From 94bada6609ce4d47c4d359ffae42e920c1a43851 Mon Sep 17 00:00:00 2001 From: "r.jaepel" Date: Thu, 2 May 2024 13:47:34 +0200 Subject: [PATCH] Add variable dependencies to examples and docs. --- .../optimization/variable_dependencies.md | 65 ++++++++++++++++++- .../binding_model_parameters.md | 41 ++++++++++++ .../binding_model_parameters.py | 41 ++++++++++++ 3 files changed, 144 insertions(+), 3 deletions(-) diff --git a/docs/source/user_guide/optimization/variable_dependencies.md b/docs/source/user_guide/optimization/variable_dependencies.md index 5a7a2897..93970fea 100644 --- a/docs/source/user_guide/optimization/variable_dependencies.md +++ b/docs/source/user_guide/optimization/variable_dependencies.md @@ -28,9 +28,6 @@ With linear combinations, variables are combined using weights or coefficients, For example, consider a process where the same parameter is used in multiple unit operations. To reduce the number of variables that the optimizer needs to consider, it is possible to add a single variable, which is then set on both evaluation objects in pre-processing. In other cases, the ratio between model parameters may be essential for the optimization problem. -For instance, consider the equilibrium constant $k_{eq} = k_a / k_d$ for an adsorption process with adsorption rate $k_a$ and desorption rate $k_d$. -Instead of exposing both $k_a$ and $k_d$ to the optimizer, it is usually beneficial to expose $k_a$ and $k_{eq}$. -This way, the values for the equilibrium and the kinetics of the reaction can be found independently. ```{figure} ./figures/transform_dependency.svg @@ -61,3 +58,65 @@ optimization_problem.add_variable_dependency('var_2', ['var_0', 'var_1'], transf ``` Note that generally bounds and linear constraints can still be specified independently for all variables. + +## Adsorption rates example + +For instance, consider an adsorption proces with an adsorption rate $k_a$ and a desorption rate $k_d$. +Both influence the strength of the interaction as well as the dynamics of the interaction. +By using the transformation $k_{eq} = k_a / k_d$ to calculate the equilibrium constant and $k_{kin} = 1 / k_d$ to calculate the kinetics constant, the values for the equilibrium and the kinetics of the reaction can be identified independently. +First, the dependent variables $k_a$ and $k_d$ must be added as they are implemented in the underlying model. + +```{code-cell} ipython3 +optimization_problem.add_variable( + name='adsorption_rate', + parameter_path='flow_sheet.column.binding_model.adsorption_rate', + lb=1e-3, ub=1e3, + transform='auto', + indices=[1] # modify only the protein (component index 1) parameter +) + +optimization_problem.add_variable( + name='desorption_rate', + parameter_path='flow_sheet.column.binding_model.desorption_rate', + lb=1e-3, ub=1e3, + transform='auto', + indices=[1] +) +``` + +Then, the independent variables $k_{eq}$ and $k_{kin}$ are added. To ensure, that CADET-Process does not try to write +these variables into the CADET-Core model, where they do not have a place, `evaluation_objects` is set to `None`. + +```{code-cell} ipython3 +optimization_problem.add_variable( + name='equilibrium_constant', + evaluation_objects=None, + lb=1e-4, ub=1e3, + transform='auto', + indices=[1] +) + +optimization_problem.add_variable( + name='kinetic_constant', + evaluation_objects=None, + lb=1e-4, ub=1e3, + transform='auto', + indices=[1] +) +``` + +Lasty, the dependency between the variables is added with the `.add_variable_dependency()` method. + +```{code-cell} ipython3 +optimization_problem.add_variable_dependency( + dependent_variable="desorption_rate", + independent_variables=["kinetic_constant", ], + transform=lambda k_kin: 1 / k_kin +) + +optimization_problem.add_variable_dependency( + dependent_variable="adsorption_rate", + independent_variables=["kinetic_constant", "equilibrium_constant"], + transform=lambda k_kin, k_eq: k_eq / k_kin +) +``` diff --git a/examples/characterize_chromatographic_system/binding_model_parameters.md b/examples/characterize_chromatographic_system/binding_model_parameters.md index 9fc16650..75834169 100644 --- a/examples/characterize_chromatographic_system/binding_model_parameters.md +++ b/examples/characterize_chromatographic_system/binding_model_parameters.md @@ -246,6 +246,30 @@ if __name__ == '__main__': indices=[1] # modify only the protein (component index 1) parameter ) + optimization_problem.add_variable( + name='desorption_rate', + parameter_path='flow_sheet.column.binding_model.desorption_rate', + lb=1e-3, ub=1e3, + transform='auto', + indices=[1] # modify only the protein (component index 1) parameter + ) + + optimization_problem.add_variable( + name='equilibrium_constant', + evaluation_objects=None, + lb=1e-4, ub=1e3, + transform='auto', + indices=[1] # modify only the protein (component index 1) parameter + ) + + optimization_problem.add_variable( + name='kinetic_constant', + evaluation_objects=None, + lb=1e-4, ub=1e3, + transform='auto', + indices=[1] # modify only the protein (component index 1) parameter + ) + optimization_problem.add_variable( name='characteristic_charge', parameter_path='flow_sheet.column.binding_model.characteristic_charge', @@ -254,6 +278,18 @@ if __name__ == '__main__': indices=[1] # modify only the protein (component index 1) parameter ) + optimization_problem.add_variable_dependency( + dependent_variable="desorption_rate", + independent_variables=["kinetic_constant", ], + transform=lambda k_kin: 1 / k_kin + ) + + optimization_problem.add_variable_dependency( + dependent_variable="adsorption_rate", + independent_variables=["kinetic_constant", "equilibrium_constant"], + transform=lambda k_kin, k_eq: k_eq / k_kin + ) + def callback(simulation_results, individual, evaluation_object, callbacks_dir='./'): comparator = comparators[evaluation_object.name] @@ -265,6 +301,11 @@ if __name__ == '__main__': optimization_problem.add_callback(callback, requires=[simulator]) + + print(optimization_problem.variable_names) + x0 = [1, 1, 1e-2, 1e-3, 10] + ind = optimization_problem.create_individual(x0) + optimization_problem.evaluate_callbacks(ind) ``` ```{note} diff --git a/examples/characterize_chromatographic_system/binding_model_parameters.py b/examples/characterize_chromatographic_system/binding_model_parameters.py index 5914c7fc..9152334f 100644 --- a/examples/characterize_chromatographic_system/binding_model_parameters.py +++ b/examples/characterize_chromatographic_system/binding_model_parameters.py @@ -248,6 +248,30 @@ def create_comparator(reference): indices=[1] # modify only the protein (component index 1) parameter ) + optimization_problem.add_variable( + name='desorption_rate', + parameter_path='flow_sheet.column.binding_model.desorption_rate', + lb=1e-3, ub=1e3, + transform='auto', + indices=[1] # modify only the protein (component index 1) parameter + ) + + optimization_problem.add_variable( + name='equilibrium_constant', + evaluation_objects=None, + lb=1e-4, ub=1e3, + transform='auto', + indices=[1] # modify only the protein (component index 1) parameter + ) + + optimization_problem.add_variable( + name='kinetic_constant', + evaluation_objects=None, + lb=1e-4, ub=1e3, + transform='auto', + indices=[1] # modify only the protein (component index 1) parameter + ) + optimization_problem.add_variable( name='characteristic_charge', parameter_path='flow_sheet.column.binding_model.characteristic_charge', @@ -256,6 +280,18 @@ def create_comparator(reference): indices=[1] # modify only the protein (component index 1) parameter ) + optimization_problem.add_variable_dependency( + dependent_variable="desorption_rate", + independent_variables=["kinetic_constant", ], + transform=lambda k_kin: 1 / k_kin + ) + + optimization_problem.add_variable_dependency( + dependent_variable="adsorption_rate", + independent_variables=["kinetic_constant", "equilibrium_constant"], + transform=lambda k_kin, k_eq: k_eq / k_kin + ) + def callback(simulation_results, individual, evaluation_object, callbacks_dir='./'): comparator = comparators[evaluation_object.name] @@ -268,6 +304,11 @@ def callback(simulation_results, individual, evaluation_object, callbacks_dir='. optimization_problem.add_callback(callback, requires=[simulator]) + print(optimization_problem.variable_names) + x0 = [1, 1, 1e-2, 1e-3, 10] + ind = optimization_problem.create_individual(x0) + optimization_problem.evaluate_callbacks(ind) + # %% [markdown] # ```{note} # For performance reasons, the optimization is currently not run when building the documentation.