-
Notifications
You must be signed in to change notification settings - Fork 2
/
app.py
274 lines (248 loc) Β· 9.8 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
import queue
import sqlite3
import PIL.Image
import av
import cv2
import numpy as np
import pandas as pd
import streamlit as st
from streamlit_webrtc import (
ClientSettings,
VideoProcessorBase,
WebRtcMode,
webrtc_streamer,
)
from src.api import load, get_model
conn = sqlite3.connect('database_colddrinks.db')
c = conn.cursor()
Flag = 0
def create_table():
c.execute('CREATE TABLE IF NOT EXISTS objectcount(item TEXT,itemcount INT,postdate DATE)')
create_table()
def add_data(item, itemcount, postdate):
c.execute('INSERT INTO objectcount(item,itemcount,postdate) VALUES (?,?,?)',
(item, itemcount, postdate))
conn.commit()
def view_all():
c.execute('SELECT * FROM objectcount')
data = c.fetchall()
return data
def csvformat(data):
df = pd.DataFrame(data)
df.index.name = 'Ser No'
df.to_csv('cold_drinks.csv')
#st.write('Data is written successfully to csv File.')
def excelformat(data):
df = pd.DataFrame(data)
#df.to_excel('wine.xlsx')
# create excel writer object
df.index.name = 'Ser No'
writer = pd.ExcelWriter('cold_drinks.xlsx')
# write dataframe to excel
df.to_excel(writer)
# save the excel
writer.save()
class VideoProcessor(VideoProcessorBase):
"""
class for taking frame / sec and predict on it
"""
def __init__(self):
self.confidence_threshold = CONF_THR
self.result_queue = queue.Queue()
self.type = None
def recv(self, frame):
"""
:param frame: image array (height, width, channel)
:return: image (height, width, channel) with bounding box
"""
image_ = frame.to_ndarray(format="bgr24")
# if self.type == "yes":
img, counting_ = load(model, image_, self.confidence_threshold, IMAGE_SIZE)
C_ = {k: v for k, v in counting_.items() if v > 0}
self.result_queue.put([C_])
# elif self.type == "no":
# self.result_queue.put([None])
return av.VideoFrame.from_ndarray(img, format="bgr24")
@st.cache
def __model():
"""
load model in cache mode
Returns: torch.Module
"""
# return get_model('best3.pt')
return get_model('exp2/weights/best.pt')
head_message_temp = """
<div style="padding:10px;border-radius:5px;margin:10px;">
<h3 style="text-align:center;">{}</h3>
<h3>Count: {}</h6>
<h3>Date : {}<h3>
</div>
"""
if __name__ == '__main__':
st.title("Cold Drinks Inventory Management System")
style = """<style>
footer {visibility: hidden;}
</style>
"""
WEBRTC_CLIENT_SETTINGS = ClientSettings(
rtc_configuration={"iceServers": [{"urls": ["stun:stun.l.google.com:19302"]}]},
media_stream_constraints={
"video": True,
"audio": False,
},
) # permission for camera
st.markdown(style, unsafe_allow_html=True)
# mode_ = st.sidebar.radio(
# "Mode", ('Staff', 'Admin'))
mode_ = st.selectbox('Mode', ('None','Staff', 'Admin'))
if mode_ == 'Admin':
st.title('Admin')
option = st.selectbox(
'', ('View Inventory',
'Update Product',
'Delete Product',
'Create User',
'Generate Report',
'Delete User'))
st.title(option)
if option == 'View Inventory':
ALL_DATA = view_all()
# for i in ALL_DATA[::-1]:
# st.markdown(head_message_temp.format(i[0], i[1], i[2]), unsafe_allow_html=True)
one = [i[0] for i in ALL_DATA[::-1]]
two = [i[1] for i in ALL_DATA[::-1]]
three = [i[2] for i in ALL_DATA[::-1]]
DATA = {
'time': three,
'name': one,
'count': two
}
data_ = pd.DataFrame.from_dict(DATA)
st.table(data_)
stat = data_.groupby('name')['count'].sum()
st.table(pd.DataFrame(stat))
elif option == "Create User":
blog_author = st.text_input("Enter User Name", max_chars=50)
password = st.text_input("Enter Password", max_chars=50, type='password')
if st.button('Create') and blog_author and password:
st.success('User Created')
elif option == "Generate Report":
if st.button('Generate'):
st.write('Report')
elif option == 'Delete User':
name_23 = st.text_input("User Name", max_chars=50)
if st.button('Delete') and name_23:
st.success('user deleted')
elif option == "Update Product":
name = st.text_input("Product name", max_chars=50)
if st.button('Update') and name:
st.success('Product Updated')
elif option == 'Delete Product':
name_ = st.text_input("Product name", max_chars=50)
if st.button('Update') and name_:
st.success('Product Deleted')
elif mode_ == 'Staff':
date = st.sidebar.date_input("Date")
st.title('Staff')
IMAGE_SIZE = 640 # default image size
model = __model() # model instance
# change here for confidence of object predict in image
# by default its 70
CONF_THR = 0.65 # Confidence threshold
confidence_threshold = st.sidebar.slider(
"Confidence threshold", 0.0, 1.0, CONF_THR, 0.05
) # Slide bar
# mode = st.sidebar.radio(
# "View Mode", ('π₯ video', 'πΌοΈ image', 'π data'))
mode = st.sidebar.radio(
"View Mode", ('π₯ video', 'π data', 'πΌοΈ image'))
if mode == 'π₯ video':
button_placeholder = st.empty()
st.title("π₯ Object detection video")
webrtc_ctx = webrtc_streamer(
key="object-detection",
mode=WebRtcMode.SENDRECV,
client_settings=WEBRTC_CLIENT_SETTINGS,
video_processor_factory=VideoProcessor,
async_processing=True,
)
# if st.button('Capture'):
# Flag += 1
if webrtc_ctx.video_processor:
# checks if camera is running
webrtc_ctx.video_processor.confidence_threshold = confidence_threshold
if st.checkbox("Store", value=False):
Flag = 1
# if st.checkbox("Stop it", value=False):
# Flag = 0
if st.checkbox("Show the detected labels", value=True):
if webrtc_ctx.state.playing:
labels_placeholder = st.empty()
# button_placeholder = st.empty()
empty = st.empty()
while True:
if webrtc_ctx.video_processor:
# webrtc_ctx.video_processor.type = st.radio(
# "Capture", ("No", "Yes")
# )
try:
result = webrtc_ctx.video_processor.result_queue.get(
timeout=1.0
)
except queue.Empty:
result = None
if result:
data_ = pd.DataFrame(result[0], index=['items'])
labels_placeholder.table(data_)
if Flag:
for name, d in result[0].items():
add_data(name, d, date)
Flag = 0
# Flag -= 1
else:
labels_placeholder.table(result)
else:
break
# if st.button('Store'):
# Flag += 1
elif mode == 'πΌοΈ image':
st.title("πΌοΈ Object detection image")
img_file_buffer = st.file_uploader("Upload an image", type=["png", "jpg", "jpeg"])
if img_file_buffer is not None:
image = np.array(PIL.Image.open(img_file_buffer)) # Open buffer
image = cv2.resize(image, (IMAGE_SIZE, IMAGE_SIZE)) # resize image
image_box, counting = load(model, image, confidence_threshold,
IMAGE_SIZE) # function to predict on image
st.image(
image_box, caption=f"Processed image", use_column_width=True,
)
C = {k: v for k, v in counting.items() if v > 0}
data = pd.DataFrame(C, index=['items'])
st.sidebar.table(data)
for name, d in C.items():
add_data(name, d, date)
elif mode == 'π data':
st.title("π data")
ALL_DATA = view_all()
# for i in ALL_DATA[::-1]:
# st.markdown(head_message_temp.format(i[0], i[1], i[2]), unsafe_allow_html=True)
one = [i[0] for i in ALL_DATA[::-1]]
two = [i[1] for i in ALL_DATA[::-1]]
three = [i[2] for i in ALL_DATA[::-1]]
DATA = {
'time': three,
'name': one,
'count': two
}
data_ = pd.DataFrame.from_dict(DATA)
st.table(data_)
stat = data_.groupby('name')['count'].sum()
st.table(pd.DataFrame(stat))
Downloadmode = st.sidebar.radio(
"Download Mode", ('None','Excel', 'CSV'))
if Downloadmode=='CSV':
csvformat(data_)
st.write('Data is written successfully to csv File.')
elif Downloadmode=='Excel':
excelformat(data_)
st.write('Data is written successfully to Excel File.')