-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathqueryloop.py
52 lines (37 loc) · 1.56 KB
/
queryloop.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
from implibs import *
import imgprocessing as impro
import hashing as hsh
import indexing as indx
#def cosine_similarity(x,y):
# return np.dot(x,y)/(np.linalg.norm(x)*np.linalg.norm(y))
def gaussian_similarity(x,y):
p=math.exp(-np.linalg.norm((x-y))**2/(2*0.3*0.3))
return p
def runqry(que): #takes in a query quad list and outputs result for each constellation
res=np.zeros((len(const_name),1),dtype=int)
for i in range(len(const_name)):
fileload='index'+const_name[i]+'.csv'
ind=pd.read_csv(fileload)
ind=ind.iloc[:,1:]
for u in range(ind.shape[0]): #renaming the rows which are failed cases which have been stored as pi
if (abs(ind.iloc[u,0] - np.pi) <0.001):
ind=ind.rename({u:np.pi})
for b in ind.index:
if b==np.pi:
ind = ind.drop(b,axis = 0)
break
else:
pass
ind = ind.iloc[:,0:].values
print('Loop running...')
similarity_matrix = np.zeros((que.shape[0],ind.shape[0]),dtype = float)
for z in range(que.shape[0]):
for c in range(ind.shape[0]):
similarity_matrix[z,c] = np.abs(gaussian_similarity(que[z],ind[c]))
stdev=np.zeros((similarity_matrix.shape[0],1),dtype=float)
for j in range(similarity_matrix.shape[0]):
stdev[j]=np.std(similarity_matrix[j])
thresh=0.15
stdev=stdev[stdev>thresh]
res[i]=stdev.shape[0]
return res