for(let j = i + 1; j < strLen; j++) {
            if(s[i] === s[j]) {
                dp[i][j] = dp[i+1][j-1] + 2;
            } else {
                dp[i][j] = Math.max(dp[i+1][j], dp[i][j-1]);
            }
        }
    }

    return dp[0][strLen - 1];
};

TypeScript:

function longestPalindromeSubseq(s: string): number {
    /**
        dp[i][j]:[i,j]区间内,最长回文子序列的长度
     */
    const length: number = s.length;
    const dp: number[][] = new Array(length).fill(0)
        .map(_ => new Array(length).fill(0));
    for (let i = 0; i < length; i++) {
        dp[i][i] = 1;
    }
    // 自下而上,自左往右遍历
    for (let i = length - 1; i >= 0; i--) {
        for (let j = i + 1; j < length; j++) {
            if (s[i] === s[j]) {
                dp[i][j] = dp[i + 1][j - 1] + 2;
            } else {
                dp[i][j] = Math.max(dp[i][j - 1], dp[i + 1][j]);
            }
        }
    }
    return dp[0][length - 1];
};

Rust:

impl Solution {
    pub fn longest_palindrome_subseq(s: String) -> i32 {
        let mut dp = vec![vec![0; s.len()]; s.len()];
        for i in (0..s.len()).rev() {
            dp[i][i] = 1;
            for j in i + 1..s.len() {
                if s[i..=i] == s[j..=j] {
                    dp[i][j] = dp[i + 1][j - 1] + 2;
                    continue;
                }
                dp[i][j] = dp[i + 1][j].max(dp[i][j - 1]);
            }
        }
        dp[0][s.len() - 1]
    }
}