-
Notifications
You must be signed in to change notification settings - Fork 1
/
resnet_main.py
685 lines (574 loc) · 27.8 KB
/
resnet_main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Train a ResNet-50 model on ImageNet on TPU."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import time
from absl import app
from absl import flags
import absl.logging as _logging # pylint: disable=unused-import
import tensorflow as tf
#from official.resnet import imagenet_input
#from official.resnet import lars_util
#from official.resnet import resnet_model
import imagenet_input
import lars_util
import resnet_model
from tensorflow.contrib import summary
from tensorflow.contrib.tpu.python.tpu import async_checkpoint
from tensorflow.contrib.training.python.training import evaluation
from tensorflow.core.protobuf import rewriter_config_pb2
from tensorflow.python.estimator import estimator
import optimization
FLAGS = flags.FLAGS
FAKE_DATA_DIR = 'gs://cloud-tpu-test-datasets/fake_imagenet'
flags.DEFINE_bool(
'use_tpu', default=True,
help=('Use TPU to execute the model for training and evaluation. If'
' --use_tpu=false, will use whatever devices are available to'
' TensorFlow by default (e.g. CPU and GPU)'))
# Cloud TPU Cluster Resolvers
flags.DEFINE_string(
'tpu', default=None,
help='The Cloud TPU to use for training. This should be either the name '
'used when creating the Cloud TPU, or a grpc://ip.address.of.tpu:8470 url.')
flags.DEFINE_string(
'gcp_project', default=None,
help='Project name for the Cloud TPU-enabled project. If not specified, we '
'will attempt to automatically detect the GCE project from metadata.')
flags.DEFINE_string(
'tpu_zone', default=None,
help='GCE zone where the Cloud TPU is located in. If not specified, we '
'will attempt to automatically detect the GCE project from metadata.')
# Model specific flags
flags.DEFINE_string(
'data_dir', default=FAKE_DATA_DIR,
help=('The directory where the ImageNet input data is stored. Please see'
' the README.md for the expected data format.'))
flags.DEFINE_string(
'model_dir', default=None,
help=('The directory where the model and training/evaluation summaries are'
' stored.'))
flags.DEFINE_integer(
'resnet_depth', default=50,
help=('Depth of ResNet model to use. Must be one of {18, 34, 50, 101, 152,'
' 200}. ResNet-18 and 34 use the pre-activation residual blocks'
' without bottleneck layers. The other models use pre-activation'
' bottleneck layers. Deeper models require more training time and'
' more memory and may require reducing --train_batch_size to prevent'
' running out of memory.'))
flags.DEFINE_string(
'mode', default='train_and_eval',
help='One of {"train_and_eval", "train", "eval"}.')
flags.DEFINE_integer(
'train_steps', default=112608,
help=('The number of steps to use for training. Default is 112590 steps'
' which is approximately 90 epochs at batch size 1024. This flag'
' should be adjusted according to the --train_batch_size flag.'))
flags.DEFINE_integer(
'train_batch_size', default=1024, help='Batch size for training.')
flags.DEFINE_integer(
'eval_batch_size', default=1024, help='Batch size for evaluation.')
flags.DEFINE_integer(
'num_train_images', default=1281167, help='Size of training data set.')
flags.DEFINE_integer(
'num_eval_images', default=50000, help='Size of evaluation data set.')
flags.DEFINE_integer(
'num_label_classes', default=1000, help='Number of classes, at least 2')
flags.DEFINE_integer(
'steps_per_eval', default=1251,
help=('Controls how often evaluation is performed. Since evaluation is'
' fairly expensive, it is advised to evaluate as infrequently as'
' possible (i.e. up to --train_steps, which evaluates the model only'
' after finishing the entire training regime).'))
flags.DEFINE_integer(
'eval_timeout',
default=None,
help='Maximum seconds between checkpoints before evaluation terminates.')
flags.DEFINE_bool(
'skip_host_call', default=False,
help=('Skip the host_call which is executed every training step. This is'
' generally used for generating training summaries (train loss,'
' learning rate, etc...). When --skip_host_call=false, there could'
' be a performance drop if host_call function is slow and cannot'
' keep up with the TPU-side computation.'))
flags.DEFINE_integer(
'iterations_per_loop', default=1251,
help=('Number of steps to run on TPU before outfeeding metrics to the CPU.'
' If the number of iterations in the loop would exceed the number of'
' train steps, the loop will exit before reaching'
' --iterations_per_loop. The larger this value is, the higher the'
' utilization on the TPU.'))
flags.DEFINE_integer(
'num_parallel_calls', default=64,
help=('Number of parallel threads in CPU for the input pipeline'))
flags.DEFINE_integer(
'num_cores', default=8,
help=('Number of TPU cores. For a single TPU device, this is 8 because each'
' TPU has 4 chips each with 2 cores.'))
flags.DEFINE_string(
'bigtable_project', None,
'The Cloud Bigtable project. If None, --gcp_project will be used.')
flags.DEFINE_string(
'bigtable_instance', None,
'The Cloud Bigtable instance to load data from.')
flags.DEFINE_string(
'bigtable_table', 'imagenet',
'The Cloud Bigtable table to load data from.')
flags.DEFINE_string(
'bigtable_train_prefix', 'train_',
'The prefix identifying training rows.')
flags.DEFINE_string(
'bigtable_eval_prefix', 'validation_',
'The prefix identifying evaluation rows.')
flags.DEFINE_string(
'bigtable_column_family', 'tfexample',
'The column family storing TFExamples.')
flags.DEFINE_string(
'bigtable_column_qualifier', 'example',
'The column name storing TFExamples.')
flags.DEFINE_string(
'data_format', default='channels_last',
help=('A flag to override the data format used in the model. The value'
' is either channels_first or channels_last. To run the network on'
' CPU or TPU, channels_last should be used. For GPU, channels_first'
' will improve performance.'))
# TODO(chrisying): remove this flag once --transpose_tpu_infeed flag is enabled
# by default for TPU
flags.DEFINE_bool(
'transpose_input', default=True,
help='Use TPU double transpose optimization')
flags.DEFINE_string(
'export_dir',
default=None,
help=('The directory where the exported SavedModel will be stored.'))
flags.DEFINE_bool(
'export_to_tpu', default=False,
help=('Whether to export additional metagraph with "serve, tpu" tags'
' in addition to "serve" only metagraph.'))
flags.DEFINE_string(
'precision', default='bfloat16',
help=('Precision to use; one of: {bfloat16, float32}'))
flags.DEFINE_float(
'base_learning_rate', default=0.1,
help=('Base learning rate when train batch size is 256.'))
flags.DEFINE_float(
'momentum', default=0.9,
help=('Momentum parameter used in the MomentumOptimizer.'))
flags.DEFINE_float(
'weight_decay', default=1e-3,
help=('Weight decay coefficiant for l2 regularization.'))
flags.DEFINE_float(
'label_smoothing', default=0.0,
help=('Label smoothing parameter used in the softmax_cross_entropy'))
flags.DEFINE_integer('log_step_count_steps', 64, 'The number of steps at '
'which the global step information is logged.')
flags.DEFINE_bool('enable_lars',
default=False,
help=('Enable LARS optimizer for large batch training.'))
flags.DEFINE_float('poly_rate', default=0.0,
help=('Set LARS/Poly learning rate.'))
flags.DEFINE_bool(
'use_cache', default=True, help=('Enable cache for training input.'))
flags.DEFINE_bool(
'use_async_checkpointing', default=False, help=('Enable async checkpoint'))
flags.DEFINE_float('learning_rate', 1e-3, 'The initial learning rate.')
flags.DEFINE_float('poly_power', 0.5, 'The power of poly decay.')
flags.DEFINE_float('weight_decay_input', 1e-4, 'Weight decay.')
flags.DEFINE_float('beta1_input', 0.9, 'beta1 for LAMB.')
flags.DEFINE_float('beta2_input', 0.999, 'beta2 for LAMB.')
flags.DEFINE_float('eps_input', 1e-6, 'eps for LAMB.')
flags.DEFINE_integer('num_warmup_steps', 782, 'Number of warmup steps.')
flags.DEFINE_integer('start_warmup_step', 0, 'The starting step of warmup.')
# Learning rate schedule
LR_SCHEDULE = [ # (multiplier, epoch to start) tuples
(1.0, 5), (0.1, 30), (0.01, 60), (0.001, 80)
]
# The input tensor is in the range of [0, 255], we need to scale them to the
# range of [0, 1]
MEAN_RGB = [0.485 * 255, 0.456 * 255, 0.406 * 255]
STDDEV_RGB = [0.229 * 255, 0.224 * 255, 0.225 * 255]
def learning_rate_schedule(current_epoch):
"""Handles linear scaling rule, gradual warmup, and LR decay.
The learning rate starts at 0, then it increases linearly per step.
After 5 epochs we reach the base learning rate (scaled to account
for batch size).
After 30, 60 and 80 epochs the learning rate is divided by 10.
After 90 epochs training stops and the LR is set to 0. This ensures
that we train for exactly 90 epochs for reproducibility.
Args:
current_epoch: `Tensor` for current epoch.
Returns:
A scaled `Tensor` for current learning rate.
"""
scaled_lr = FLAGS.base_learning_rate * (FLAGS.train_batch_size / 256.0)
decay_rate = (scaled_lr * LR_SCHEDULE[0][0] *
current_epoch / LR_SCHEDULE[0][1])
for mult, start_epoch in LR_SCHEDULE:
decay_rate = tf.where(current_epoch < start_epoch,
decay_rate, scaled_lr * mult)
return decay_rate
def resnet_model_fn(features, labels, mode, params):
"""The model_fn for ResNet to be used with TPUEstimator.
Args:
features: `Tensor` of batched images.
labels: `Tensor` of labels for the data samples
mode: one of `tf.estimator.ModeKeys.{TRAIN,EVAL,PREDICT}`
params: `dict` of parameters passed to the model from the TPUEstimator,
`params['batch_size']` is always provided and should be used as the
effective batch size.
Returns:
A `TPUEstimatorSpec` for the model
"""
if isinstance(features, dict):
features = features['feature']
# In most cases, the default data format NCHW instead of NHWC should be
# used for a significant performance boost on GPU/TPU. NHWC should be used
# only if the network needs to be run on CPU since the pooling operations
# are only supported on NHWC.
if FLAGS.data_format == 'channels_first':
assert not FLAGS.transpose_input # channels_first only for GPU
features = tf.transpose(features, [0, 3, 1, 2])
if FLAGS.transpose_input and mode != tf.estimator.ModeKeys.PREDICT:
features = tf.transpose(features, [3, 0, 1, 2]) # HWCN to NHWC
# Normalize the image to zero mean and unit variance.
features -= tf.constant(MEAN_RGB, shape=[1, 1, 3], dtype=features.dtype)
features /= tf.constant(STDDEV_RGB, shape=[1, 1, 3], dtype=features.dtype)
# This nested function allows us to avoid duplicating the logic which
# builds the network, for different values of --precision.
def build_network():
network = resnet_model.resnet_v1(
resnet_depth=FLAGS.resnet_depth,
num_classes=FLAGS.num_label_classes,
data_format=FLAGS.data_format)
return network(
inputs=features, is_training=(mode == tf.estimator.ModeKeys.TRAIN))
if FLAGS.precision == 'bfloat16':
with tf.contrib.tpu.bfloat16_scope():
logits = build_network()
logits = tf.cast(logits, tf.float32)
elif FLAGS.precision == 'float32':
logits = build_network()
if mode == tf.estimator.ModeKeys.PREDICT:
predictions = {
'classes': tf.argmax(logits, axis=1),
'probabilities': tf.nn.softmax(logits, name='softmax_tensor')
}
return tf.estimator.EstimatorSpec(
mode=mode,
predictions=predictions,
export_outputs={
'classify': tf.estimator.export.PredictOutput(predictions)
})
# If necessary, in the model_fn, use params['batch_size'] instead the batch
# size flags (--train_batch_size or --eval_batch_size).
batch_size = params['batch_size'] # pylint: disable=unused-variable
# Calculate loss, which includes softmax cross entropy and L2 regularization.
one_hot_labels = tf.one_hot(labels, FLAGS.num_label_classes)
cross_entropy = tf.losses.softmax_cross_entropy(
logits=logits,
onehot_labels=one_hot_labels,
label_smoothing=FLAGS.label_smoothing)
# Add weight decay to the loss for non-batch-normalization variables.
loss = cross_entropy + FLAGS.weight_decay * tf.add_n(
[tf.nn.l2_loss(v) for v in tf.trainable_variables()
if 'batch_normalization' not in v.name])
host_call = None
if mode == tf.estimator.ModeKeys.TRAIN:
# Compute the current epoch and associated learning rate from global_step.
global_step = tf.train.get_global_step()
steps_per_epoch = FLAGS.num_train_images / FLAGS.train_batch_size
current_epoch = (tf.cast(global_step, tf.float32) /
steps_per_epoch)
# LARS is a large batch optimizer. LARS enables higher accuracy at batch 16K
# and larger batch sizes.
#if FLAGS.train_batch_size >= 16384 and FLAGS.enable_lars:
#learning_rate = 0.0
#optimizer = lars_util.init_lars_optimizer(current_epoch)
#else:
#learning_rate = learning_rate_schedule(current_epoch)
#optimizer = tf.train.MomentumOptimizer(
#learning_rate=learning_rate,
#momentum=FLAGS.momentum,
#use_nesterov=True)
#if FLAGS.use_tpu:
# When using TPU, wrap the optimizer with CrossShardOptimizer which
# handles synchronization details between different TPU cores. To the
# user, this should look like regular synchronous training.
#optimizer = tf.contrib.tpu.CrossShardOptimizer(optimizer)
# Batch normalization requires UPDATE_OPS to be added as a dependency to
# the train operation.
tf.logging.info("****************************** the batch_size is " +str(FLAGS.train_batch_size)+ " **************************************")
tf.logging.info("****************************** the learning_rate is " +str(FLAGS.learning_rate)+ " **************************************")
tf.logging.info("****************************** the train_steps is " +str(FLAGS.train_steps)+ " **************************************")
tf.logging.info("****************************** the poly_power is " +str(FLAGS.poly_power)+ " **************************************")
tf.logging.info("****************************** the weight_decay is " +str(FLAGS.weight_decay)+ " **************************************")
tf.logging.info("****************************** the label_smoothing is " +str(FLAGS.label_smoothing)+ " **************************************")
tf.logging.info("****************************** the weight_decay_input is " +str(FLAGS.weight_decay_input)+ " **************************************")
tf.logging.info("****************************** the beta1 is " +str(FLAGS.beta1_input)+ " **************************************")
tf.logging.info("****************************** the beta2 is " +str(FLAGS.beta2_input)+ " **************************************")
tf.logging.info("****************************** the eps is " +str(FLAGS.eps_input)+ " **************************************")
update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
with tf.control_dependencies(update_ops):
# train_op = optimizer.minimize(loss, global_step)
train_op = optimization.create_optimizer(loss, FLAGS.learning_rate, FLAGS.train_steps, FLAGS.num_warmup_steps, FLAGS.use_tpu, FLAGS.poly_power, FLAGS.start_warmup_step, FLAGS.weight_decay_input, FLAGS.beta1_input, FLAGS.beta2_input, FLAGS.eps_input)
#if not FLAGS.skip_host_call:
#def host_call_fn(gs, loss, lr, ce):
#gs = gs[0]
# Host call fns are executed FLAGS.iterations_per_loop times after one
# TPU loop is finished, setting max_queue value to the same as number of
# iterations will make the summary writer only flush the data to storage
# once per loop.
#with summary.create_file_writer(FLAGS.model_dir, max_queue=FLAGS.iterations_per_loop).as_default():
#with summary.always_record_summaries():
#summary.scalar('loss', loss[0], step=gs)
#summary.scalar('learning_rate', lr[0], step=gs)
#summary.scalar('current_epoch', ce[0], step=gs)
#return summary.all_summary_ops()
# To log the loss, current learning rate, and epoch for Tensorboard, the
# summary op needs to be run on the host CPU via host_call. host_call
# expects [batch_size, ...] Tensors, thus reshape to introduce a batch
# dimension. These Tensors are implicitly concatenated to
# [params['batch_size']].
#gs_t = tf.reshape(global_step, [1])
#loss_t = tf.reshape(loss, [1])
#lr_t = tf.reshape(learning_rate, [1])
#ce_t = tf.reshape(current_epoch, [1])
#host_call = (host_call_fn, [gs_t, loss_t, lr_t, ce_t])
else:
train_op = None
eval_metrics = None
if mode == tf.estimator.ModeKeys.EVAL:
def metric_fn(labels, logits):
"""Evaluation metric function. Evaluates accuracy.
This function is executed on the CPU and should not directly reference
any Tensors in the rest of the `model_fn`. To pass Tensors from the model
to the `metric_fn`, provide as part of the `eval_metrics`. See
https://www.tensorflow.org/api_docs/python/tf/contrib/tpu/TPUEstimatorSpec
for more information.
Arguments should match the list of `Tensor` objects passed as the second
element in the tuple passed to `eval_metrics`.
Args:
labels: `Tensor` with shape `[batch]`.
logits: `Tensor` with shape `[batch, num_classes]`.
Returns:
A dict of the metrics to return from evaluation.
"""
predictions = tf.argmax(logits, axis=1)
top_1_accuracy = tf.metrics.accuracy(labels, predictions)
in_top_5 = tf.cast(tf.nn.in_top_k(logits, labels, 5), tf.float32)
top_5_accuracy = tf.metrics.mean(in_top_5)
return {
'top_1_accuracy': top_1_accuracy,
'top_5_accuracy': top_5_accuracy,
}
eval_metrics = (metric_fn, [labels, logits])
return tf.contrib.tpu.TPUEstimatorSpec(
mode=mode,
loss=loss,
train_op=train_op,
host_call=host_call,
eval_metrics=eval_metrics)
def _verify_non_empty_string(value, field_name):
"""Ensures that a given proposed field value is a non-empty string.
Args:
value: proposed value for the field.
field_name: string name of the field, e.g. `project`.
Returns:
The given value, provided that it passed the checks.
Raises:
ValueError: the value is not a string, or is a blank string.
"""
if not isinstance(value, str):
raise ValueError(
'Bigtable parameter "%s" must be a string.' % field_name)
if not value:
raise ValueError(
'Bigtable parameter "%s" must be non-empty.' % field_name)
return value
def _select_tables_from_flags():
"""Construct training and evaluation Bigtable selections from flags.
Returns:
[training_selection, evaluation_selection]
"""
project = _verify_non_empty_string(
FLAGS.bigtable_project or FLAGS.gcp_project,
'project')
instance = _verify_non_empty_string(FLAGS.bigtable_instance, 'instance')
table = _verify_non_empty_string(FLAGS.bigtable_table, 'table')
train_prefix = _verify_non_empty_string(FLAGS.bigtable_train_prefix,
'train_prefix')
eval_prefix = _verify_non_empty_string(FLAGS.bigtable_eval_prefix,
'eval_prefix')
column_family = _verify_non_empty_string(FLAGS.bigtable_column_family,
'column_family')
column_qualifier = _verify_non_empty_string(FLAGS.bigtable_column_qualifier,
'column_qualifier')
return [
imagenet_input.BigtableSelection(
project=project,
instance=instance,
table=table,
prefix=p,
column_family=column_family,
column_qualifier=column_qualifier)
for p in (train_prefix, eval_prefix)
]
def main(unused_argv):
tpu_cluster_resolver = tf.contrib.cluster_resolver.TPUClusterResolver(
FLAGS.tpu if (FLAGS.tpu or FLAGS.use_tpu) else '',
zone=FLAGS.tpu_zone,
project=FLAGS.gcp_project)
if FLAGS.use_async_checkpointing:
save_checkpoints_steps = None
else:
save_checkpoints_steps = max(100, FLAGS.iterations_per_loop)
config = tf.contrib.tpu.RunConfig(
cluster=tpu_cluster_resolver,
model_dir=FLAGS.model_dir,
save_checkpoints_steps=save_checkpoints_steps,
log_step_count_steps=FLAGS.log_step_count_steps,
session_config=tf.ConfigProto(
graph_options=tf.GraphOptions(
rewrite_options=rewriter_config_pb2.RewriterConfig(
disable_meta_optimizer=True))),
tpu_config=tf.contrib.tpu.TPUConfig(
iterations_per_loop=FLAGS.iterations_per_loop,
num_shards=FLAGS.num_cores,
per_host_input_for_training=tf.contrib.tpu.InputPipelineConfig
.PER_HOST_V2)) # pylint: disable=line-too-long
resnet_classifier = tf.contrib.tpu.TPUEstimator(
use_tpu=FLAGS.use_tpu,
model_fn=resnet_model_fn,
config=config,
train_batch_size=FLAGS.train_batch_size,
eval_batch_size=FLAGS.eval_batch_size,
export_to_tpu=FLAGS.export_to_tpu)
assert FLAGS.precision == 'bfloat16' or FLAGS.precision == 'float32', (
'Invalid value for --precision flag; must be bfloat16 or float32.')
tf.logging.info('Precision: %s', FLAGS.precision)
use_bfloat16 = FLAGS.precision == 'bfloat16'
# Input pipelines are slightly different (with regards to shuffling and
# preprocessing) between training and evaluation.
if FLAGS.bigtable_instance:
tf.logging.info('Using Bigtable dataset, table %s', FLAGS.bigtable_table)
select_train, select_eval = _select_tables_from_flags()
imagenet_train, imagenet_eval = [imagenet_input.ImageNetBigtableInput(
is_training=is_training,
use_bfloat16=use_bfloat16,
transpose_input=FLAGS.transpose_input,
selection=selection) for (is_training, selection) in
[(True, select_train),
(False, select_eval)]]
else:
if FLAGS.data_dir == FAKE_DATA_DIR:
tf.logging.info('Using fake dataset.')
else:
tf.logging.info('Using dataset: %s', FLAGS.data_dir)
imagenet_train, imagenet_eval = [
imagenet_input.ImageNetInput(
is_training=is_training,
data_dir=FLAGS.data_dir,
transpose_input=FLAGS.transpose_input,
cache=FLAGS.use_cache and is_training,
num_parallel_calls=FLAGS.num_parallel_calls,
use_bfloat16=use_bfloat16) for is_training in [True, False]
]
steps_per_epoch = FLAGS.num_train_images // FLAGS.train_batch_size
eval_steps = FLAGS.num_eval_images // FLAGS.eval_batch_size
if FLAGS.mode == 'eval':
# Run evaluation when there's a new checkpoint
for ckpt in evaluation.checkpoints_iterator(
FLAGS.model_dir, timeout=FLAGS.eval_timeout):
tf.logging.info('Starting to evaluate.')
try:
start_timestamp = time.time() # This time will include compilation time
eval_results = resnet_classifier.evaluate(
input_fn=imagenet_eval.input_fn,
steps=eval_steps,
checkpoint_path=ckpt)
elapsed_time = int(time.time() - start_timestamp)
tf.logging.info('Eval results: %s. Elapsed seconds: %d',
eval_results, elapsed_time)
# Terminate eval job when final checkpoint is reached
current_step = int(os.path.basename(ckpt).split('-')[1])
if current_step >= FLAGS.train_steps:
tf.logging.info(
'Evaluation finished after training step %d', current_step)
break
except tf.errors.NotFoundError:
# Since the coordinator is on a different job than the TPU worker,
# sometimes the TPU worker does not finish initializing until long after
# the CPU job tells it to start evaluating. In this case, the checkpoint
# file could have been deleted already.
tf.logging.info(
'Checkpoint %s no longer exists, skipping checkpoint', ckpt)
else: # FLAGS.mode == 'train' or FLAGS.mode == 'train_and_eval'
current_step = estimator._load_global_step_from_checkpoint_dir(FLAGS.model_dir) # pylint: disable=protected-access,line-too-long
steps_per_epoch = FLAGS.num_train_images // FLAGS.train_batch_size
tf.logging.info('Training for %d steps (%.2f epochs in total). Current'
' step %d.',
FLAGS.train_steps,
FLAGS.train_steps / steps_per_epoch,
current_step)
start_timestamp = time.time() # This time will include compilation time
if FLAGS.mode == 'train':
hooks = []
if FLAGS.use_async_checkpointing:
hooks.append(
async_checkpoint.AsyncCheckpointSaverHook(
checkpoint_dir=FLAGS.model_dir,
save_steps=max(100, FLAGS.iterations_per_loop)))
resnet_classifier.train(
input_fn=imagenet_train.input_fn,
max_steps=FLAGS.train_steps,
hooks=hooks)
else:
assert FLAGS.mode == 'train_and_eval'
while current_step < FLAGS.train_steps:
# Train for up to steps_per_eval number of steps.
# At the end of training, a checkpoint will be written to --model_dir.
next_checkpoint = min(current_step + FLAGS.steps_per_eval,
FLAGS.train_steps)
resnet_classifier.train(
input_fn=imagenet_train.input_fn, max_steps=next_checkpoint)
current_step = next_checkpoint
tf.logging.info('Finished training up to step %d. Elapsed seconds %d.',
next_checkpoint, int(time.time() - start_timestamp))
# Evaluate the model on the most recent model in --model_dir.
# Since evaluation happens in batches of --eval_batch_size, some images
# may be excluded modulo the batch size. As long as the batch size is
# consistent, the evaluated images are also consistent.
tf.logging.info('Starting to evaluate.')
eval_results = resnet_classifier.evaluate(
input_fn=imagenet_eval.input_fn,
steps=FLAGS.num_eval_images // FLAGS.eval_batch_size)
tf.logging.info('Eval results at step %d: %s',
next_checkpoint, eval_results)
elapsed_time = int(time.time() - start_timestamp)
tf.logging.info('Finished training up to step %d. Elapsed seconds %d.',
FLAGS.train_steps, elapsed_time)
if FLAGS.export_dir is not None:
# The guide to serve a exported TensorFlow model is at:
# https://www.tensorflow.org/serving/serving_basic
tf.logging.info('Starting to export model.')
resnet_classifier.export_saved_model(
export_dir_base=FLAGS.export_dir,
serving_input_receiver_fn=imagenet_input.image_serving_input_fn)
if __name__ == '__main__':
tf.logging.set_verbosity(tf.logging.INFO)
app.run(main)