-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathmkltest.f90
120 lines (107 loc) · 3.35 KB
/
mkltest.f90
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
!====================================================================
! Intel Math Kernel Library Test
!
! Create a random matrix and diagonalize it
!====================================================================
program mkltest
implicit none
integer(4) :: i
integer(4) :: j
integer(4) :: iseed ! Seed for random number generator
integer(4), parameter :: n = 100 ! Matrix dimension ( n x n )
real(8), allocatable :: h(:,:) ! Matrix to diagonalize
real(8), allocatable :: eig(:) ! Array with eigen values of h
real(8), external :: ran3
iseed = -99
! Allocate memory.....................................................
if ( .not. allocated ( h ) ) allocate ( h(n,n) )
if ( .not. allocated ( eig ) ) allocate ( eig(n) )
! Create random test matrix h.........................................
do i = 1, n
do j = 1, i
h(i,j) = ran3(iseed)
h(j,i) = h(i,j)
! write(6,*)i,j,h(i,j)
end do
end do
! Diagonalize the matrix h............................................
call diasym(h,eig,n)
! Write eigen values of h.............................................
write(6,*)'Eigen values of h:'
do i = 1, n
write(6,*)i,eig(i)
end do
! Free memory.........................................................
if ( allocated ( h ) ) deallocate ( h )
if ( allocated ( eig ) ) deallocate ( eig )
stop 'End of program.'
end program mkltest
!=====================================================================
! Call LAPACK diagonalization subroutine DSYEV
! Input: a(n,n) = real symmetric matrix to be diagonalized!
! n = size of a
! Output: a(n,n) = orthonormal eigenvectors of a
! eig(n) = eigenvalues of a in ascending order
!=====================================================================
subroutine diasym(h,eig,n)
implicit none
integer(4) :: n
integer(4) :: l
integer(4) :: inf
real(8) :: h(n,n)
real(8) :: eig(n)
real(8) :: work(n*(3+n/2))
l=n*(3+n/2)
call dsyev('V','U',n,h,n,eig,work,l,inf)
end subroutine diasym
!=====================================================================
! The function
! ran3
! returns a uniform random number deviate between 0.0 and 1.0. Set
! the idum to any negative value to initialize or reinitialize the
! sequence. Any large MBIG, and any small (but still large) MSEED
! can be substituted for the present values.
!=====================================================================
REAL(8) FUNCTION ran3(idum)
IMPLICIT NONE
INTEGER :: idum
INTEGER :: mbig,mseed,mz
REAL(8) :: fac
PARAMETER (mbig=1000000000,mseed=161803398,mz=0,fac=1./mbig)
INTEGER :: i,iff,ii,inext,inextp,k
INTEGER :: mj,mk,ma(55)
SAVE iff,inext,inextp,ma
DATA iff /0/
IF ( (idum < 0) .or. (iff == 0) ) THEN
iff=1
mj=mseed-IABS(idum)
mj=MOD(mj,mbig)
ma(55)=mj
mk=1
DO i=1,54
ii=MOD(21*i,55)
ma(ii)=mk
mk=mj-mk
IF(mk < mz)mk=mk+mbig
mj=ma(ii)
ENDDO
DO k=1,4
DO i=1,55
ma(i)=ma(i)-ma(1+MOD(i+30,55))
IF (ma(i) < mz)ma(i)=ma(i)+mbig
ENDDO
ENDDO
inext=0
inextp=31
idum=1
ENDIF
inext=inext+1
IF (inext == 56) inext=1
inextp=inextp+1
IF (inextp == 56) inextp=1
mj=ma(inext)-ma(inextp)
IF (mj < mz) mj=mj+mbig
ma(inext)=mj
ran3=mj*fac
return
END FUNCTION ran3