diff --git a/CADETProcess/optimization/__init__.py b/CADETProcess/optimization/__init__.py index 615ea551c..bfd3ad0c6 100644 --- a/CADETProcess/optimization/__init__.py +++ b/CADETProcess/optimization/__init__.py @@ -125,3 +125,4 @@ def __getattr__(name): "To install it, run 'pip install CADET-Process[ax]'" ) raise AttributeError(f"module {__name__} has no attribute {name}") +from .ipoptAdapter import IPOPT diff --git a/CADETProcess/optimization/ipoptAdapter.py b/CADETProcess/optimization/ipoptAdapter.py new file mode 100644 index 000000000..167093096 --- /dev/null +++ b/CADETProcess/optimization/ipoptAdapter.py @@ -0,0 +1,132 @@ +import math + +import cyipopt +import numpy as np + +from CADETProcess import CADETProcessError +from CADETProcess.dataStructure import Switch, UnsignedFloat +from CADETProcess.optimization import OptimizerBase + + +class IPOPT(OptimizerBase): + """Class from scipy for optimization with trust-constr as method for the + solver. + + This class is a wrapper for the method trust-constr from the optimization + suite of the scipy interface. It defines the solver options in the local + variable options as a dictionary and implements the abstract method run for + running the optimization. + + """ + supports_linear_constraints = True + supports_linear_equality_constraints = True + supports_nonlinear_constraints = True + + tol = UnsignedFloat(default=1e-7) + mu_target = Switch(valid=['adaptive'], default='adaptive') + _options = ['tol', 'mu_target'] + + def run(self, optimization_problem): + """Solve the optimization problem using IPOPT. + + Returns + ------- + results : OptimizationResults + Optimization results including optimization_problem and solver + configuration. + + See Also + -------- + CADETProcess.optimization.OptimizerBase.optimize + CADETProcess.optimization.OptimizationProblem.evaluate_objectives + + """ + if optimization_problem.n_objectives > 1: + raise CADETProcessError("Can only handle single objective.") + + n_lin = optimization_problem.n_linear_constraints + n_nonlin = optimization_problem.n_nonlinear_constraints + cl_lin = n_lin * [-math.inf] + cl_nonlin = n_nonlin * [-math.inf] + cu_lin = n_lin * [0] + cu_nonlin = n_nonlin * [0] + + problem = cyipopt.Problem( + n=optimization_problem.n_variables, + m=n_lin + n_nonlin, + problem_obj=IPOPTProblem(optimization_problem), + lb=optimization_problem.lower_bounds, + ub=optimization_problem.upper_bounds, + cl=cl_lin + cl_nonlin, + cu=cu_lin + cu_nonlin, + ) + + problem.add_option('mu_strategy', self.mu_target) + problem.add_option('tol', self.tol) + + if optimization_problem.x0 is None: + optimization_problem.create_initial_values(1) + x0 = optimization_problem.x0 + + if len(np.array(optimization_problem.x0).shape) > 1: + x0 = x0[0] + + x, info = problem.solve(x0) + + +class IPOPTProblem(): + def __init__(self, optimization_problem): + self.optimization_problem = optimization_problem + + def objective(self, x): + """Returns the scalar value of the objective given x.""" + return self.optimization_problem.evaluate_objectives(x)[0] + + def gradient(self, x): + """Returns the gradient of the objective with respect to x.""" + return self.optimization_problem.objective_jacobian(x)[0] + + def constraints(self, x): + """Returns the constraints.""" + return self.optimization_problem.evaluate_nonlinear_constraints(x) + + def jacobian(self, x): + """Returns the Jacobian of the constraints with respect to x.""" + return self.optimization_problem.nonlinear_constraint_jacobian(x) + + # def hessian(self, x, lagrange, obj_factor): + # """Returns the non-zero values of the Hessian.""" + + # H = obj_factor*np.array(( + # (2*x[3], 0, 0, 0), + # (x[3], 0, 0, 0), + # (x[3], 0, 0, 0), + # (2*x[0]+x[1]+x[2], x[0], x[0], 0))) + + # H += lagrange[0]*np.array(( + # (0, 0, 0, 0), + # (x[2]*x[3], 0, 0, 0), + # (x[1]*x[3], x[0]*x[3], 0, 0), + # (x[1]*x[2], x[0]*x[2], x[0]*x[1], 0))) + + # H += lagrange[1]*2*np.eye(4) + + # row, col = self.hessianstructure() + + # return H[row, col] + + def intermediate(self, alg_mod, iter_count, obj_value, inf_pr, inf_du, mu, + d_norm, regularization_size, alpha_du, alpha_pr, + ls_trials): + """Prints information at every Ipopt iteration.""" + + msg = "Objective value at iteration #{:d} is - {:g}" + + print(msg.format(iter_count, obj_value)) + + self.n_evals = iter_count + + # self.run_post_evaluation_processing(x, f, g, self.n_evals) + + def __str__(self): + return 'IPOPT' diff --git a/setup.cfg b/setup.cfg index e8ab78945..1ef554a03 100644 --- a/setup.cfg +++ b/setup.cfg @@ -28,6 +28,7 @@ install_requires = cadet-python>=0.14 hopsy>=1.4.0 pymoo>=0.6 + cyipopt>=1.1.0 numba>=0.55.1 diskcache>=5.4.0 joblib>=1.3.0