We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
我看bart的论文在pretraining的时候会有五种denoising的方法,在bart_dataset.py中我看insert_ratio和rotate_ratio是设为0,似乎不能将其设为大于0的数,是否意味着不能进行text infilling和rotation?
The text was updated successfully, but these errors were encountered:
是的,denoising我们follow了BART的设置,只使用text infilling,没有加入insert和rotate。BART论文中表示这样效果最好
Sorry, something went wrong.
还有个问题想问一下,你们这个预训练时,每个iteration时训练global batch size条数据吗?训练的每一条数据是截止至1024长度的文章,还是一整篇文章,文章被切割成一句一句,每一句padding到1024?
是第一种,太长的文章会被分成多个1024。短的会padding到1024
No branches or pull requests
我看bart的论文在pretraining的时候会有五种denoising的方法,在bart_dataset.py中我看insert_ratio和rotate_ratio是设为0,似乎不能将其设为大于0的数,是否意味着不能进行text infilling和rotation?
The text was updated successfully, but these errors were encountered: