Skip to content

Latest commit

 

History

History
112 lines (74 loc) · 3.64 KB

README.md

File metadata and controls

112 lines (74 loc) · 3.64 KB

Self-Supervised Multi-Object Tracking with Cross-Input Consistency

UNS20 is the code for "Self-Supervised Multi-Object Tracking with Cross-Input Consistency" (NeurIPS 2021). UNS20 is an approach for training a robust multi-object tracking model using only an object detector and a large corpus of unlabeled video.

Installation

Requires Tensorflow 1.15:

pip install 'tensorflow<2.0' scikit-image

Download MOT17 dataset:

mkdir /home/ubuntu/data/
wget https://motchallenge.net/data/MOT17.zip
unzip MOT17.zip
mv MOT17 /home/ubuntu/data/mot17/

Download UNS20 model:

wget https://favyen.com/files/uns20-model.zip
mv model/ /home/ubuntu/model/

Inference

For SDP detections:

cd /path/to/uns20/
python scripts/mot2json.py /home/ubuntu/data/ test
python infer.py /home/ubuntu/model/model /home/ubuntu/data/

DPM and FRCNN detections have lower accuracy than SDP detections. Recent methods universally perform regression and classification pre-processing steps. Classification prunes incorrect input detections, while regression improves the bounding box coordinates. These steps don't really make sense, since they use a better detector to improve lower-quality detections. However, the steps are needed to achieve performance comparable with other methods, since all methods now use the same steps.

To apply UNS20 on DPM and FRCNN detections, it should be executed after the regression and classification pre-processing steps from https://github.com/phil-bergmann/tracking_wo_bnw.

For the most informative comparison, we highly recommend comparing performance only on the SDP detections, which have the highest accuracy. While evaluating on lower-quality detections sounds like it could be useful, one would really be evaluating the pre-processing steps more than the method itself.

Evaluation

Convert from JSON to the TXT format:

mkdir /home/ubuntu/outputs/
python scripts/json2mot.py /home/ubuntu/data/ train /home/ubuntu/outputs/

Compare:

pip install motmetrics
python -m motmetrics.apps.eval_motchallenge /home/ubuntu/data/mot17/train/ /home/ubuntu/outputs/

Training

First, obtain PathTrack and YT-Walking datasets:

wget https://data.vision.ee.ethz.ch/daid/MOT/pathtrack_release_v1.0.zip
wget https://favyen.com/files/yt-walking.zip
mkdir /home/ubuntu/data/yt-walking/
unzip yt-walking.zip -d /home/ubuntu/data/yt-walking/
mkdir /home/ubuntu/data/pathtrack/
unzip pathtrack_release_v1.0.zip
mv pathtrack_release /home/ubuntu/data/pathtrack/

Extract video frames from YT-Walking mp4 files:

python scripts/ytw-extract.py /home/ubuntu/data/

Convert MOT17 object detections to uniform JSON format:

python scripts/mot2json.py /home/ubuntu/data/ train
python scripts/mot2json.py /home/ubuntu/data/ test

Convert PathTrack object detections to uniform JSON format:

python scripts/pathtrack.py /home/ubuntu/data/

Normalize MOT17 and PathTrack datasets:

python scripts/symlink.py mot17 /home/ubuntu/data/
python scripts/symlink.py pathtrack /home/ubuntu/data/

Pre-process each of the three datasets using scripts/preprocess-info.py and scripts/preprocess-matches.go.

python scripts/preprocess-info.py mot17 /home/ubuntu/data/ 8
python scripts/preprocess-info.py pathtrack /home/ubuntu/data/ 8
python scripts/preprocess-info.py yt-walking /home/ubuntu/data/ 8
go run scripts/preprocess-matches.go mot17 /home/ubuntu/data/
go run scripts/preprocess-matches.go pathtrack /home/ubuntu/data/
go run scripts/preprocess-matches.go yt-walking /home/ubuntu/data/

Train the model:

mkdir /home/ubuntu/model/
python train.py /home/ubuntu/data/ /home/ubuntu/model/model