From ef3b8d5e17256b4e8af2a480af9d8615ef5548ec Mon Sep 17 00:00:00 2001 From: fawda123 Date: Mon, 7 Sep 2015 16:16:41 -0500 Subject: [PATCH] added option to plot skip layer network in nnet models --- DESCRIPTION | 4 +- R/NeuralNetTools_plot.R | 79 ++++++++++++++---- R/NeuralNetTools_utils.R | 40 +++++++-- README.Rmd | 2 +- README.html | 2 +- README.md | 2 +- .../figure-html/unnamed-chunk-6-1.png | Bin 15537 -> 15313 bytes .../figure-html/unnamed-chunk-7-1.png | Bin 6159 -> 5342 bytes .../figure-html/unnamed-chunk-8-1.png | Bin 6064 -> 5455 bytes .../figure-html/unnamed-chunk-9-1.png | Bin 11119 -> 11150 bytes man/layer_lines.Rd | 4 +- man/neuralskips.Rd | 4 +- man/plotnet.Rd | 19 ++++- 13 files changed, 122 insertions(+), 34 deletions(-) diff --git a/DESCRIPTION b/DESCRIPTION index 7614f80..50b664f 100644 --- a/DESCRIPTION +++ b/DESCRIPTION @@ -1,8 +1,8 @@ Package: NeuralNetTools Type: Package Title: Visualization and Analysis Tools for Neural Networks -Version: 1.3.10.9000 -Date: 2015-08-26 +Version: 1.3.11.9000 +Date: 2015-09-07 Author: Marcus W. Beck [aut, cre] Maintainer: Marcus W. Beck Description: Visualization and analysis tools to aid in the interpretation of diff --git a/R/NeuralNetTools_plot.R b/R/NeuralNetTools_plot.R index 8b9d990..40805d4 100644 --- a/R/NeuralNetTools_plot.R +++ b/R/NeuralNetTools_plot.R @@ -22,7 +22,8 @@ #' @param bord_col chr string indicating border color around nodes, default \code{'lightblue'} #' @param prune_col chr string indicating color of pruned connections, otherwise not shown #' @param prune_lty line type for pruned connections, passed to \code{\link[graphics]{segments}} -#' @param max_sp logical value indicating if space between nodes in each layer is maximized, default \code{FALSE} +#' @param max_sp logical value indicating if space between nodes in each layer is maximized, default \code{FALSE} +#' @param skip logical if skip layer connections are plotted instead of the primary network #' @param ... additional arguments passed to plot #' #' @export @@ -37,6 +38,8 @@ #' @details #' This function plots a neural network as a neural interpretation diagram as in Ozesmi and Ozesmi (1999). Options to plot without color-coding or shading of weights are also provided. The default settings plot positive weights between layers as black lines and negative weights as grey lines. Line thickness is in proportion to relative magnitude of each weight. The first layer includes only input variables with nodes labelled arbitrarily as I1 through In for n input variables. One through many hidden layers are plotted with each node in each layer labelled as H1 through Hn. The output layer is plotted last with nodes labeled as O1 through On. Bias nodes connected to the hidden and output layers are also shown. Neural networks created using \code{\link[RSNNS]{mlp}} do not show bias layers. #' +#' A primary network and a skip layer network can be plotted for \code{\link[nnet]{nnet}} models with a skip layer connection. The default is to plot the primary network, whereas the skip layer network can be viewed with \code{skip = TRUE}. If \code{nid = TRUE}, the line widths for both the primary and skip layer plots are relative to all weights. Viewing both plots is recommended to see which network has larger relative weights. +#' #' @examples #' ## using numeric input #' @@ -56,6 +59,12 @@ #' #' plotnet(mod) #' +#' ## plot the skip layer from nnet model +#' +#' mod <- nnet(Y1 ~ X1 + X2 + X3, data = neuraldat, size = 5, skip = TRUE) +#' +#' plotnet(mod, skip = TRUE) +#' #' ## using RSNNS, no bias layers #' #' library(RSNNS) @@ -131,7 +140,7 @@ plotnet <- function(mod_in, ...) UseMethod('plotnet') #' @export #' #' @method plotnet default -plotnet.default <- function(mod_in, x_names, y_names, struct = NULL, nid = TRUE, all_out = TRUE, all_in = TRUE, bias = TRUE, rel_rsc = 5, circle_cex = 5, node_labs = TRUE, var_labs = TRUE, line_stag = NULL, cex_val = 1, alpha_val = 1, circle_col = 'lightblue', pos_col = 'black', neg_col = 'grey', bord_col = 'lightblue', max_sp = FALSE, prune_col = NULL, prune_lty = 'dashed', ...){ +plotnet.default <- function(mod_in, x_names, y_names, struct = NULL, nid = TRUE, all_out = TRUE, all_in = TRUE, bias = TRUE, rel_rsc = 5, circle_cex = 5, node_labs = TRUE, var_labs = TRUE, line_stag = NULL, cex_val = 1, alpha_val = 1, circle_col = 'lightblue', pos_col = 'black', neg_col = 'grey', bord_col = 'lightblue', max_sp = FALSE, prune_col = NULL, prune_lty = 'dashed', skip = NULL, ...){ wts <- neuralweights(mod_in, struct = struct) struct <- wts$struct @@ -157,6 +166,36 @@ plotnet.default <- function(mod_in, x_names, y_names, struct = NULL, nid = TRUE, #initiate plot plot(x_range, y_range, type = 'n', axes = FALSE, ylab = '', xlab = '') + # warning if nnet hidden is zero + if(struct[2] == 0) warning('No hidden layer, plotting skip layer only') + + # subroutine for skip layer connections in nnet + if(any(skip)){ + + return({ # use this to exit + + # plot connections usign layer lines with skip TRUE + mapply( + function(x) layer_lines(mod_in, x, layer1 = 1, layer2 = length(struct), out_layer = TRUE, nid = nid, rel_rsc = rel_rsc, all_in = all_in, pos_col = scales::alpha(pos_col, alpha_val), neg_col = scales::alpha(neg_col, alpha_val), x_range = x_range, y_range = y_range, line_stag = line_stag, x_names = x_names, layer_x = layer_x, max_sp = max_sp, struct = struct, prune_col = prune_col, prune_lty = prune_lty, skip = skip), + 1:struct[length(struct)] + ) + + # plot only input, output nodes + for(i in c(1, length(struct))){ + in_col <- circle_col + if(i == 1) { layer_name <- 'I'; in_col <- circle_col_inp} + if(i == length(struct)) layer_name <- 'O' + layer_points(struct[i], layer_x[i], x_range, layer_name, cex_val, circle_cex, bord_col, in_col, + node_labs, line_stag, var_labs, x_names, y_names, max_sp = max_sp, struct = struct, + y_range = y_range + ) + + } + + }) + + } + #use functions to plot connections between layers #bias lines if(bias) bias_lines(bias_x, bias_y, mod_in, nid = nid, rel_rsc = rel_rsc, all_out = all_out, pos_col = scales::alpha(pos_col, alpha_val), neg_col = scales::alpha(neg_col, alpha_val), y_names = y_names, x_range = x_range, max_sp = max_sp, struct = struct, y_range = y_range, layer_x = layer_x, line_stag = line_stag) @@ -191,19 +230,19 @@ plotnet.default <- function(mod_in, x_names, y_names, struct = NULL, nid = TRUE, layer_lines(mod_in, node, layer1 = lay[1], layer2 = lay[2], nid = nid, rel_rsc = rel_rsc, all_in = TRUE, pos_col = scales::alpha(pos_col, alpha_val), neg_col = scales::alpha(neg_col, alpha_val), x_range = x_range, y_range = y_range, line_stag = line_stag, x_names = x_names, layer_x = layer_x, - max_sp = max_sp, struct = struct, prune_col = prune_col, prune_lty = prune_lty) + max_sp = max_sp, struct = struct, prune_col = prune_col, prune_lty = prune_lty, skip = skip) } } #lines for hidden - output #uses 'all_out' argument to plot connection lines for all output nodes or a single node if(is.logical(all_out)) mapply( - function(x) layer_lines(mod_in, x, layer1 = length(struct) - 1, layer2 = length(struct), out_layer = TRUE, nid = nid, rel_rsc = rel_rsc, all_in = all_in, pos_col = scales::alpha(pos_col, alpha_val), neg_col = scales::alpha(neg_col, alpha_val), x_range = x_range, y_range = y_range, line_stag = line_stag, x_names = x_names, layer_x = layer_x, max_sp = max_sp, struct = struct, prune_col = prune_col, prune_lty = prune_lty), + function(x) layer_lines(mod_in, x, layer1 = length(struct) - 1, layer2 = length(struct), out_layer = TRUE, nid = nid, rel_rsc = rel_rsc, all_in = all_in, pos_col = scales::alpha(pos_col, alpha_val), neg_col = scales::alpha(neg_col, alpha_val), x_range = x_range, y_range = y_range, line_stag = line_stag, x_names = x_names, layer_x = layer_x, max_sp = max_sp, struct = struct, prune_col = prune_col, prune_lty = prune_lty, skip = skip), 1:struct[length(struct)] ) else{ node_in <- which(y_names == all_out) - layer_lines(mod_in, node_in, layer1 = length(struct) - 1, layer2 = length(struct), out_layer = TRUE, nid = nid, rel_rsc = rel_rsc, pos_col = pos_col, neg_col = neg_col, x_range = x_range, y_range = y_range, line_stag = line_stag, x_names = x_names, layer_x = layer_x, max_sp = max_sp, struct = struct, prune_col = prune_col, prune_lty = prune_lty) + layer_lines(mod_in, node_in, layer1 = length(struct) - 1, layer2 = length(struct), out_layer = TRUE, nid = nid, rel_rsc = rel_rsc, pos_col = pos_col, neg_col = neg_col, x_range = x_range, y_range = y_range, line_stag = line_stag, x_names = x_names, layer_x = layer_x, max_sp = max_sp, struct = struct, prune_col = prune_col, prune_lty = prune_lty, skip = skip) } #use functions to plot nodes @@ -228,12 +267,15 @@ plotnet.default <- function(mod_in, x_names, y_names, struct = NULL, nid = TRUE, #' @export #' #' @method plotnet nnet -plotnet.nnet <- function(mod_in, x_names = NULL, y_names = NULL, ...){ +plotnet.nnet <- function(mod_in, x_names = NULL, y_names = NULL, skip = FALSE, ...){ # check for skip layers chk <- grepl('skip-layer', capture.output(mod_in)) - if(any(chk)) - warning('Skip layer used, line scaling is proportional to weights in current plot') + if(any(chk)){ + warning('Skip layer used, line scaling is proportional to all weights including skip layer.') + } else { + skip <- FALSE + } #get variable names from mod_in object #change to user input if supplied @@ -252,7 +294,7 @@ plotnet.nnet <- function(mod_in, x_names = NULL, y_names = NULL, ...){ if(is.null(x_names)) x_names <- xlabs if(is.null(y_names)) y_names <- ylabs - plotnet.default(mod_in, x_names = x_names, y_names = y_names, ...) + plotnet.default(mod_in, x_names = x_names, y_names = y_names, skip = skip, ...) } @@ -272,7 +314,7 @@ plotnet.numeric <- function(mod_in, struct, x_names = NULL, y_names = NULL, ...) if(is.null(y_names)) y_names <- paste0(rep('Y', struct[length(struct)]), seq(1:struct[length(struct)])) - plotnet.default(mod_in, struct = struct, x_names = x_names, y_names = y_names, ...) + plotnet.default(mod_in, struct = struct, x_names = x_names, y_names = y_names, skip = FALSE, ...) } @@ -293,7 +335,7 @@ plotnet.mlp <- function(mod_in, x_names = NULL, y_names = NULL, prune_col = NULL bias <- FALSE plotnet.default(mod_in, x_names = x_names, y_names = y_names, bias = bias, prune_col = prune_col, - prune_lty = prune_lty, ...) + prune_lty = prune_lty, skip = FALSE, ...) } @@ -310,7 +352,7 @@ plotnet.nn <- function(mod_in, x_names = NULL, y_names = NULL, ...){ if(is.null(y_names)) y_names <- mod_in$model.list$respons - plotnet.default(mod_in, x_names = x_names, y_names = y_names, ...) + plotnet.default(mod_in, x_names = x_names, y_names = y_names, skip = FALSE, ...) } @@ -319,7 +361,7 @@ plotnet.nn <- function(mod_in, x_names = NULL, y_names = NULL, ...){ #' @export #' #' @method plotnet train -plotnet.train <- function(mod_in, x_names = NULL, y_names = NULL, ...){ +plotnet.train <- function(mod_in, x_names = NULL, y_names = NULL, skip = FALSE, ...){ if(is.null(y_names)) y_names <- strsplit(as.character(mod_in$terms[[2]]), ' + ', fixed = TRUE)[[1]] @@ -329,9 +371,12 @@ plotnet.train <- function(mod_in, x_names = NULL, y_names = NULL, ...){ # check for skip layers chk <- grepl('skip-layer', capture.output(mod_in)) - if(any(chk)) - warning('Skip layer used, line scaling is proportional to weights in current plot') - - plotnet.default(mod_in, x_names = x_names, y_names = y_names, ...) + if(any(chk)){ + warning('Skip layer used, line scaling is proportional to all weights including skip layer.') + } else { + skip <- FALSE + } + + plotnet.default(mod_in, x_names = x_names, y_names = y_names, skip = skip, ...) } \ No newline at end of file diff --git a/R/NeuralNetTools_utils.R b/R/NeuralNetTools_utils.R index d49f6ea..c517a60 100644 --- a/R/NeuralNetTools_utils.R +++ b/R/NeuralNetTools_utils.R @@ -346,14 +346,18 @@ neuralskips <- function(mod_in, ...) UseMethod('neuralskips') #' @rdname neuralskips #' #' @import scales +#' +#' @param rel_rsc numeric value indicating maximum to rescale weights for plotting in a neural interpretation diagram. Default is \code{NULL} for no rescaling. Scaling is relative to all weights, not just those in the primary network. #' #' @export #' #' @method neuralskips nnet -neuralskips.nnet <- function(mod_in, ...){ +neuralskips.nnet <- function(mod_in, rel_rsc = NULL, ...){ wts <- mod_in$wts + if(!is.null(rel_rsc)) wts <- scales::rescale(abs(wts), c(1, rel_rsc)) + # get skip layer weights if present, otherwise exit chk <- grepl('skip-layer', capture.output(mod_in)) if(any(chk)){ @@ -481,28 +485,50 @@ bias_points <- function(bias_x, bias_y, layer_name, node_labs, x_range, y_range, #' @param max_sp logical indicating if space is maximized in plot #' @param prune_col chr string indicating color of pruned connections, otherwise not shown #' @param prune_lty line type for pruned connections, passed to \code{\link[graphics]{segments}} +#' @param skip logical to plot connections for skip layer #' -layer_lines <- function(mod_in, h_layer, layer1 = 1, layer2 = 2, out_layer = FALSE, nid, rel_rsc, all_in, pos_col, neg_col, x_range, y_range, line_stag, x_names, layer_x, struct, max_sp, prune_col = NULL, prune_lty = 'dashed'){ +layer_lines <- function(mod_in, h_layer, layer1 = 1, layer2 = 2, out_layer = FALSE, nid, rel_rsc, all_in, pos_col, neg_col, x_range, y_range, line_stag, x_names, layer_x, struct, max_sp, prune_col = NULL, prune_lty = 'dashed', skip){ x0 <- rep(layer_x[layer1] * diff(x_range) + line_stag * diff(x_range), struct[layer1]) x1 <- rep(layer_x[layer2] * diff(x_range) - line_stag * diff(x_range), struct[layer1]) + # see if skip layer is presnet in nnet + chk <- grepl('skip-layer', capture.output(mod_in)) + if(out_layer == TRUE){ y0 <- get_ys(struct[layer1], max_sp, struct, y_range) y1 <- rep(get_ys(struct[layer2], max_sp, struct, y_range)[h_layer], struct[layer1]) src_str <- paste('out', h_layer) + # get weights for numeric, otherwise use different method for neuralweights if(inherits(mod_in, c('numeric', 'integer'))){ + wts <- neuralweights(mod_in, struct = struct)$wts wts_rs <- neuralweights(mod_in, rel_rsc, struct = struct)$wts + wts <- wts[grep(src_str, names(wts))][[1]][-1] + wts_rs <- wts_rs[grep(src_str, names(wts_rs))][[1]][-1] + } else { - wts <- neuralweights(mod_in)$wts - wts_rs <- neuralweights(mod_in, rel_rsc)$wts + + # get skip weights if both TRUE + if(skip & any(chk)){ + + wts <- neuralskips(mod_in) + wts_rs <- neuralskips(mod_in, rel_rsc) + + # otherwise get normal connects + } else { + + wts <- neuralweights(mod_in)$wts + wts_rs <- neuralweights(mod_in, rel_rsc)$wts + wts <- wts[grep(src_str, names(wts))][[1]][-1] + wts_rs <- wts_rs[grep(src_str, names(wts_rs))][[1]][-1] + + } + } - wts <- wts[grep(src_str, names(wts))][[1]][-1] - wts_rs <- wts_rs[grep(src_str, names(wts_rs))][[1]][-1] - + cols <- rep(pos_col, struct[layer1]) cols[wts<0] <- neg_col diff --git a/README.Rmd b/README.Rmd index 4fe3f86..e95ba15 100644 --- a/README.Rmd +++ b/README.Rmd @@ -89,7 +89,7 @@ The `olden` function is an alternative and more flexible approach to evaluate va olden(mod, 'Y1') ``` -The `lekprofile` function performs a simple sensitivity analysis for neural networks. The Lek profile method is fairly generic and can be extended to any statistical model in R with a predict method. However, it is one of few methods to evaluate sensitivity in neural networks. The function begins by predicting the response variable across the range of values for a given explanatory variable. All other explanatory variables are held constant at set values (e.g., minimum, 20th percentile, maximum) that are indicated in the plot legend. The final result is a set of predictions for the response that are evalutaed across the range of values for one explanatory variable, while holding all other explanatory variables constant. This is repeated for each explanatory variable to describe the fitted response values returned by the model. +The `lekprofile` function performs a simple sensitivity analysis for neural networks. The Lek profile method is fairly generic and can be extended to any statistical model in R with a predict method. However, it is one of few methods to evaluate sensitivity in neural networks. The function begins by predicting the response variable across the range of values for a given explanatory variable. All other explanatory variables are held constant at set values (e.g., minimum, 20th percentile, maximum) that are indicated in the plot legend. The final result is a set of predictions for the response that are evaluated across the range of values for one explanatory variable, while holding all other explanatory variables constant. This is repeated for each explanatory variable to describe the fitted response values returned by the model. ```{r, results = 'hide', fig.height = 3, warning = FALSE, fig.width = 9} # sensitivity analysis diff --git a/README.html b/README.html index 97cef06..dc95ec2 100644 --- a/README.html +++ b/README.html @@ -110,7 +110,7 @@

Functions

# importance of each variable
 olden(mod, 'Y1')

-

The lekprofile function performs a simple sensitivity analysis for neural networks. The Lek profile method is fairly generic and can be extended to any statistical model in R with a predict method. However, it is one of few methods to evaluate sensitivity in neural networks. The function begins by predicting the response variable across the range of values for a given explanatory variable. All other explanatory variables are held constant at set values (e.g., minimum, 20th percentile, maximum) that are indicated in the plot legend. The final result is a set of predictions for the response that are evalutaed across the range of values for one explanatory variable, while holding all other explanatory variables constant. This is repeated for each explanatory variable to describe the fitted response values returned by the model.

+

The lekprofile function performs a simple sensitivity analysis for neural networks. The Lek profile method is fairly generic and can be extended to any statistical model in R with a predict method. However, it is one of few methods to evaluate sensitivity in neural networks. The function begins by predicting the response variable across the range of values for a given explanatory variable. All other explanatory variables are held constant at set values (e.g., minimum, 20th percentile, maximum) that are indicated in the plot legend. The final result is a set of predictions for the response that are evaluated across the range of values for one explanatory variable, while holding all other explanatory variables constant. This is repeated for each explanatory variable to describe the fitted response values returned by the model.

# sensitivity analysis
 lekprofile(mod)

diff --git a/README.md b/README.md index 1409ff9..8b27a4d 100644 --- a/README.md +++ b/README.md @@ -87,7 +87,7 @@ olden(mod, 'Y1') ![](README_files/figure-html/unnamed-chunk-8-1.png) -The `lekprofile` function performs a simple sensitivity analysis for neural networks. The Lek profile method is fairly generic and can be extended to any statistical model in R with a predict method. However, it is one of few methods to evaluate sensitivity in neural networks. The function begins by predicting the response variable across the range of values for a given explanatory variable. All other explanatory variables are held constant at set values (e.g., minimum, 20th percentile, maximum) that are indicated in the plot legend. The final result is a set of predictions for the response that are evalutaed across the range of values for one explanatory variable, while holding all other explanatory variables constant. This is repeated for each explanatory variable to describe the fitted response values returned by the model. +The `lekprofile` function performs a simple sensitivity analysis for neural networks. The Lek profile method is fairly generic and can be extended to any statistical model in R with a predict method. However, it is one of few methods to evaluate sensitivity in neural networks. The function begins by predicting the response variable across the range of values for a given explanatory variable. All other explanatory variables are held constant at set values (e.g., minimum, 20th percentile, maximum) that are indicated in the plot legend. The final result is a set of predictions for the response that are evaluated across the range of values for one explanatory variable, while holding all other explanatory variables constant. This is repeated for each explanatory variable to describe the fitted response values returned by the model. ```r diff --git a/README_files/figure-html/unnamed-chunk-6-1.png b/README_files/figure-html/unnamed-chunk-6-1.png index 181a7ab9132a63ee4a8107fb0090dc0117783e36..48dbcea85e97d24842ab9f0b880357d072582161 100644 GIT binary patch delta 14877 zcmXY2cRbtw^G{;Ns=Y_;O%b&tV%3gSrA1X$sM6XaB#1rQnl+OcrK;L0wJ9}f$Li2l zYsVfzDe9Nc_wmc0@7KNVb$74l>+W8cd%caA2z#=uU$pf8QQf>uX8YdL#SG51a8GaD zHeVb}TE6JwV!X1bx00c{CxO}wQ@iu6WKGK8)-Tx~VD%IuA&U|r;8PjNY!zMK?B6={ z=#4}Sv{YM%MP~zU*3N^!RPoO9U0PjUuMY4peMl&Fb|ccPoegh0?@Bm(qx7uz6kyIZ zx7(K#(kC%TgJ|9CSJubhm$C)u>D(I)9+jA*Ms)7>D?#yTQhUOf=L`X)1#+t|I}P!v z#U)aWSvw7Wtw*5cxLB#ER|ili-yVxj8((iVSC zjl!VdUBBB|$7f314d|1}q9|5hB}3}!NK(~U<|?g<8Oo89d))SdmM$YS_f15Eh7cXn zAU9^^d-eavD~Kuyf#%9#^ju9ghCX7WO! z(*PPSL{n+0o62Tv2UOQ%SRk}+xV2G+F_9$Vi>U_X#OZfLY>&Js5 zgR86~*N>!ug=p(Cz-$Mq+qih7Bz$Y=N`QoY`tuWAEJ7^BkX_p?T_a7Z7vN$bGmgw0 zH@pXZu>m4A+ubwHt`W`gI0%Mmf$@v$GZt{Eh9`&`gIPs96}$E=?4K;EhEk#|q$05g zhrYqxP^A7)&##vUHjsPs(JJFx-);IU=AhX=6BIBQed|P$AP)}7J&y-9WM>?IWYcy* z{h6{Guz7=Xup&VW&4IJS{}J98#Ux4v(-6{Ww(g2|0<>$H@XYjw7`bLEp$EPC%sCVE zLJF->zQQ$4Qk<+VY1J%#;fRkr{x)4=XGHji-2P4`YCkqXpN_)#%#G z4&Q|x`4L?yR`jF3)t|O&iP+EVHPMeRp5`#_a#9wsT?SNIB1;h;yt|bSC5?cPDuP(s zyEyI6OvEdzOFp)2xI1t%zieI9a5`E|_7YNy5D7=+`RhOv5WrwW1k8t{@R>vE@yL#y zhDRx^8lYWWin+tV&m;L~_G$9CY?sAPT2btC2*TkHj|V)Be&$HzdR+|8kJpqZjzTL2 zODU6}pW*O=xepcCaP&`npvT7#jrD(F8zL8ctK5#`f=6UW+Plkgmb}7!Tp}DiKNA$Aks5<2&xeAGsi|WXG&&I*Mye%32WC$r#pDG{i{ak^=*x87uK@qr&k`X=!q| zEtUZ{KQeLs!K4DY1DM~HqX`0JS8XX;6&!m zY~3oKw&)Q$26n=oVfix_dk7>qVq0^2VDa3?B*Xl1H5Y6=6BZVS#`xyz^S?J#s~iIT z9lVKfy+)doasUX~bh2sxNy$s&|C4R^jkYGd@e|;va#~8LdWL_-o-BCDXmgoJgS&?+P?r;XGaIBcolPGglQJErr+jtD*RKPx6>Kfr2ptY801 zU^buk{MRtXOB@$@a*k5iPGkF-{oj(ZcMYVwdRTfm#meW?9*V(!N}2OD4=L&uwOlo6S=N~gOU;ray?AGPN? zUYXg4k-6HzHuP3CtIZ_@FYU*N^BXF@M; zGtDv2EWVB0V6A=aB=>IkohGeU^7b7H+c~aGkrqPa=~bz_aNFz#HXK~$mA`msbs1au z15>y-O!@=yj#UxYb_zvPSNS`4+`jp^2Q7Y?8E=BbST^}_m6}uoX5Z3_0r2S0uvRYd zW?X~cz8^1-DCf&B;X=|Nx-9`hWE>_=MN&T{7))8v&3GRSJd9fX{n?Wl=bticMqyl% zx-tdOjvbUh(P#AAG%3v0*G)d4--5W9rp!-KG7#JrwRIy44w^s=HLwODaSO-T>=J*2 zWCoG=>~cl&+hpQrDF-xQ%Z8K6zx(Hs3EbU~5aV%q3?l6VM46{WP(R=}euPhVYRj4lH(lk0Bl&yS2TI6l!y)Hh;Dn zLne=5&gSFt{=d15nV5qApx4YN-qa^f<;9nIjaE9R#)$u_T~sjD}HyEAp? zGdwH#@HEU5p%nA4zDyq;1 z2Ojd2>-FWRwr?T;A?-NJ$<&AuUz1A3|2UzqQ&?4{%6s-!xnnm0G^d&M80#oNBrgTk z1q%$CH&O&azAVLRLg9V7Ylp!;GE8G;cK>9)xxfM}kzs7JRuRy>`*{@iSPL%Ml=o+_ ztQG@Am-I5T=+r$vSNV_k3yjU#Oz7hI-7FCXtG_-cSWL{xamhtzERnhlL_!mX_W6{v zHNHay@i8)xMR}mi-+y+|ovZX6)!;2fsE+J_cRRDcGdsgQo#^k7MMW=z)n5U4wpI|< zkm8)iS#Q?N*RsytyBleC#H{(yHJStrrzGApVnMTS^{qoAYs=OE6#R1Za{DyvLiykP z$v|wSDS5$XepKCg8BU%@n~~uDA?DkrNbiYnhN#%Y(Xofd)pQOv5PY*0o*TMGUT`;= zp4qc+qUd5O|Iz#Sz4nC{pHpCvnSE;}ZnTy!djW8MHXlVtGB*mNz*6sq4|L)b-c!`c z#?ZemokjHOt`<_u0J;)U7c1k)93MS`UyYI}(*3Q^YbIPV+Cpu~2QVWCu6Ew75DLK3 zM4w-rB<=W#4E}8ZO>|JQkH-#KHbQDC(C;SISG}x1@2!;5qS#ma^wGKjF(SKKuiy|H zWNz3VxkxzRRp*_l8!7#TEc24-vVK@qsp&Cg59obvh1VKoBco{r#5ys`c!Ysak3cPN z!7`u(2}8fyD~|2HC9%h}qU9uDyRvefVy*a`1vNR>dgTCV9YdIV%Ze;f1-HD~r#u&8 zTn&g!&qD2Iz8JK&DAyq1S+|Z(E=v!~h3~jaIt(U~a_P5Zm8@nkHqs_J9b zj2P?R#Do!E8Rq<{?RmL7KlAvilc}wbbWFIJeSqV_F~rlB1%V(9e>$tz*NTO|IBDp- zF4oFJ!EI*^?>TlXrBv_Mqo&KgJF>mf0%FL>=c847jh86ex#p_kWT7bnn~09SDfEwP z4dGR-P8cV#LeYk=IMPI;%~dCT6`#tbb(@9fCSAKB%PX^cuTLvMq23WCbwrib*hV!8(61Y@$dbtciF$` zt5WSp!o>-~3HaUb?5+LDfpfKtF{AcT6fy{6619)A6aRA?CY*`&%^UxW`5cm`WQkPX zL*g4wmQK=@Zxrs<}dztN&iE_z=7Hd+?S7zkqQrV_P}zt@vCmy(RyR@K@)bwQerZJtL<0 zSzYlpr}#yLAo|5A5`B|h|973#yH$Fn7Q_47s@;B0uh=T1Z?O3tibqvHzTs!zkE%z_ zK7JUBA~B^aeru6vP?zO-n(xb<_C(I4L6QJM%I|R)wNs5t%W2>F+<)ZL1Y}bs&2<0=(tMN znn6^tLSA}=zVWj5q~iD%_a|??AW1)=TJ?6_g8;?#by$*HcZhDQbI)JM8d`w}NC`axm zp7ljBqgQ_1(u#2v{`MBB{b-qyF%v?G7ESCfSR|T}av~0g9{1VH8!#NFr_R*6#R+5w zNY>6vh$r0n|2OZPY=`x7vdkYx&@L%nP}uM1W=Q{2V9iv;UmObGbmWF zdnh89B>naCwosc$ZwRf;{nC+JXgd#a2id>v$Kw}&#gXyQ+2ttFvI(`y&exBfIZA|L zN+2g};0O1c{GG^J7p3Nw)vA+)y2}4Tn9AsaBd1?0-f5JlU?ih{WlEhlW#9(XM>qCu zu^qBbAP1W3;@n+K#m z>v1~?^kLv9^b;j;Cykn|I&)Zr{H}zTcLnd61;^qnQ$hbEI^HT18VlBdF6mQ?nkO^(Qse2XuG644U#By0Yk)>0?c2VHv zF|{%X$BO@IR@=D3Vf5mN?bvTJ`A$CH>+1t|-dWRYk4j5$7LFgpsb1{$Ni;ko&bUBF zqw*+$<_vIN>;3LCDh~N7Vno-)64_tgX#2HpF@9`sZP-?aTrgFk7w8E3LGdIVKF7=FoUTt#X8`@Y*(G8ji zx1Orc-46lt(h&pP9-8?MKdgLT=&>f$xg`BCI>nwfNoQXi5AV2%bjjrc4~7Q<#9;2u zN$(UuQ>iKiztfa{XScEp2keKmYcmoX?*${_f568(`seHm`y@=5N!LQg3+v?fW0i*%)|2_r}pqv|r725>6j?9p`x~;-?JP;EaWf981tq zZ$WCk9DOR^e3eHbX9UmCne?o0d~8Gdt~@SkTb$d!{w-fz9O#fw?$_~%xDdZIhuaE3 zx~obGYZtR|$jC<<2S-=L7EdBrg6|;4fR=8eU7g`3~OIa7QCuD`c6U)}T|N9lg7_f%`2!Iy zHGY8!5S#{a7ba~Zqi#OXr2GJ?lSZi)R&gxZI14@AS36v7%Dyf>t4OG#cIjQ6wCPFH z^&4A0Ip9ftG<^bREB*I25;n!v>m~;&FJ`kkek2ZKY!Xr)=(23)iKl%A|J3tY`XR$? zwOT37+w{Nsyu@H3_q<+LhkhBfr_q+;dhFGSm-bGW#G-y70EP4l2iIK+gP#^Snob<+KO86GPti%n>YW!C6LEeVzYww9)!j>IB7$20<(`2 zHbg$!>Y=QOH@(5R(1JTL=6yw4E_v2NdW>$@o*Ky zKadeTp+S%axit6)axm09yxZ^hU6z8v@8e#oHxIu+;8Q4JGvr))mPxP}xI+N{PIbBR zp+3|Ns`1!6D=lmOF50_h%Z6Hu4SyX_xJX98$>|GNDf$jcyq2s(<3_VRZuQ-56+U`p zIZpeSp@>3%EL13z7Ae?A^6$ciUXl@;=AELqDRX*#9=$;+D{nFf*op@U783sfMhk4Q zGB(u!^Fa=N0dvh$1BKg(AIl_B&lw*beU2Y0LKuqb8qE)*2fi5oDy1XkctE5a25ji@ zITTNSQfFYn`RXsz>U#ViPp=@2FAj$Pdan8c@nqW|Zx;lIIy8lt>;l)hLZAZp4iW)V zUY4>hhij3CU&Fcgow+mc`9=qSMX2%9Wt;XnpXi>jW+H$&IronV9#WBx`?^jdW8vJ) z%DKI9!eDf?9uuq*5PfSTwe`Om;Rczz?H`RnFl5K3B8&efZ(?!kGRGMHed+w&I5cY0_{Cs&H7a5 zYV!@6zQ!x_TTZ$>k4qvIzZLVI3=dp-I2f{6ex=&&Y@>Wj!ck~7gueRi_}AnW`kw(y zo0c#}Q`#+GDaZ$Kwz&cam8WnF7Dw}!uGA>DI&#Pa0~`^1`K8=ItGU-nb%>eZ?b zgdDzdNLgT9s(JXJkZ@b_8se4s(APeR%dK;jF2jAFPi}#qlS9DXFOK{)p`WrO@=AER zT-d7Rhj}W~#1C3A`?8ESi=l?NmAJyVP?_L$Wme-w#peuuMhR!-&akFZo-Qk9m?WFJ z+CB2}g58e_HGowmQ>9g#mT{CQGMt^t^8Fvx6H|oa_DzC(7F6Hp(hNsD`nt~dJh2Br zuJ`Vj3CQm5IqVTrb^i)SdY-9knC73Bk&%f9BX>=q()V@q5u26M^r27cIhwq~uMC167TxqK#>_ z_QOTrCd}V{?;AEZ;pe-0o5qR-R?dj4FSLwAu^g93^BXcQ)vOL)Ceb`b(p@r9*I@Gz zdz1u4%?gbT8_rrePPbKig`kuAA-zM^MAd#U;rvna0LxOYTg@`jf-bB9OcxJy7F$8i zDfyF7L`nMB_rVkUt9=)X$`=RjHV8DGe;lNp#rD}BV-%0%gV@KsuY+&*c!^K98OFJm zv}jJHo5;)fC0Aw;CvreDu2Jmk3>##+dcU+rvbQx0{X zamJdNB$Co{cG}}(iOu)wnR5FDCQMu$b~cRp34DEM{Fr{p`K=>*)X8xT)vsJQ z9fMZK`XpacmE!p<4W86~ysZ354gfj64RG|21!>&6yCwC^yv)VgAJlb&!8(r>XwzGf zi+(Rx{dDR6ALsWK(1MzstwVo?!=F0LBo55QACBn2`_SK^J}}T~->IjUyBP4C^9Io& zDeyWZws#EO`MPjv5tq`s=k#ik%17e90nhNs?aaI6zlWE6*EGVYWVDq_H^jAIzigGw z^n$nB!?&bz;^r$6{=W4$d>9M2C0(B&tjr={R)0QiI?-SjeBQa|yt2^&au)Mka6MMF z^$uBpPJT?k`=(>CvRkYBDrrF?rt;H5EAND#z`@lFG=kmo3Re~l=i~UlZr4OGapVOw z_&6OHeaWOi*d9h=x83a<89e>h7LK^?_?_kaO`U>zYJe`;Qil}jt5N) zz-Y#k;6;4JiNjH_rw%TqZRd?GL+OyfL=U$g6G`0?DQtfZ%sqS*OUHE7qH_?@`4k6#&J8u1O2t75Y zsMwdGU1{rHsQS=N_xDthEuxKf10KgG_2f0D<1&0Soe8f~lvh!I>z=9l6GJX?#PsKj zpvaPx22r2pLY7@0Rfbp%MJJ-uDU%ij#3s*yzaPT@^OOkji z4_mZa47DvWm?raG7#B@M9p~EBXP{lmTB`S@4sO5%V)??~qiDhxZpkb4DQe&Uk!kI` z$)bEZZT~^q64QS&zzM!mwgFRrAH@E6AF<@_Y8$|7`sciG*o z7}n&PXP?3m;JNAfQ8*%6d9Wo@fDi?2<#-mmdRfswy+DBcbp~Z!1#)Tj`N3AxeLuiK zVuMpJb-)z-*wf1(;Uo3GgaBS51Se1blgm;N)SP&7x4xp5(`nAfQoP{eSssP5*< zqhiiJwEDo{q#ti0PMANZE$Y7nQln>bb5KWZSF-^Q-v^xlBIxBKeb3aEgC3bhA=U_y zNcb13NSSAvMkv082q~N=z?VDIvZAAGb$!%|;oFCeA=LqHF7}#YMnklyw$XfJ^}4@k>E4AVbaYe)XFuq)m;8wKnN&~8lefS(uP4 z777oY#e=K>+U0{d9(3~1-ewZTf(aXG?(fZ`Vtu!&-Vg-;RJx$h&TWGhwFzs4CWAnI~Q)LHrsYS0A9PFxmJsdC&q>Ex{eZsxNb>xvL> zJ&J(l2Rx6VQG$Jx4Zm_HIDxG)^}R6hWJX~4HfeE}jFj8kOdVIs`(ByOurk#I-Mht3 znk_diuj#DFO^MRaVWcHKK|p3s>V90ABB1h^?uMX8R#Pxg_|rPb5(mFQ8t#O9L_v$k z-WPyldUN}XE^IOSN=h%+nc_CS%;WQAr#qexYpm0ZoVz`s`SM5HV_&E#H>R?(k%sF{ zz{qDn#eRER_tW3+URnhmc>L%zU8}Pqf2n?}>CPhDWG7f|Daw5l(VD5h-X88|9GtZ> zwI6}@hFRR#XFjIpvD!99tffdp?n0bm)=UI;i?0%-x6*Ka#i=Bwz0D`%oxnpBZR3+R zk!wj{hFgFuWXUHoKMyh6D7Q0q0)wtN^k-Gc9jBM}3*BVC(tfLX@OJ{1&5NGqc3x<~ zG5eSXyue}Gy(@o`uV`H9WOIAj<9I7H(FQH@9m!I9r3^^0jd(jcabvUgGEE^b7a04j(XFSq@Pd(4069+ zBry%q*DL+Rkw7rRn5HqIVOj6oAaMi4xQ>O8WHf3E~E{n;y;S zdhdsP@SUXIMmv~yh-0IT(Q36Pw2j6g%J-RIP&lh`IWg?{*Wed?l}B5E#}iTSHT6Rs zgi7v0<|{jof6ySp-Ok8#+He9V0wXO%ufWBCXNSKylxVlu)Zf*(5C7vpr5m*pB*M5p zo`$>Ba-K?0BT*QX#R)Y(qNye%)SzcwBR<@d0wOy3%wJ2JH5>i25dyeac!P0afN30$ zK8_uV4rBmCzf!-%qI1`35c7G;OatD!5+n`Vi`b(l z($NM(K|?!IH>tJEa^ac8X{1BA-Z;`y21xQ)ZezEZM1_v5x|K)-yPYYcN3`6=0uwR5 z_`6rY@QjS9kp~NJ{Tv^goOXZYw<}E#kbi|&^MF!RXmV@UH#~X?9~iX5bkbxXD&HR8 zuE$13?qgR*WngU3C_kaDRO|lMu<=zlOb>Yh=f3H4#6d%9>lqkaZ%O@vO~&kFt)1Z< z_e;O-T2loJm4c!3`RI&C-wk#8z{NcJR?Px7*Y}1!TIv#=1j`1PV+UC)i_Lq9kLXAhzf+9frNX@E)dL1R7cGC7IUM?b zTQk7aRjH*&FOZ@C(>(N`;6T6odo0a4wMP1Q_-q1KXr-&)hap8d{&k!j*s8$Rb%Op7 z9sIH(7Cp9iq8rxo^Hv|)?qB;JoeShe@p%RLHDH>!J;Oevmb$6_oj&^VTMy|5#?r;z zZ{)aT$-t{|FAg8}ajRP)*~*llPr_)44zsBZDc0|UIAg!7;C=#Aol3^BkwzTpWBU7e zRryVVat^)G40VJ}hoPTh*>{pA8~E^zNlIY@s?GEkE4&x}n3 zHwIn!Q4Hqro$WLJzwWq*?@OKG{m&bNpi$_EuL?TTSY;EHOKFfB5!C+EPUo6SpVCb- zC@D$298a6hbR&Rxhn1LdnN3-@S~)585|XGy?jVv+&RXHeMrnjT|EKKTS-Bg zhDLmRJIlwQ8&FdaC+pBtJ5X-h46cj@kx=qs4G#f9@RUuYxO&~LM!BG~b_fP}ZpRr|?&p`*Hl_+KLrl&ZC1 z`sn1xi`I0AYQa)*vKBA?iaXl=-RMN40wJBv%Cx^#mg<1x$Ct_Uu|`y;-EMjB)Qj65 z_Tkt`luy~zy3AnLt)#Tn02w1p;ng)J(pi?sck1YdvUg15k4^+HAvirLUYDsJJ9$Ow z%P&#s+e#@7c;x+%o-cCC+NK}LT9@(95K{lNJDp)N#-63b<^mY#FBsifEH>|xQ6J7S zzM71omES>XJYUUx-=b1C?~4fZljV4-3iDw8MNiZ%t;i-E3$ha*K9E^U{3=oLQQQ|) zHNQHo&iYstmJ(*~H?4Rq$Uy`Q{a}c~Ac2G&w&k)||0-aD6_I;&g7bF-4U~=sk{-sQ z<3#CZ)ZWWzqmEm)M9Y9U(GM1*iF6f#v{uWpnIzhw33uioF63hBu`>} zYnq!wBHPm>@T22tuRoAgQ7o5a43G~K#2ZF_aI+05&EEHcGT#4_wxLH$K)YN+B z-I^u+CHqQpCHN-?adK=T*bJ%+lJPW}a%^IFt%g2b&$x6@Gl5w@!hW8Q(1I#c$&g#w z{=7&=+;i8PPY4kFz4HpFI6y8#xzQ017$2E~OVY9>IsI9>3ER}wyAh(Wf{Kb(eaqZ2 z9$DQ$vyZSaU<1fzZtFM74UAAybcUzMS_@D7UW~z956)B?S*-*to18kp*xHSM5mAE+ z=%9_G4au3`1rK$#abG|XPosB?+8v)#5K%UUPN&a^a=NcaR%ZZS;AN91S=c}tCh$)h zqAz(+D(ZM&2nr-LQ_I#2L%qP2!(TnB{{R~1P;U9-8^EC|q$D9&OXu>(0Wf@nJIx^^ zQ)zsa257}0 zAk~oHhNV#}ca6Yqgd@y;EfwtbB?l2LcWZz4sH4Y3Cc_&vF*IiTH+Fb8!Wj+A#+v-` zrDrz(Rm{`HM|50K`zF$!sFeNWT1rk|K-UX#P9T0nh1{IEdLjXS)lXJJxl!&}g!xey zcr2f5q!~Z3a6wI~p*3`zHM)f1-y}u~%$#BA;6qhadyyvMtC}<(zxopJYJdzyx$zSn ztg1d%$fL5)xsz@`KXH}3KvP3Tr73;or5X$5S<%DOYpdq)>R~FGGL|dp@N|2K-Z7RDM0}Hqu2siT#8SfC12-o7i$Z7}6bm22 z9fm{_(ar0w!%a)%tC$sV3FmTcG7*4SuN|}bb#}6M60ft{th8-$nKBN=s0uh&MJ<$t~qL%`OR!ab0I%MRj)KhV1 zc!8VUU4vgvH;Lc(BjjPKEJ0IRMP$hH&%)A~>xudKN zel>@Z?T@}Jll?KhlvD5-08`!XcLm=&!g`?k0=Yu{oXMK86j98lN zI4ue+oWtEBs6qn}ks8;;NjiG~+o#YneZ1^+2g(C$m`_*6is^*al4LO{s>V-=uK zl=BzO4J=)F>DAf^xKaWM$V#JMe`83Co!4yAdBJDPN{)q=F3`=-P6_p@wjay>@9F2w4#cU)6Du ze?zU@w>tDOb7!y$z@PRFSv(}?X>`ueeutuRI(oZcJ$)Tq@@x67jn3F!$|W6cXm+bl zy_$<5X#;OjYn>09TfiAH4@W57J!Fz{fxMT z*0A+=HR2GEgJNKn&`nrX(ynuLk+i;i98m$kzy&g^tJq+Jnk*bk}R0%$pQDTR2$B&{d1vlViGJZVFI*I$qKEpInN( zUUIsRO^%DHiK@BmsT<))gD%v8eMuk6e4ZYkASW^H8ZF_-U9o$Tbr)U$hid>_?osS& zoW+u$I^J9 z9TL*MIg*^NS${iXCFE;z#39Y~{iq>;Ue=OviC>J$C~+5rjN~q~ndh)jEw@W1QhIJ3 z$5uAu0SuA_w(`e!mfOLu^BtVvoF$VEJFNex&Ai%^y8{f8^go~Bdc0)@AFG3~S7{uM z(nK(^6nmC}vn=|9sUfV%h*XxP>-T9KOUmK+uEe)`Git)iK!@WciIaLO6~d#;6`nMD zT&;xX)uB?gRaMou_X_?Prp9J3joeej+F`iss(7FrS+(eIl!nE~UxFv?oFL`FB3irZ ztfsDl2PJz`cC=u#m4+v&Rx%mVvDFT{W@al8Hi-rn#Jrl~V98Ywc1%A4T0Yfmle`7X z+VrV75$x5{aM!m(!Qlzx#S-YkH8Z3lzQ_A|mciB%*owSH&jlrC3Hr(yRuAp1Jzj)r zbc$cAM^{&J!x@2GPz#BOX$N27x5_jJn_n|84_3Ulv*D;I<3Nr8&33jgCzu^8UMsTaR)Qs`~$x-^~uTB~|d{&|4bm#``OkySY`{?y{@kIVo6Y!l71fd;Cd W+%Vi~EuREXerCqjMs@JpasLOUoBRF% literal 15537 zcmds8=U0%09+fZ1rRtK+`wSg@_1*@e zyvAmc1sN%)r^I(=i`GCj8Vq?3YiK8Cl(#^lKeSe`*u#A@D&4DUxW&1arO=7ZF93x# zM{s53T?nqEPWu16VupjzYhz!raH|c;x6MG3B#c*S8NPnetphrY4-Sr=UjI`cDhbQ% zkBB`y^C#M&l^u6;nbqwH-c>az1jO^Yg}lyA(rA!FyB5`Zg%4hwrAIdJ_S8Xf{DX^n zz~GHp!Z`6ywF3{#q)rcKKe(s}4BF3r9VhP9JG9c_%KC*q9KLeZOaha>HWBxl|5vVJ zVsNnt`1jK5-&Vz+pG5tWFzR$5yq-FcHiVdC#dbS^4v#vZw58!XTwcW>AI;p$o3G#Aba>AMDmoaGR7>6UTymdJ_i+4%z8#Uqd4ydQzpPd~;*$?BW`7_^UF_ z){p4!*Ir?-ECv->RvOj6m2fG3^lIc{X#$UgBNF`ghUVV9g_?qON!#T!Q;mC`|%3yVDw}d4rRDM>{?GZ%wDP&M! zc-ap$qKmEINc6A*M6OdLULyxfrBnG8BT_RCkU}d(JRcfE2~&N@(z$>@GFqW?nsAza@EshDJ8-iB@#? zGRb6J^XZaf@!=ODGY}pzSo&z-L8a_x3DC=nXK+h?4C+C<8W=w&c}AaB&W^C%Fu|c- z_7}hCH0Y|`xgE_&0k7eTK8>8G)dBplxNK06CY}YTp1&LnR7N^?Cji=Yt&rI3P@T;L zlahYEy-Ubv6ta8SUnHkYV|~pR`aN^Fa@dw#O7`?s24Kd5)FpccsfeyuxAS8kulEw* zU{NNQ=7Mg4!a4D!2UI*)#4En$hur;AL3hC6t1_2CLAF}3_gsDljW%XHxM_bbzv6^? zdctj9D)nn$1D~cmQD4kqN=NCor;3=qwPV@~IvzEAGDArs6KT8!Lr<{cJ)~;GiA_|N zbFzHciBIRzsnxtl;*z^8R#JT>vu%?KcI??D(@Fn%s7Qww;5J7nl%ZaPRQ+^Pme|`c zc`yMp({pAde8Ti>`@#JS=hk1^-pflonVCgB7GcJf_8*0I^(|o(zM#J=9ELcdpvZB;M{7Y&6j{Z_;eQgwy$o}!NBR&`D2arF3SLo(=M1StXWv(#!NEEOz|T@rdago*&8-s6wDxHSyKOLyLDfE7c%+M1v!B z!}AE+F=k6<%Y$!QWf$t~t_Sm70h7|tKRI6eZCT66m?e|dPz)UpL#HASBwvy(!eFZ0 ziDa|wGWQ1urcyFIJ{a}lst=rkxyV9<`fcLK$1oI3XDGXD*lT{=roIS0M-sMx zh!rM{sr1?xW*?YO>d*sbk*?l-Y*%JBxEU2Qh`5uO8RaM|D3E^w*(+~-yKb(gzd=i)++yXKrfcyF80Q$tzsL+kb-o2nm9;Qi#A~) z5!v;1^;@4Vd4y>Tii3i54PY++J||z;=?Q=0_A3Nx>Gpi05BJGMvfE%Sm;5=D?QhPUmBeJ${I&b1ekaj3=Dg5>=O*aTaLmhuUCE8Og`Q~&qT zP1=SeHv((Z`D&&TSe7WK%(kO2$a~y&d)l6yiYN*Bta+dOq+*LpK+L~luBiaF>t3Rc z&xA*ipZ;^s$7y|)oSDY_Eo#1|?r_yN4nDZ!t?rdJ+q{ziK4d&VksdJf!s0T;%%hhm zjvy$cS%z}>ke;CV=d&bz)=S;-430lrOD)%b83j0{(ZPyb#{W)GFAvCqY2$zT5B0$` zR9-um@Okk8u8un-<9Ifdftvh`4Tf71H;=lqm8oHa=!dBbdlZSk|!8hOJODOHeY1-TdAVVo2{JFfzwJEm)tEfqD)ri z^_(tz`lcr~{4{>!`*8+Fl=~6)pTc(+8k0Y-2UpH2z8SS*_supM$Q|-=lkM$f8h-Qq zF>T_Wdh{&N!Tx=+vAsFa-Pg{L_I~?{ma;2l=GZ{$&*qZO^=XFs29q69@z5Y%v!pG8Uk_%>%Q6M|=xM$`H`PT2*fhGj`y_)KAOImy$%++{J3Y{vUf>76l z53^ZMvlK;(^k-aI8SVLEabEUjS@U1=zw(WHoxbPi4C>e6n_Zp{W5TR#o*`Dk$ag(1 z8nR37p>O`IoXaYDb?XIl9gbaRM=5=?vql(O!*Xw$S|@1>Y`WbR=_Hpuq#qMnb9WNqAkwFw|9acMp2b>P%Bj^$TKFuTbE=vMDk^{J=geeQMUQMzGSo5N zC~o#zy>0ZPup;sas-jQZk_RgY8hcJBqbD1I_$=jO2PGh#_lySc%0`a5lxZ(3?WKO60B$p(tO`=n&TbN8*O z6dTzxZ*9CcB(G8pGsZMOT5Dxj)8ZE8w54`hFcOhb@zCzV(juoLx4UY+k^||Im2Bmw ziYUEImyB1Nv-^Jn!0e1XfqHuQOb9P5!a4yl0WRt?Kxigq)o1R0ncIC@W8rhHQu_~C zuY5H$1I5S~q>BAfrhNN2V7c)Z7q|Jn^;d*d%;lt-qHv4R;jViOT@{zk5eQv*vKast7_QBnQ7bIgDPe*B3nLuPm3#mbYvQUdbjmWbIBaoggHZl=_|Lt z9&MUdr2>1p@RmLDzcLaMe}iLp6>zct)s2=>+kIp~=?H^H$TXViDvrA)rt)ABEv|+I zvCrYx(!o#?{(@Op>TEv}%# z0F<$s=>P+hT%pAsK)Z>laWc=}@C6W#-|1pMz{GVr!3OQ=?xP{Rc)W_Xtl2@SM-50X z0SVgER;3n3e}1Awl$UDT#Bog*q-`sx z4tB5DNTQnY;VpC!hM)ktN^#>a-BIDss1hqS{#W;W;2|?}H(jL5-`bOi~5y`FP%gwS%e`KdItwZB}+?E;gJj-)`ejK#RUofNBiN=59E9 zzc^0G{H&J5`x6!YJG)Ee^EU3)1+h7VdA__&s{=Iir_6`N2W^%N@3o+POwr}uov1_l z7gyhQZA%8N*A9*&%pI$Ipz_en`A?YZ3->BMk8(U$HWDom&)E2+O*o}*!ewlxvHx7D67$Ss z_lV%k^vfmYk6jKN28eKPLP|(bwR~gn{eib^!+&Xn*&82Zx!%K8h=93;#sqGrFMLHE zF278vzlEJkCRnCzf9>6Wp2}B}7<`^OrUl(Z9|z1Z?uN>oZBqKGV7U6}a{7|IEZ_Ieiowm^wtOY zdl7<3Ej@gc9cvo+`>`*GwtYm8UT7!6muRX*35$l*!W*UWGgKqF|tCoCy{pSM& zXPL$4j?~X%^x+ABq{P}pzU%u^MiPqlZ*qd}-U)dj$T^*mwk^S`gV_;4;SUU}IoC-A z-!q(!wc>7rX(z(3Itrw=Wr5>Q`m;gv)336ZvA*{v4KwSN+pQw0Hlt8c=Pt4?)9_{5 zbVbDO2t>M{Rk7OFrmO-CR*x)566k<`x}w$3KR{6^CbP-v=mRNg;T2SLT?<1{LVxP` zQb^}Db*xTY;dkjq8LH}L_OQ81H_}Cwz#oRmYov!v*m!RO-6T8%wJx376e?#MN_ba?Jb-RfB8cYR7%* z_%LV)cmLHa@y12kmCCL=t4xD)cNH3Na8{`fbqQ4TI-7d$st@Pz3~eAnypo1wt?r3y zY*1C~^jiWyPFFH9w(9A1V5abA$oL3z7ieCCZ01q47|o0 zF>jkXgp0K8>>NcMw)N_A`^hB_nFSD~n?PB24Kw#{a5@%L{%F<(jkB<@)=CU`w{Bh< zkWH06=X&QT)Ur^0zfO>@U!%nAaB>oY`@?eZ1#XeqfZKucVSQ|waSm`XIh-3540Gag zgaxtVMX1yotXs`3K(5ytB{mE$y7x*7+sujc?>L>?1TCK%F2X!8v%Tu_?^xR)K0X{z z{lZG}a5qxUfA*?vu802Q(W6fVNSOZVIs(UfIA6QzQ58>Oqa8sC3@EPKD$sE+=zUy0 zq-m3-j6hi=x^w8^4hX2%oWWBqjKJnd%fq@K_G-6!ptyMfo$BtYuJY5VFEYk|%mq$8o)vhfopI`z$X% zZ}^TkgskwYnjba=M%~HDVfoauov)62d62B>9}X+Jz<&NxpW6OQbbB7tKMrv9Pt|Y^ ze9jT|HW18U^i4P~%8&YOX|>b=2!##6 z2S`UTV?Slvv`Km1zwph54Y_f};ryJ2Hin=>cgUP|X7x(fi}3>lJys6KolqgRsyXZ# zVODcD&H4oskDhWBq%_P>lQX<2tz&B;?Pd@%ds43S6K4gg`aE{EA^j7DeDh*b1|=`XFuKW*JIbB}1Y3Ax!Nvi-T?h zG5GmJuHSW%C8$ruAAgo!vSZn>NK}-u>&(16a2R^KaJ2=#{yiyeH>1tf z4l+EibB1sM(zY_CF*~#iiMpCB-0kfLQ^cBPWB;mcIo?`%XVs0xdL{G2qO8U3-#f2kuldA2mh5l&A`xT)e_VYRc9mkb#7+4) zyK+$`{=q_~sa>6U6Jw9fQ>@0{ysz?esA#G2S*~A&@+vz`^z$>oAO*tA`px^D6@xjd z{8D4CxOQy2#y69zu4)Mo#{7|kQ0>>hD2u}$_dgE)$~WLaUEm0lZLwJeeb^0 zA|Crz59h;X9s4~}2upbrsmmn@HM7A?3up2ROvlNEF`zDRH)}Aoj4R{(T$~*0CCFF2 zzRBiV^zY=Y+xpDy?xC*_Hw2)!CLXJquhcvv*wgL3-#%TAT8WCf5#`u^@-ymljRj26 zGWMDG^a;I~)6VL&z{AQ}M(7!2ThTBd#&vaxJ#5GR&vy7q&`HP1(a@;{=Am7OBS#US&-r+7Cn{(6NGgw^){v8cP z5jvEdp((2q0Kw!esl}QT$4=FD7q$>_4$4a?Pu}>{Y>=%*-AFUPwp`aoLE}OK z%N+SJJ8-cmLSWR<$tmhomZHT@YB}7}W90F7DNj7WOxP)aif^EL{wx3~+9t%q(4)fg z_~s!7_&RpV&_r*4qD-K<@|FSiREjUlTPAgpyNZ>r^2r&=ciT(4FwMN-Czy6&+$lB5 zKkNs%T5Mozw}e4)7ebaInTb8M?*@}D?FoRxdGSu?y02xLkb3nS zi*WK=hH;8>`ntXiZiPCgT5JJb^~<%GYZHP6>y>(FH4iz!Yl_D$dUgNS9A*mK9dQC& zm{VHhIn$YT@@iuG_GTi$w)UDP@3{{h(Ig@1CaeC!v1E^z8#J^rQKB?0aiZ;HHf#AvCZSD85toxlusrVn% z3-hS_W(HgPOO7%;9ow$=UI7}MRlgyziV960XV_Zm>F{`n+NB0!;h~UxLXvDcI z0)=kw@v#oJ&NjQOV8=^%esFbOo#>y7>#}EibU^(x>RXT|UjLnd0+qsClpn)4AGWbZ ze!Nzj)RAfaP$2Vip4GSbIx!Bx*JQFisDItSLXg8RPHzH!_S!Wv)t046@MZ~Mb2&j@&FE$8P554xU3GJ6! zlXi`sLy)OW2=~fzNdo`qC{XcI84~unnM?;97-rOUlyl}2DHd=6uPjTFH1xzA#?QNU zH+c7HR7j?F5|G;n(&(57O65ZO!nnoU7AdxHf#he)i;3qX8y}7IHwzPFix?M1Cs*Aer5BGN!6m|jxU{Z zbIPMjz)Ne>2S+}$GathuOm4oo2o;zZb>$jaj}k}UNvc=2suR8iMZ%SL$dW*{Ec&UX zN)PeSOxgPzhV$XGoc=08o+}r?OSiZA(?krtCR{2EPqPpxkpTYuRRb=GR=vk&W{WHC z7y?EuX55jk#}%i4EapQ*k#=dDS27SxtL7#a^honhsA>Imhq`n+r^Lg3_;IT(=`8L? zG*oO8q_KMZ&#ePhh{!wgfN1=59Qo0i&_7stkftrQhZ57L$Ca;bqANAAk+YM*%cE?l z43N@!Ih=&&I`5ZgrCnAlsR&|>x$Y(Pl3}+NAo1%DF;ZR2Ea7+Lqfw(R=*k|a&{_S) zm$nw!c>yjRNOa^$x@d3F3dI6Ru3#`$$5;cF%Lf?l?JYkQLBWM*uUyUDiL&%BWkg+B zP-2iup}YP1L|f!=tf~~g;)r?z3Qo}xv1mP7?^K>N^t`;Q*a!QOM8BL1Zl1p0)tw{S zXSry1JMH0+5wo7Q-cu!}Mq8Kfk>TE=g@~8#5&6Fgr-XY~TO!OW9~_UgqxWyMQ4dNt zrEV0P1cEDlH?|Tu@mFxYDTOW&Id2cbwBoXb=h(=_DTEMnicaR0WR_PszkA$93mKG7 zM%Cuo3#i{@s)~??Gaa4rfgH&;NjgCyxU`!$#lN)uydZeum3XOb>WP`a;MoQa9{RSI z^K&1>Gru*x>Mn&@mNXVi%J9(p7QHv5?WLLz7L>purDz$A-ijYqS2LXLa;$zY(Ybdq z1=WBoGe z-7EpCOjPJXiB0{a8V-W3Tkxg(k}^V2DoLBQNn#|FO%&&)4tZvTxE@0_0Nz;1KFCNZi)Bg0kxkx2{KH}VsY?*yxC$N{86NjH>sqX0RnP(oa*nG9cN613_+zIM) ztvi>w>aLmnbi#b6jnArpE!3Zl@Q>L2ew-2M;^S0q-Uh`T6y~)upp+m@|NL_v5R@#b zF9mVK`z&fK)1Oqdf+W?yuK%ShvLi(*Ifk&lZ>D$Sn3o~%RG z#6B6N#~pCQdb)iHx%~sSE!WL`Ebv;N^rq-H9b-uLNV1yXX)Z%hC_F_D`DBh8I6R06 zsJSJIJtghe9Uj>UM{0O;{|jV7A5s>hoWARx@X9FA@8yVL)7z_V4Y})nXk>ojs1i$m z*2}gUu(PXn7ksOqw!AOCw+`})Mf*hspxXx@MxMO+F_)7zcMGj_<@g^lZ{)RkFsM>r zIda%OaOKxU(?xDVu=KXmhr7Dx@_SDTYmX+1+aLu`*p0UZz^03Qf9%kXu{YkJg8l~1 zNbW2zZP3kSv#{|59cG{;B|0Kb!{*UXH)m!E!$mY`J>ABHH4M z;YV@wEE*}PVt(iDTIQoC{*)H^v5@U6I0SIAJw)xRH4?e;a=tY*>ea?Y9s=Sm!=O;x zWQQ`AIbZYJ-m-D=$b;i2KvTF~T2p!?yp|_)%adQsa9jXK8khJJ6h0 zikK2Qy`BN8rTEQ5Y8YC=nx0f3w9E=}F*6)= zRPPoj?kRfi*RGjo7VZm^SFxYUlVV6qP^p`798m>gX}Frb1d?Nn|0C(ip*XWikKX6e z=L3zHCuC$Xq8j{eYtk9l@^=v*?7~#|EgzJOCT~nlvoNkL6v%5cHol|(&ehj9rQrVl!A2k$IiC{Rt;@SHpA)gB$q z$~WvM!o|Wj+vsNH2Jl2e8y7EEvVAkML3^tN_SSZ{B|PA>iT$AEG zct{0=4B0dr@k)Z6A;egoaTEIFOy6T{r+Z^Q`uak{`u*N@4lb3FIwpUmt2-O$wl*I9 zOFpF!N=M5Lh|Eo5A02d&PMyxY+d5+kO5-%Ldt^9l|LI2`^Bs!=UGMeN8+0L|-$x#zk+<}TQEhsS2BkUg=Gos_ zdFa?^)k53V35Jv~VLa<6XPzvU!3wD7`l+Ynz_0wkf6u>mv@A#qrRT=8OH#P|Pu`g$ zEhTL`H{~EWEocGvG|RUeU%{T1I|u#B?4!Rdm%ax|q7Fe7<8{XG%VW%U?u>MJN3)o$ zxnSO==`#@C-BQYbsJrx+n}A=jansQx24>f2*j#>h>G(|?Bb|QxIs7f(3SP666@J*C zYqqeL8IVEB#~cD34Hq&0GjYM`R2i$QMD&vvX+iYev~+uMrh%JTP)?`ZcG~9}T98e> z)3wdgFkvX=Pbg1r&BL5}sJ*vLBELx2O347o(?{adl~B(kllg$LZ1%=!2L&(V0W}5< z0Z0nYmyPuHmXi4?*OT(wSJzM}K&2fHRGpO=nm0dHXcoE4JFqRxuvEDUqs62pVF)0Q zb5XY3l`2e!)Pak=VpFAsc5dE99vNS#ntobNC}9kA-l}@mHO~}2-O~uSs7|lT*?By%oIH?UFrP8zKij|16(UEOD<>M0RR71U&h+J$DrB|!zu{05 zV2mPgR@rjl?GE=@?3dxO_!4w<56!kb(mXv-4P_V)zNJ*c7=D$~clW$VjTJDimilH- zM&yU;#TzgGCY3qsPpyg)ZK}@m`$r!AbDLYq>AHFAb>ze)EmqaC6^b8}2^b4b=Q+3h zmSW0@uPb;yZM7mSV>0Y)y;f;+=J4HvH+4D|e>ps5`oe!VM8QO`b$g%A2!d6jht}Cu z&NJe__3zZq-+I``1Or?M7Yq5Lq62I`EKpr!QEXrm&xd{aWlqq)X1YQ1XrLV+Yk*U91|1O&QsPNfdM>wZV-bCu*25K~abP}!|njUlv z(ho&aH|~5Cxo>+1nxSW6o(&lf1>l)c>Z*Jga6XryMR5BC&2K@Mv0+PQ`9n(7Rt|#6 zMJbCf6;t7Fn7=`#`r*pK z?p<@jo7{uTPPrT#zIrc#N~8!1EW??mF_jZuelwH?OD3!H-QSOV&F=T;dqmSpyJ zpODXLbLzG%HH5(Kb1t?dskobFg`BG-^ccD$lMu zL6SHPvgF8s1s^WYQArd2hsNuH$+D^5Q7BiiPb$Jh?)PZLkD(@^Zt1*pCco}n*ER0D z!K=di`*CJ;+!bS8ZB<>hvT%Gj!x#l3JL|&Z2^Yx?Wt%9IUT$2x5lfd3T??Z0xn5Uc z!P*1)#8Hm5gGNZo+0rB1jqFiOz&AP9h`JolaN~W*wBVC8-}&nY8$8G>?S>M+cVN@G!rX%2UUO`rk9l5DEB6r{>o5jsad6+P~G`sBMMa#(vQJ@x|sgC`(8-~ni zrYz>zbmbtfbK)qDl;3Zbg2~>K=@u?p$H}=@&gC2UbdJZ3PoKdB>y!_yH0VIt6-IVi zsWdMUGbw;RYtHhWpOW!@dHT0+>@i5cWUdayyT&$fWyZ$up|S2 zBO}~S^@p|%m3_5Rb$+RA0psh#ULLFANG;5o$36Yj)Mj+P)%*BmUD$hpAq!AyCy|qZ zWhg0Xdf1!w6ylnCktF-!HmY+}>D5iPxUsjL$=Nr@eqa`puk)f0^_y#_O^IiA!Zrh1 zy1S#SPg=<)Z+rqSX}E2CKY}eBuIvPQ1^WoAKY<5epJW)Kw9ZnQvm)TePOIPeeu<+V zx7-RF{>^psmU`|B_O2d`m+=Wj_)Ez3hdEH%HOAlh{^jDl?-`7sg(IU#B4Z>eu+tTcr(zJ7S4L1CQnBQ6&a3prU1_R&XxH zkJ|rSozL~jM|+ao&$9_AU0M{4@Fd7Ch^ARB#lfw0;Kp*M+xAaBVbjgy8!kzUp^)1| z%2H*c#o7K}T%i0VH3aGUlEXj+V4ma&<)3=yN_C$$>GdyV?k-81bAO)Uu-n0wmOchA$A!eiP?g=7V&JVnPbYH40E#=vCW&Er)K1EQvKO_$fqoAzAW-PrUNj8!c z))`8eJTB=<$|bjuz6FjRktqW+hh_rxJEB@}cu_%paic+!9;qt`;BejV+`%*)Dr3GKX=0D=d>U z_R&owZ@BRO@eq;yp~GXfrM@n;!D1jhzC4<9-0+DA+-FjeG606a^gEv@Zc-=jKzkPg z)nQj9^NrLUB}>TWlp;=1d;>D{m&8{oxjyb`Dj`>e5Rc+P{y zy@dY!mq7RTwd8kp-gj!b=!V`N2y+m8_?bkF%ifh4%H1{`z!*baxzUl)$`xM?9VJo^ zgbRl_L97EgGU|{27{MPI2I`o{98u74_Blo*UvVi#OA5z{59M>t>9$`~UkJ7l&#EH` z!ZJc^Hn@jSso#mYXk$CY(_Q4v3?n#1(p*~dgC4uwz39s%$@`bFF=Q<{+#^+QNNk;` zEYED};}`MftRPEfR)C>&ua+s#J#M243m`q-dkIJ1 z)J`^-o+8|4=vO231&)(AYYF8M%?nAxOiC>%wg5C>N&@Yj(6Q@Hn2^9GL#w8hW`{xtmBumqg5deoe9*!1*|@eucq`2^Pw}oIc^j zo=~@>A$~x;flc6_m%pR;i>}08xN&^>fJHDZUuAkG_;n|xn~Gw9S;1qbt{uzh=(AtI zUX?=$pCQal4^;r+Rf&{!s^zV`OgaENE}KFUK-(=G_@UYvaU^l=R~P)oF>V*uIOlUoEN?{*{J(ih}(+$Hw?DE zgR=Usx>_L-Q*N`tBWU0aS$qQEvP0YDu*wW_O`uUbQ6sraF6PbQ(S((@mo%*ng}R*~ zL~}}mjB*N9I2i6vzLRO>8nRGi!4)N(59;$4!Sl#U;7tGpRCt>p&LjJkzlqdm?t#A# z?YB9L*nmd9p_~=UAE4}lCpZ3za(jci5&911haz89H>K$SWdKvdC|v9qj+bHHig`)+ zg5g5jy|$~nj8*f&`v8IR{0Fc3e%IU4G#e;pt!;vU}=)-C4Hio z_zy$#5sSF*e!2}eWYKK6i}*+F>&&d_j{kH4yNULh2WN^k7bw}FK`ucjD~@-K4zmnu z&XzTtH_~Z4@qOM4n;d`r3vt8rgZsc=Vh+s-lbU%YSK!V|d9#ywnrGme z``?8tvSCg?ZVI#m`0ABL_k{)=Ka)DbC;doV3XAkM_BNc5h=AgL?zD1amDzm~kVcqS z;$tFr?mjD|q91&w*rD2?I0m>xNx}Wfcj@*b3RwGtlvh*^=Yxj1-ZX#JHXYHQUL?q<3V$}*^Q<^OK<-qHstwQ?4> z?$CSkW$AD%=dW6a95w`;wehWHK2WgIl*Hpwc9C@S_>5z9h5a(c4*h)m97lBk<^hBH zy_g?ZlRzh^Kck#g#%+mvvg*6!PFrGyxBrO>l!1`LnMC;3j<~~airUP$algd>8*vlx zb=h9b{Ne;DcS%yG-v zA3@D>BJX^VpDHmFvf4ElAWTyh2mVl|QL|jg66;J6^SxP*M8f<&-^stfs97GQ3?5P< zg+GU*xyJaR+blFg;R8wz&MBt9PTCq?r-V7d4lpwJN7bbcDD9NRSi}=|*l@oQU=)tn za7(%T#;k|e9C+eMhOkC;PZv1AG!p^^KeJL>)o@gaSp#7I!rwshd%Z=&ASS3ktDIvu zONVpG+qV#2XzdoO4=eubwgT%^xo#|?qJYlPK<;mgIry?XVqtWB3vI`l?`Xjrch{=8 zOO~(+QsfYHja3dvWZW(I^ZaI<{OmIXh-dR#CPv0SzX18;-~NIPP?SBUx%|87`s}lc zl3O}wvO-#baJ6v`77p5*8jvkDSsJa>&zbKF0^kKSDv{xW+27z2yz-cVZc`q)pq35z z*_u?=No2L$G^83zp&dP$jdHRl-w{2cOVD<&?7Uc&XHpTMu?vB&y6vGnL1{exZq_TS z-x5CvVZm~?(s*t0toMI%!y9+ZOo7;HnXy0foUnxZMWKd2M?&ZzxTjykBw1JyKJ;>_ zvQOpS^U)K2))XUu#-=gX(!jlxMjO-mwB=4Qx}209SkR_OjSJ>J&fT1P$ue_yj+VEH zxfGZ4puYmhPt;b1(#5Nm^v`@^%5nki|F!|TZ4snP9Dd9f)pwU{jy3fh(DLX(kbbFclBAhS5SxX}GWg z%PNV+lKJg#G>D@z@F(2rfjo;>sUGIQVAXSEU;?A9fmnwGt7aCEe?tTh!ELpM22Q_a zXk2s|&?MRbip&y?%yQvXRqzMxTxzdWcBCkR(VfA^mog#K2ZHW)cfP7XBDFgm|wist`ucb#m)0K1jFYnYzrT@#OBm@VRLpZ~)im@w_ za?&EJZK$u(fqt$`#3&9wKd1FcyVuLF1rA{PQPfPS7N7lqp!wo*YL03Gvjs zZ|~?v`*k}DPeNZBqHU8}dIC!I0Bi?(~R=@1QKD9KKN|Fh>dfeh3Do@LM>gQ}0 zQeIHY0-6m3;QPDMC}S?zduEPlKAL*I0GiFD@JGztP;LnBXAm=Ol@&lirN?39L4X&^ z3BeUKwXYhR+=AflOQRp~o0A^*V-OZ#65DOegB}a2p)`6cL%Q)PO|Kq7a4i^)<`ngX z%ygg`A&-~$OYT13B};pTRk0C9W_$ZB-&6bf(uig=Jz>TX(hV%vRq#W7A-E%6uKYPo zlNsgnQs~PBo+}3=kq}Q>+Eg+yNLIJfxYvYt^OqsPUTzJQ!F9=+fPI`S5!~9+vV>f^=d&{gEY}D%quR9R1U>o1iT|yA zfdJv)oM0eN3Li9&3s!LV?+yru_^d^DIFLrkBV&J@>5{bp`$QO_+iSLGyv;d0se^TqUpt68)sinZxLcrs>)w&v{5uTU@33NBxo4_5(#i!(cpI0M1;(h8aq znV5egKA=^ysOxp39y|xaTQP$oTreY-YXEPsBFJ{Ei5_V+@&C5sME~xWVRe7+`?SZr P0AOZx-LMXREBb!`3E~|i diff --git a/README_files/figure-html/unnamed-chunk-7-1.png b/README_files/figure-html/unnamed-chunk-7-1.png index 9b43e84e597b72c8d4474f95fdd6bc48127a6ba2..0d7e15283ab3c4380e44d22330d128966e0a0ee7 100644 GIT binary patch literal 5342 zcmds5cUV)|whti)N)s3mAyNfYstQOGM4I#>y~t6DIs_Pj1R+AqL}{W@4B!AVR@5NG zAQ=IHL{OT@fDk~M2m~=eq$@4&Vj5tja73yzvp=T9(U|skA%HmiTk`S?(@N``w}$#FKGlMX`V>d3{24i(zH&dYX@D^ z4!*7vlBpA#wg2>u180Z_&gLHcIZrq2H{I|8y@*1+$Rhn;e%Ft>b13?rLCk$abg?1k zA!wKp%*Y59YQ()VjLttciYqb7pc-ZL8^@O#W6Mkuo*qu59L7B}y;xy}|HF(>dE`>n zk;^a4lWLEq(2l0kEz;^Oue`Fn+Gu&T$?AHGbw;aoW}8h``>`7x$B3P_xm~t-47-~> zcKLnw1^o_%1CFg9gTdkSXBhQofWkQA^9a8A5(YSrYa-op$k(fY7m&f9G!n zu@sNt^S`Y7+Q@sO@(yt{m6oQ}a{#G-uXHh0%-kJZ0Xa~Z2 zqre_zYe-@$?bp5k(rva}Z+Y^&{OeLUgPQq=HNhF-LkVHyweUyVy>&twc1xoF zPt@G_C7YIX1fbs#%XaTF7oM8hh^QVm+HhV12nuANCFRl4_twI1UX3e7-&$|yi1#W8 zXyhF@MaiN*cL$PVCsrwEHD^8QKSVW(S@(l^9L)w&$FO?`6IX0wqdmA57Jo6H^$a**6mlKHuAQo5sc6mX6VEPKmKS~6o= z4B}#c47Tpha5coz*lR&FV1vjJhT@Rjf!T#6_kH6S2~*mtBcBX-DM&(2SG_w;HRJCu zdhz?(pgA>e`3Z4#+r6V)d>psz3h8%kXdZLa4*Q=+eBFv3HSx}bu(1i|@3*P=%6eHF ziABqKh5i?-jFtpGH$^ToW+gtW@-dL67otYf=3@E#n1g?K&ZuW>gS7k8rC4)_gUxBQ^UjhQB1{s(o$xQHJ- zYB_mrEs|mypouOx2aMEx@rAgX(4DJu3 zn(~sC^-S6iD}o=v{U$#8KKlISej|blmj*hRhy=>?z16Q~Ee8;o6}x#P%J)hXpGM0r z8=;RtOAFZ9~mUKTS+Ie^T^yG`XjbAnDkLaYNv=?WKBA69C5!9reVt z>zty_EkcbGV0D~Y_!E7&*^Q6sq$^)ZOkf?-kIo1>K4WldJAW%EyoH*r^wrO&igx0m zQ{sxnBIj{;{ld)1$YdCDOo5!WmupfasBkpUK&rzU{8qW2Wfj4M_ z3$-xDW+U2%{k-5BZAH5ugGLCv$-79~aA5dd;^m*XhX6KqIIY#At!|MCTJ^j34%fLSP!E~B0PRWmWEgrXNm1C8PD zMCHZv5)h0Pi@s36QC6)-)eKi{1F+a86Da@BkItlAvzMK~I4=OiJo*Yf6vI8BUpc4d#uLk%;kF0rAma}G} zYd&jVS50uz_3B<5y}8J%f(VtyS0vgn`(27lou5ywV~C(vk3eShQ-;nN+M3-p1fjb< zZ$A%yJ*OnrUj(behuqQM5x0Npl%;Huoo&x)Vq_Yb(JQhOlFidtx!EA zM5DT#>z2CJPHrmc!!XveF>x41niibP+t`P{2`Zu83@WiZz+>OvI^F?wbZV4KmuM4# z)YNVQSD-lQp-#FzQ0#})K@h!LycRm`*ait6Qnr`OI|PN4oujuSLdzt6V;8#31wL;D znHCK?_v&Sv!4dRw$ax^FsKWt3gxVbe*jak}Q6JIdCGKW_^+7Yo^dD-aGQ`M9Jd^dW*>uV7{I$1(Br?0cGuw`k{n6jSp(! zRnooLvOPUTgeUx%=LSO~Wd4KchrL;=!M5;zvQ+O#i=qhp;8mLMu)3@&nMgpgR<$?B z%G`1NLUGwlX~0p)U)3REb8}m#rcNZ>iDO4pc*(#2uty0`)KDO^vxI-@#XzyHJw3K$c8XYQwv!7pht|-qN#WeK)aJ>&WnbUa9plv%Rqn zgJ2Goeq`Jqp4ipqwe?NGMOv)~IQvxV+74aiK*+?93( zNUf`sHd;=RT_4NvFQ^VHWW%q_BGYM}P@ofPP(JQs1f+8WS?kmlh`(6DZI@+PN?JKK zLLw!<#U18V)_Dhpsse;_8(M66(W>-0?^!ikj2ewSIbRG@M>9!sb~PR9Ll`@;KQ9~7Pn3b zJAy=%!GucH7O18qxK%0RE_3TOdZa^SiY^o+%7`av*aErcP$*kNz@4`IhRm|^kHWc| zd7R75^cckJES}A=UvSN6ls-J)F~@s>xk(1OEu9EVYVJpgyptfGiu)9m<`^{H-lV`& zKG$`9-GD2j3nu*4b^sHkX{${~c-2b$T^X-hMV3NlC)`GzsDFhP<4)%JbuKq)nzT^D zH^Xfj$mk+J4W?aYUqUP$UFYqR-vr=%@M1_lOX_B6BtJ(vO<4zwW z$D20{;k!@go$iTC@m7Xt8OhE4*8CNI=B<})xho1F--7^X&#}c9;&v+PI75gvwWsdc zw`48?_uFKnn_M4v>Y~djEEG5Bsu4P(~o&X(;`5e zTHG9euS4mt*yM9P9KL#iTuA6!n+DqDoFYwq{iEV1Tvv<4AoscZP-wq7KabJ2jaiDQ z47^&7J+w8QmL|2mx46lTkNP#88QOdiWP{dq#>m3@6kVVM#e+|vfc!D@s#c2}+9A6m z_sW}ZpMvC+#JxwrBDCA*F-;0f_F4CB=%(eg)BhJ<_z+tcIG;+nSoG}dYBYJ>c0I{{ zKY0sQr@og^VQQYEL1v=n*XBJ0(rFH0eI5;&g!@&*XAnT{IuD**pb-afyz1P4Ueq~^ z7xSJ3&-C`WLz9x9eeqSGuN=FW%B-nISOZ&b$n|!7i`I@^`;tOT2!rT(Z-CI$)9@(M&EAprl_;5Gq>|t=AC?X*36A@=4Sd=G(-!uHokVSY z6V}Yb<>4fAZmJ~FP>MQ1X`<;?kqnTsFY{w|a)SxBI$+5Y!uNqhygg6zAK#|$As^D^ z7SP|+!Qz%83%x-uH-p{iDbWXjXy}`iC9n?tKZX9&Q~$w&^hz33GM>%ex8NdMXMx5= z#*Vrefj2sE*(90XzV*S+3vcfV1~UG7lBeE6tXLX<_F&@+m;Bp^+?QFX1M0$#lV8Ha z9%9L3+n#Sbo6ha7RZzCy+i1Jqtdzf6aUxm8wUdCHgt{3b)RAA(OwE#e;EaPh-_5O` z&!`_JgE8(Kuc>a;-VrtIse&rAgnDmr>TbIgw?_+5C(`oIJM-^N|7QvB#1&FSI@s3- z6^0o@UA-*JzaQ%9d%Y*#UxPG!ZPbH-J{9OQDyhoQhk~bXD+;G+7hj4=XKcswZ2jwR zr|=Z`LhmupZ14WV`#S9ud318&RlvI0p`iUelj`p#2?JiC$E!xyj77ed}?lsr$^BNOT*ryZ8eY63>!IenXsHk(GY)3Tln}4g?sdnLf{9)`T zx%Qs+oJL7-1K1!qa2VRmm0#8?y^vOj?R@|3s~-z25c5Uy&{l4$}b>FY|{kd=0+nVw5O7KD; z5IzfY69)){1Ass_Z0F&CKp;bL@4FxnsFc06qbc|o0x^Ib8zwhK_&c-ZNQy18};5_jH4D^n!Es&gJQ!FVGKpurKr>XccIZ0mPeS z8S9l~5QaAh|H~k$7amb$7)dm|{AfSAWdD^XMwl|AsB#4MDdK9?Z`Vi%qR9ttP!7h{ z7{}Eb->f%DXfR1^G)-zcbgSi1a+_I7yLoDddD<(B+pjItyDc-`SY?9m9_v5eT4%kp z!O?B*y|>LCu*>;ifB&O>{@;fSMjRe69R3_Tf*(IZ_~Q82gj4a1_p-;mA>Q5wN#3PQ zH0za$M&r?`spwP+8c$6!fF!Xr_DP6ihB|l=WJ`m>z`C_kj`{{9DK|H!0J#b3&T07 zUCB_%`^Eep5u$(nktRgj9)CfTS>ZeM_&%BI6ahQeZmLqC0Mj-1l5Rn(AKRytj|Fx=+p#|Np;ul;5|{@9tQydwa&z?7KkmjvvF)lH3-4?7fyC1`X$89J^n_8#a9 z(iHQ%t*$_@0wNMGh!nq<=H`%Uf%9{DjdkW-y`bM1G))W}{1$d`8+te-kDNoHRDA$6 zsp==K%^SL=45DD50P^aXg(=@CS)Jdtzp;qK-7m_!?%?d(mZob|Sw>C}ly(IRDh&{% zS*W5oe`;mMLR^Fb>Y|?>Dz&-3XE|`ziHO2v_4Pb0tv=T^Pg=<8O@+pBvCOBS;Fk}! z+5^!V?=szc5u}sC_4EoiFk%8V!2@nSu@XGIZ3}H~y7i4IP%;AV^Iu}$U8y7fngbO5 z)QvOb0r_;;s#hr})`Xva)R^l+ks!NAYz}?v(gO{nmMEF)w-Y9X}ancY47zs?j&FU&!BWl1J5yEM2Kck=ZaL~2kU&YCcEM8gmy>|a8mK_E4QyopH)wq2ncJxH@w~jFkrDWN zDN=ja?CyDil%^#(QKi@%$bV)~g}>#p%H*%Z0xjXVreBBoMAP<1H0Mi_-{pi&fiTYkC#6xDqO!6$=bRr zBN08=I)IL!WkVEnr$YVT_|MX<1se1tz!NraqA^Tt7vhX*~V;x-6xUQCX5}>d&hh zuo{NO-xu47CpW{JyZJ=|bdG+vbOi8iGGlGFpAl}0c~Hp>t0|eif2jZ!)Z2s2s}U%l zJ&KREv%y?L+?(x+HAcnw2DRgY9T1@uG4imz#?D4uY_w@Qpn&kV_M9+iQI+4-`UQylz>Dc!I#AeKxW4pi%uYb@<`a`9xLDcZisJG{= zP82S4D$x0;(Ls90+}SX%!11tas{eC;qohG&Hu-uB3NAz$KRy)iw`(Yl7>>*LV7`hj ziLTq$8X@3af^9r8v?CqbEWS#Ypt!hHy*8X+Uq!`cLU@9{x+W?2&A`v|ULIPKCY&*j zpSs@6^OH5fu&39D-#>g9Sj&YyFRHJ7GtbSjL*7`Ey`TgeLVyb_@=fWND`!u;SH-gt zO|=776uF-q2Y-AE zEzFQc-fLK|Q`ENvm6u0r+12-`Z<0i+ZwW*>3r-L}zuU`A-MT)pJ)Sp7;*l~k%rB&Y z+S=m`QMuhjeKsF>)W-IzlR}IZf(wSY9jV;TRT3RWJQJa3k-VxBs~!f;hY`xhIxDO5 zyQkafUDG7s0!CUypgR8}R+Eia-QIaG&F!s2>T@MSiptqRoE)2&>QAuk z>Rv-}U}{N~ile>`28Jnx%%AOX$`hg~{s=%ZKhUY|o=U{Jp?&ji+V>2jMs9pGVAC8& zNi%gbXzb7<&iUx{+UX!dho{uoohhLbK(OtKt~}p>C`B;MB7x>m9hZR9A7v$;b_%XF zPuc%Y%|P;oF722<7rmMF^^k`6t z3Q!5Ylj{Xmi?WWg4K`r|11&%;z$;`8#<0izS^rx#Lw>=8NQK>+S%XA2|5k5O33ywj zXhv`6?rIP{%6|Th)V=;yZh14iTua$Y0DNx?y*Pi?^6R%&zu>8*o8B<*uRjYVUwJef zjEW!|epuQcKd)zy{CkP5QWlB z3Wn_L+%v6ZR92~3ZK)M?@k9OIeIUV9pBO(oEBMF$NJDt|NhIb+F$Y#NkL#*8E?e2K zpmLwQLdBxd#9SoKO{)E&u^2lbV_ySmdvsrE5Vs&>{MDuEyh|)F6MTdJ+;@VEIX+ai zjdu55A~r6U24%i{nVRrV!4f?^+wC<1tt?Nucm}<+LyduvR&5JaBDSm+fBa)JMK#H= zkl9Ys$dkn`7d<^F9JQ}5oBZfU?IlF%_WTpNDFC^#I}ayPVCifdOpvV>LQz-m0g$#O zRGol+zS}#9a|L+Ef)P7+y4!bA_A*8(s;J%pR;nM>ijW;0J^s~XvJd;lJ?OK2!H6&| zX_@?YgHk3NfawDKm-SR(NkF@m9&+RR9E!Pldi;; z)fx@UjCDO_TmNLUfJ^n3!Fs&Mf8v*%5#zvI6ZN=?FUxvX$&^%YFT2oqMS@-P=eiu3>ItqS4e@*OsBLUaChFPz zyND=Hy1KwV5)@9SdJ(Icpam`GgEmsiSR$Eb`>n%h`GHxA$Weuj|q6}XN60Wo5 zUJ0=;2*!u8iQt}Y6SN2J+~67AQw$DCV#fT{j%r9;KFh+WbqKuqT$c;|{Wo+ce1KC> z#uwEm34nN)AYozzg)2-;zB>rA&H>CxMLD8f4XE7#j9Ob4LyHC%Muo^hzdPPcLbiUV z6pq=k3c0Cgf5(G*@T%?+#9ZQa?km4&laN|u0uxamk?fP+|3rN>o2;Er-i^DNs(02s zC3k!ndkwLx>Nom=5CWE_1#_O;Ngy2mkRe4v^lQ6@J$@~l!&*|c%QrE3l)Y!q? zlTov$1+I5NwD=xbdz&C_7obFpQ{s`0x*Q}>(%NuhH}R%2v8lmpJ8>XGYLUaw0&~(D z<7C9&yO~g~7!A#JSoVfj@jxky&WynN#aWryV!}DCwZbm*S@|B%dL4=el~#s3Xpds7 zx(9vFUCz-Zstcj&g-}Detb0T#eZ?(_wV+%6{2od4`#$YsuC#o-8E~n0_bc@ClVKK~ zdsZw9WTjbsyDwFN0}4yK6GJxI>^0>y<4NB_TgcH{E=Ao9DwvPwMTM8oFfMk)s3idK zAwR(xu=LC;i4GM?he|#MH*#7D(-yR7=kZ}RLvM254FxfP33q9V5RGWcIZZ)5A~*SD z4&#cpvYvUz(fO4zy#DV&thTGV0eEK)7gqJyf_Mv-?>e_xQM3G18ak9OP%F1|-^K>B z=%L@ZfkS14CrwM5QU!I1obOnWKOqd3a7`~cR0=-{+IF@VjaG&y8)KA-lsF#Myk<;R zfQQE2jhX5QlaOyZB1C@ z7h@2@d~)F-8-NPS?<11I2980L_<7FemY4+K7Zp|%`M>zK z4#AMZv@0ghe<;8}o716{5+OiDXiZ`>f{zt&wAY#(@QBB7cm;E+({9s>V(FM`IR}sW zA+r7r%h$1+2q$DH$^Z1GRE}FEtu~>M&(pTAcAE;XsvWSf3%<|nomk>>5N9==6#O?@ zhG!Tp($i-2lA2h(CzZoyPe#F;RHR*fd_QXGJmvfNX&y%Ei{-iFR`#8@E%Vk0Sl6}s z_lB4Qj=b=uh}!fD#VyHj{kGf_BNn$g*)8|G{?m}gIN5~Dc3tOAn{V{}YoC&dRvaFD z?8MXoW+{y-mDAOC$LRrOW1ihHW<0W?z}WMcmFsIPTO z>##w@Y*>iSLuN2ao6kRF>Qf0Rj=5FFx({9`PxB|}OSkuX zVjv`fS#s;0sq1FlOgdg7amck_X?ptB8KB?R@oRfAOjmYv@X4)rDaTZ4w56KkFLa66 zM(hACcay&sty~7{bWZxFpQ=?MCW|zVrXy8f(V#B;x{n%wxC;J5AwcP%1dW1yb0FwO zeKD+5%KrqWbvQgzy800x;c4v53s8BH&oXzbv~n7DPgbM})b{C4Y#yyk2}C~&du&)p zPQyxDD|*cbEP56))s1E>eFROf9$e?O|E}Npqgy(U)_;CLiQG+2V>R|IOl?gH4+2sD E1Lw_^8~^|S diff --git a/README_files/figure-html/unnamed-chunk-8-1.png b/README_files/figure-html/unnamed-chunk-8-1.png index f90620f8f89f73d768f56f592f0d4b50c21a84be..8aa0a00e5211ac1c303bf4b26cd1b12de190c4cc 100644 GIT binary patch literal 5455 zcmeHL2~d;Svd(}kvWN@&s)!;28U$G)iy{ONWD!J^B>|LSH7v>wF(4qa3KK*TqDEl6 z86b=hWe}18f;u3Bi~$LYD2q&hsB9vb|NVc&F-X0-^#w`d z`O_Wkt;9v-MPM+PxQ(^NF&K;=4TJr#RhSW0Di#2xKiEWt+@3;~1r!4L=- zA{XXI*`j$^Qp-|O8!5HNT57M2G~8BZpPh`Zy{w*t?0!c%{bOyF6HtPUY>p)eT;O$33)a)>7M?-hm zhwpHR*y(tFr&FZ*v1oPYm|ZS$8m48~t-NB3Xhf*32 zrBTf<(ah7E4qtAu$ZWO9Y_rUMVwv+4d8Hkh_sr_2KdkXx)&<=*S6>_{WE{EPYg^Q3 zcY}Gfc;F~u$o}TA{jJvyw?`cAj5(H$JC#j1{meRcchZ?O?efbzmx>R^D`#A*7yP(b z`yq1uC;%4v;IUW|7LUi`=~xmY7Xiyf_~kMIPzs9hSP~vj$CF5SI*Y`eN5Vo6Bs!hM z04RPi3Nx1i0CYSSoJ1#K=`4Uj!ZKKN2Ebqd05ccC1c1@eQ5GG~VlY?$@ZrM;a2YrW z90OQ%0037*69E7m1THU?4}o-8A8LIv0tVaA41IrS!~A?22HX7B#^R7m^o^;3^sD^= z$6MbE`Z-D;k~|c4IPB_i0htzYDaAj9ryr}<-_)9Zd+@3EWcxrwn64Vz!|paK>6CkQ!zFd5K8Agt^xJOF+7}jT9j1xN& zs_Bx2)~f&0$H!ZG?|<@rkg6uHJ-7KEyWp<>s^0mTw|15MDpON!!pE9)emxKRPD?O_cugv!DPaqFRF-$PJG6 z&r9O#Cto#9ZW^{UdE#UP*)b+{o{;4w)ZIOsB3YQBbNYzgVPJwwt?X$4(3E z@yq``%Pf|bRSJo@WwdCBlh!qzB9m&VLDsh+4s@AnlJmb}0Zt5Pcd~XyKZG_?>l??m zDW>QNwAw;u+)m&atR8%{YEWkNVC$+u_0@wds|F>1q zPiw9}!3<|45+IU!6$%w-Uf60qG{uw}DcnG8Gz&*!{wV3@u%ctg_dU)N+v-~{;n6Th zKJNA;tg0MRLX*UWn2M|Ha^*h=cl$-af zIjwk+sZEMz44d>;bQBBpw@;~rVHq>RwGLBEvxq>D>2FbZCiZs@eAGt)BHnafh-B8dsM>ih~^R3WBX zxi?OUvj6RQ@^@RcZst??dE`M4RC-qeRS)M4HXs-w`8*VTzq7L>UyoYEo2KBd_FAUo zDO_hhZ;pbb3~JBsx!gl(-_U)@`-V#2IF)7`Q}GdJJ7c9i{<=g%qS4(l*Q*?cUY=lQJb>J!b%DB@4b5sgv6(y8MJ{|6lI#@$UHQR^Rg4sSv;2oC zut{3EcUJwnP{YE(<-W6axVmp^G V{6!5XX!CL=79Qm_$$H;xcd!0PE5opKMjC{^ zhapk4U}Nv@s69uO>u%G^c%7T$B!Fo&s-RgC&!j*_RkHWKq^!xCWk*qJTB$(f>kuYb zPW$IosBtpip;h~?-Ypc(bhnxY>V6OK=ze^vsJ##v?^OO0&o4%MJj)-hmL>ikj^c`-|YTFU;5R=}Pl(Z)ow6}I&@X{{sP z`pgLlj%1Euj!+R~JVx#&ZTF^NZ|S5i*SUA@ZS9F?=2=D9U!ML&b4~oKxz!QEo%6qA7q9=Th>Od-alfg z>ovtDO~)j`s5pi83)7|jw#kZ5%~bi`W2zEHE-jtIgB;jpc=jS%^d4mVVpi{RE3JG& zMy2y%P-9GyktOJ!q@sa2Ipw4<5+rXBIG$w|gE^13B7{zG!oFXBqPpDa#V6WpQ)1mJ z8xuHETE_5!WTg{4X6*GH#!bYL-+Xf=A(3BNrLe@(xa`$~O-b7A=5YDG@gCpxIPuf= zU8`I(1vW#~oBRXMVvZ$PrQJ96PGYv7atPZ+_E>?glX~HiP-MdVR8QsN(ZV%8Awb$N z$HyI1&awhNT}yg{6sEvM>Hhu%R0f2&XQ`yyw!dvb5974i^jY&6k8h#rtZHrIcaKNj z^YZuN1@kzVGgf9@!3lzdHJcs*H>J00K>eA=RRXu~=^y0LZI%W$q9=r|)sZy?w7}Gw znwdwvF4QT1Ta3))u^THGF<0BAkTckM!VTH0M62vnM<7nOPlwb2=$hS|5LV)B~5 zcOua!a>1aVv)r?xxo!!O`9keO;U-UHWVjt=wFtdt7P|>LW38fa=UP^GHiIXqVce8i zVrlJxt2=W%oY4DM(yon=@nRiCS379De^y1nHR(%fid;5wvq2k}Mny|Rz8e``G`Ys7 zdGJeBvgH)JS)!vF-*+^V=Vh*FkVRJVeslv(>g;P!2sXIo6I%%UB+Gzi=XIMwH z5UP$+6-V}2hZ+M*U+b3M!PDVq$9C;y(>(+d%Xp zbY()?HeB2dUhn@Uza=zbyI9mgNTq^+KHkBSHYt{3nkFWwrzvoeEmYK}{s+R2L8j3hg+oaCXMsuv7f? z5feU4;5m3qkzrh$BS8K_?i9kZr0QI z8j8UpyLup5+v>o%cOwrPwJO5{`GXFiiWBje?!B|yMT2$v08fR1!!2?4A@lz4nY0P< z;7^9We(_ediXj(q+DInQ^jNv4>Rc>8v&dKn7zyV_-5z~S^t#eAj8=cWrCLysv z)uXU)R6EP}7Tb2GeTd89be;}$=~UfgRj=Pj%SJMb?2sQH^CL=e={Gir*r{FN+hTKv jX0cfVe#PQ{^EeAc)A(*Zvz76MUX0pU+FMkbqm%v%MUA=} literal 6064 zcmdT|2{hFE+n?@~xpf8bXZt*#-}5|?rY1<}Cio^0 z2n5yF(>4czz-SO?-LBukAP|TaHSh-bGH+^RsRMikfs{cY3`jW^gsBt|KQ1V#Cn%}E zP1<0awBhz6#@l5~gk(*H4uj+_gOqN=)Lz51cSafS zjWhd=vp$;KA4Fw;M&*7neel&RZ`kbNsCfay0{_jTXw34_#EDWSh8t^4B^%56OTc3B z*aQj|-x;e6itS?q-xIJ230QnW0wn>DPoRwAxe|CR9#5g*JK2>OP$ip9Nx)L@Sjs57 z6OZj=cXqPbeX+`Ym6d&LHjPFbr6i1Yc8;>ylarIc1Aq{4%pRq%*}$V5SvDIuWFvCE z6M^J!yr_5D2L$4;;ry>_@O}Mr^|e% z;+WxZ+l!Lp)ZVbNF_piXUN`4jo z;@=-X4#TlT;frv;dzeFh5`q11E}|<^etxWl(x)Hv(6gK~KBU@coUxlGKM`7N4li|y>GLhajGT_Txtsy(%~*_j zUh*aps=Gcon*_0b7gd2jQ{?JfI!ip=Fwwh(@%Ip}#WQU^*!nlD!3(VU^pO_JaVtr2 z_!gCtAK!Dr!Q##-1p}o)7+DE#^ptCqrWabw_@_m6P`3|i60Hy=1Fj4C!qA)W?qMo* zUR>SC?$3Q4Sca-t7WJksU|LDwo@5eq}^;nlxMDwe1k93%V%{iu;p zC+f)A`&rM+deR55mt}55mw7tGc9wZSINzxu`n<5RXRaXQ+o%NcSXbKr4 z+=@qr-T!*-M)d}%BT%=3MyJkpl);erz%?cZUFtIM`kyhMPHr!W$4zKP-{mHz;2ry5 zUw!rK49KUN=?z>cnm@(w0IX(io*G$WvH`959D2`cY!^@v_qdl+!FB6DgMcxG;nIs(W9?yBQV{X&m100|N*4&l|v`o##sRe!MobZ8VoQ*tdbthDm z*wS{2yy2&X1jq2x=>mK+Ju#$i3BFE*#=Og0JF``30t^*TcD7PGhej2jW$?|!f{*`l z_d&C4(T7I0?)P=o@hGmGn4f;#*m)AGmd)@}b8IgO+p7+;Sevsxn2 z$wOyx={$6SusHK7&K!V3J|gw)K+MZIm_|rHp3&tS*qUJ{1WEkjE88r0thL6(AS~lX zy0@EoDBGxVZYWNik^4=(e{n==a3b={S)iEp3)-eiETWBF#*vOxn8+9r>jj(nO!BM% zfcnQMx%Y;G$TvXLY(>=lVV&sHtod{rM13mD=Itk1i zerQ^i9&aB9UpRM~{m~s(6f9Cy_m!dxSiJv%7GRf>d;vxDu0ND}fPHynlNwCrpkRQ= z<)%`7=%Ph(7deF{gO0HqAn71N0T<#q0<`X2K6a#=54tZn_S3{4K_W&R?^cdVfuo>% z)rx@bTrN{J?30^~abVr3!l^xdtyc5=SwsVl#!EF=`o~Z}P0R&+AXIi0_;Tl0tcI9Pm8Aq+l6znX9YXE(s@UV2avC|GIr}_)fBkZHPa-K&)T4`eru9?k zuVCxf>K!>>&n5Z7oWj^mx7y^XH{vpG*hGfHvQmfE3mdvj zS2^G{bE~7{kCy0S&(+o57;c{`5%(HjcS#^U%U(ZhQKttWbHeq9{6$#Deod!&eUvO< z)TzM%Fjois(08e`Z7dV!{4jwQXogGL43uzjEd|nMeCb-WnB44F$M+2gzHO{xnE08! z0Ll#zL7?~A`-iN|L;DYos(pu6TF2V1b=105hRyjMAKt`hmI_s;_dD$Ij@ zZqA)lwF!WT7{B_}rKnIe4qJyv|6qtn-nFZI6r8rGI8)d6SPwvBg5oUbS)@r@DNvsA z64(py(-Hq>apwJJK}sHVwN75B-3t9-r-Ul1r;IN?5^W_5ilMD&XE0`0pg~xBKWujW4agd0F)=D16W0qbK2Y8K_0A4CPgshl^Eqg=< z2gqqZb2hHx(38`2#Gko3CPeP*PQrl4dnU*Go6nIltJBwixSZ}{9Q3av zbE00C*4m3rl5jOmng~PgiC;-3Hs5V3=8}{|MSy5T?vv0)|6w=&qV-E)hA#5=)Mxs6 zKS+N&vLWxTt&_o=2z`REm-s4sZ3I1&(%HCAL?*!&d&vuxIAahwNVXjaMQmSI6@F&H zefuSn&myH&^}_awfIIz366+ z&>-n_2GjjK$9^1!t(8966K3o-p~+tz-0sK&l75LQ)sjbQMwxn1*H>d#;iWuVPobn^ z{@7lk@OsF$`#d?_xzxVI^MJ-P7U(*zgAG~E)NruRwVwrKCspo&2Ri59c~si%=Qcap z%dyDi!#?7+M^WZH?#TgZPMO7}e^7Tx$!B7^TBQQkFu>FP-2iE2LoQeLn~aQO=JBK< z=Q{vRuka5eq}*-i{7po6&`i^y2%Y|lHIw1yOTqon;uf9d7$H#*vC@ZLL{~5IPRBgn zVFRRcK}15RyC{cs3Lv%e_qCQ)gm`z_m^{=?e?E=NgRMpDrtW$tuwhQBmt&RSv+Z<1MMn7{^gbs{yIGqE( z-cdcAsdR;N%Q&Ok3f3JtQ|$`TQn{nw3Tp#{Zl!cdmmu&)aNcP1@X4r$Rs-jTG0N`v z*=G1LY~ht_(f|GqMV|WLPL%&w#{WN649teZhUGn)Z&Zm2RUwb7*OavqY?+{jm%8~lpfl{j^R<}8RnyTloQg}WE#%xZ86 z*SSoWxdUnekB;GkM#id9S*oWjLyA+o4d2yCvg$4EST3m(er%#i66(m(uhx)5G2Rl|`k_(etZIfTCS&8DEC7+j5-ZEy$DK)4knIoyR)Qcwd zM>|~i$IWf^`c(3auuTI=pC!+oYRT+O{$8+8zT`yFo20xc+H;QvAf3V9{z?Uek$Fpj zomQez{h^Fo&At9fzCq3=tp}~c5&cH*i>Z!(~e?)s# lsY+*${LeO&YxkRM*m>E@wy~P`t2vu@eH|0+VlDKw{{lM~%klsK diff --git a/README_files/figure-html/unnamed-chunk-9-1.png b/README_files/figure-html/unnamed-chunk-9-1.png index 1111075cfc388ed91f75ad7010f8c81eb6b3a00e..01f0126ff73e399ed85b41814512ea049c02591d 100644 GIT binary patch delta 10596 zcmb7qc{tQj8}`g#>29Hq|ee8l{mA! z%R$r9=H@LDBUZ#I+n{K}^wM1O>%H{?#sQT%Lo(KF38$wo&|DLOO09LY+n|V*y!8{QfD#PG z-Lg7z6_f$@i?Rf>n7rxp?8e?93lHk8hTo~;hCfs%Ye=44c*sfhjV(!?w)FEdF&Bb* z_~vwZ)%}t5w?p3ffpz`+WNI`OoIR z5j*d1z3N zD7E|?VdEsoN}zZ?;H^!vS~P>S^t50yiby4OiV8Kh7V zWyfrP1ys3~+YcjXk{d-;Q^(ngeFg6xiwZ6k`4%Z2{rG4&;<|sb!hnP>UXo4l(YQb9 z)_wJTO82L^{sv!7>?>pbMgGjYIq&ZScX9u(1<3*uyk(Z3S99*OvWZh^8MCl8eBeQ+ zXZ%I*4}`f3g)-sai)3g~3t_sj=Ff`W7MxG|fL&JbAeC8tTChmh_agno_j40cEDNs+ z&Ff5^F7NI?y!@mW>)(Z4zCG-Yd)~bH9K5ln7e7+R+Km|yN>j`NjwJy5ew4g{7~PtC z&osIEw`QGpV{L(0KCpIaTF6V9s-hsD>&~{=mK!!>kDIhhXjT8Ge9w@%*2jeSwK~ zYJ3q0fNRQ$iim6=uI&A=7LO_E7B&GR4;e#q2ymFD@c1Wl)CrO(@QpNdeQ!Wdm zi~%)q%?f}HKF~>>dKq@Q}DCfJwJXD>D|^+kQi&kqs*>%4;WK)SwInrv@pqkYvfD`hGaExnnSz55TR7 zx^ioHsKJZ0X!Z_-kHz1Wq#-JkLdia?cu(!8iw3c#Y96HT;$MMg`u*B=DM)FQG+K$a zUt?}L9E1MSjqQGtN)M+|IJQzjuVTY+1H1%=8ea*R8xu0WrwMSKEuKY;tq+KdpG*Z_ z_piAk0dTX%x^7;8ZAFj$-8=eHP(walTt$(zVF?g1^!77;({hA9N5TM%P#w&@OijLi zU4|bH99iBR;9C1EhFZZ08q-pJBf=50({Y%)Eb^O=Le9Z>MLI4AFJfQD)No6{-JE+H zib1!VqfC#ZY@-T3chH>Vp9A-MdL%T_K)>l$>C!W@u(^Y^y-B~GrO`=9x-F_3h)D*0Gw!!pNHZLrM+QwlFP=3N zwAV2$!=Z9Nq6s-G?R9CxOt%aK8!_{uI6)V8&STN)oX0TtdD#mF5aLUa&&MbljmHr@ zFq0LTAiUeCiwY{-j#S+zE;1pCnkvv0Mr0wwB(a2P?sKw=2IU3n=A^iJ%f^Dyh8&+~ zX@MCGbi5e-%p5l5Ows)>&kV$18v@zPooU89RKpt236_rN5N_0#zCxG>{4IdZO$J7iW z-bl{Ou&GQMPcgLxTmI_&Yy4+wFkaw7&>y~sBKr#%YUZJH6hP|X(E*Tb_TnM4d_mM? zg?=&AJK%W(eA}i*-wH~UWC*L(FsC>i#A=OklTI3zQ5a~xjI_Z;S_b%I7b+u-E$WGH zrxC6EoNkX}2ysBZPsySNKhi6bhUrEMDzlJioU{j&s-NgjL9I}34$K+mo_iM0JQ!A# z({qDMnF#!Xi?FN)`2oQXxbHNlsxzCcuq!5euFVF}CqY5T0t>N~@a|cQNq@*w0uRA& z$N_B&GIMa>v8Z~ooHc(ueeeEL;Pbpx2EqgQt`*6%-r6?Vn~o?PpotwbeU2^w$f!Bo z+-pb$GCdK#0->OE`ySHW_1Frtmj%wBNbsg7iUcTPRoW?0@S#gGP5yfuH@u~15>P3l z@WpEEEk~$ebHPO~VHx5}z&J|~S)+4e&p}aKn1`?m^l@J};?+-5e0SfzCrse();(QD zy~*U!e?uVLf<*TDhzvA_hs9LJHymVDieb^Dc1yJ2m~8X_3duxghZY_jEW z8Wiy)7MLf9`sD4lxaAQ!AGRNqV}3zkhCv2APyVL%o!2e zZr2|KT3AVes_%gX<(iC7Gd~9XkKk=6>@a*Guv{05?HV`a|;L z9=$748=OC-n_E2HG*L;f$(RK+B`8ohfX7~(z_t~g$8eODiNea^Xea|QF$UR~e}Nc2N)mgoMmVk*cbH0gDglIKhDE78JT<19$0 z>dfk}a^x4=zO)KN+RM%=v-KJ=6zBrbkwA%C8d$MovV9VWu2Ob8KSoy!hUu`@IHt_3 z59FwB8Ctw#vMS4O+t;whUI0ejC{(8R{Jg<9Cx1a_{`2XV<$F{O2X;Y1NS6*QUwZS6jPS+vBWl~#~c=5dpbz- zTu1r6nylk9@OJRzjKo8Og8iw#u7`;m89$673LY9`zp%B+!7UPt3Xbw|YfUy(0Fj-B&;s3CXe z#tmtOuU4P-Yi)eT9SOGt?{;Lhm;{)sAnjue-PtW$IMnadcq*$35Ri$$+tW-pLet)v z(=yGv-=+_G>;IozWS~Pot~%Rm)b#NKpD$O-vvDX%QwHHzpixJ zO-a!uRJ4K!x+9v$wS!0; z)*{zK-#m%*A^FF?HXN&tmEEo%+*DJbVobz`smi0)zIgl=>#U2hhmpGGIgkA3lmWZF z?*6;9Ou|et=KYVyr}o5sZa#ZdJ1FjM*d2$j9^NTZ?3nV8bngPWsJ%f5882X$xhSMl zl!V(92mGDi5fOJwPUK<`TgL?av=5N`uqy2#al5hRm0TEsPFBf?J)pYtG99vkq_nol zh?(HgaEP5#UPwgrXy!$8@-arXn0)AYd=Xh9am+xzPCnbSgF4hp$`B#hPNfuw$UWN( zph8g3B>OsCb9Y*iHNKXUP*vA+mDoskocTutd7q_456$YAck_s<0#1pVG3LYSK2MwS!@d`=X@mfX=I#zB&%sqXx za}O<{5TElqRQOw^oCJlaL=8ntuW8)X8zrs1s{z9?yHDBE^7ZGcp;9;zA*7Q}L zgd2N@es694$$QfeSh!Cs_``~ zXa*q~yFg>yaz65oF|>St*wXaQZ!;D`3+wIL$>$gWkSxV+@!S%11?Pl|16}^%X4gH~ z#_{Tn(W;SXDeMzhVgOd-scnKOnuUoTYFR7)JV*!(_nv9oone&b`z={)Msrb=^koo+ zviSje9C-k&X_?7FUW*f#gG*DgwO=N(T&Nn)+SLXNY=HZR+WEocp-@3EVKW9kl&C3+ z8BsXB0}tSTtEgc!)||pf)VhcE_(isZp8qju^QM3uI0DxC2@q#g`PfIKTtva>`9kb2yr#4OH_vSM~&ZU{fl9!91nI-$$~L*3#43H}^}x z_ph#yd7TFsCm)OXTC!ND3{eBceMlA<7^6S0uVfJ+jz#eqlG}Gd-0D@st5SnxR-#Uc z$Fm^g%9HqzOO6(cx6sq#w{7|-Av3gBXTx52Tnf?jhSm7(e&P4qiriH4~ z?Y!IIGy9t!qvy;G1mJ5N3QYJ7vfO@|D(g32$aKa9O{bZb#!^)@ z;jE=sS+sB^DIWveJT3R83j?Y0?zXx(?c=bdw^X+gf{VI9E!l44LGuRafrzFVKYZiG4i{whFPj=m{jGU|EG#k4P$2FUb*qC#rBpr73W`x=2}jN zZNJh4U(Va*;np?lp97?5Y}#e6^|EP;sF3sD{#x0(w{eMqHAFUOwpFKS6NI6?s30P! zXb1HJ+B^A*4vY!T4tG{$g$c0PB{kO#-jnENs_G2QAVGfkAR=0Mgq#h#Snm!v*OZI^ zD_;j{wb}AtNbu1zd-$3*_K76_D*;GVe}+K=&7>LmGxSzlN^(b=7C*{LNxQ^qtuMBp zWicW#&16Xs2=-ZgJsB}1sMwI~8ne1mscl{^R->(E#K3)M z|IO(c%`18pJ-&o{i7KzWAGEbrQ~`l0#`lxUHtLT4oKW5SYADNbG1`xk*w^pc7oM+A zpQzsP1&Y>m=P=0nx?-@&FKSBX3A|1+n#lRxH7dA~jhXT_p*3b)5Ek^# z4HeH<0hPOK(!+OElb`ShPP%zGnwLO$`q8XrR65TWa-~zxXVAd7+HNcjO8( zheV`hl{;x|osAVgM>iU{!0 z{-6boCybLfk`rGSDke<2WgtmKY)?Tm0Ug0;=H=feg1#?OIpBva%T~{EzNOx|2hT--&_xGVk&sR(En9ncX1O3jQknU9$>qCu8_@Gj~b5gg6i zVsN7A<-~a8_;%glfk_F+!RAiNo_voAkha;n?qv zI)G?c!`k)uQ74GgNtNUS#-Zi5K!sKDUe{}QU4cxedE;U-q(O#*irXrtN4GVYzcr6u z{%UZR_RmlOITZTpL%01U!Vtm?=R0&efrkf$`6AwkSX14|B?&h=jm=H6qTWH_{P3a! z`%6aCPw1kGltWb}83Nl=ISF-%c)GsUN)CtXogc#ia?g7iruJ`#V#j`n&v^AcuKSpK z-hau(C=*ir+L?*p1ghLbEKQ&rEPXD&j1tz=q!pzx+enc#h>@GN1#g0%>6n%jH8AL6 zDu*)xRP4!Dq#lO5jt$Uh1-DDW1VnB&#}x|S6mNe={Z{6CA`t!Ad10-!@I?9_@fXJ^ z$+8f9iZu??d`#R;@!Y;D4cRmf0idr6pl>FU;BOmLTx(+??I}E5A`v}th^oT$icw-3 zsG=k8vs9KEc)8_u#L50j$`*!)3N!hvCFwE=-R0&FzwX2+PgPLmO~VxjbNgg70%GdB zy<`^7@zh#Y+F*-xA+p@zw*0L=mD`e>Z88Y^C>lW7m#po}w}SVNja85)LQHrCw+jo3 z@S)nCIQIcOGivOq1L@#G7lh34D~*hU5Wz;1x-Wx(0jf9rB|_Z`u|r>LG2Xvz6&hw1 z5`m50J<}OqkAyH8V7$)#-}}aSj}I5Wo}93{Reb)Q0}fbO)vAQ+%fG!53%L+|*>@{NP_*&A(yI#sxt@VW#yG5o$12^Dwgh^|R0S)18JK35Xse-;p z7Pex)k`+lwxp$bCha)~sPsPr}i_%n)(vuCS?k#OlMWMSu=c|IzTuUVEDv^${>7Z0| z=)$GWWCdj*I^?W2QtgAa{FwRFuQC$>>#geYFQI$ebtkRwd)1C@z7tjId*6uqvV9EI zmZtBEBDF*_^#CzZR>iFGzU?&rw6&#|g?DOG5g(DWTF)f1b%v^#M_!Df%)jBJfrX&S zZi)BZV_Y9kRPZW9nuGeT+fD=_Q@fOnc>bOYgR*2w)?>cmgZA{WM;AcrG~g&^p96`j zR_j*b=tj4;mE+!gBuho7pb^W6%uJ&g)i_hO9drO}fmt@=+sP9*VEBla!b2O0R z)9q8a_=Ev((Uz`IA653fc) zqLR3N?LDGTmdc-)280)}n^LD{*I5z)TN6&PF}bqX&WLBW?uIc>J!0Nn1-R?&q7a`` zoTRhZFodJDZ$8D%e3_WtzLoCo75N>HqfKFb-9Fj)M{z85->(VE28&e%4$l?ePu4-z zIF^UY!q?0%)$migTwqkoy^{!$IOj&i9I`}R74y6~^5x-LY`z0b|JRG-pPnaa%-o1< z&y&6cpprB(l%(0E49$YiA)2q7OU$)v(V>u-y@px~yI^)r1(vTWdL+ac4Rw*BJXMGu zt@E#jbp7>YZ$Q;6TBeK#@VCX4+yN3m=<5fNi!09bTQRS4N9x->19^W%v$d%*!1JoG zibb%Q2*8LmQ5HLvh4&kFKxfk^zp_i|5P8Q_d>oy#`MM+bj@I^4+_(jLj4Ozk3Y5jX zsV#eCm=aixmAXjO#@fHG^e&z!+`}faHE6%uHNyf|T1&MdpTgSpY9`LL%O@p{BCivq zUOXDuBy*uDR~#Uws1(D%kk#~X_=dsk`-@cI(I%4@!8A1%^YndLHVavy6w;qGu>DX? zPq;@2z{VcKSL4Agr0&&*?OYK?6lU)&i9gfYl3Dx3BNr+2A1d;svP?vyyF>!S{e56m zN**?gyRqwT^6dMp?RQ8`RNz)0-oeU(@kb2hdMWMgApn+(fH6oGQ?5?GQkglRHGuK= z+H-=Xj<@dyE22nk1qY?eu!v%4>6VHpN&FGwwz@i~b6d9d$Gr9q4h; z@r!P(H}eabThoiA%1c;gh?>%1hu^&Gm#6|wq%p&XF1pe1Msq$)y_Es8+A>YEDiqq& zQZV{9!Gy03%=-W^#aKK`YQK4Bw_A9R`|KWE(TVivs)8plURuEeC?YOLGN}pyL13)- zFgF_EshnVto5VPIA{S^oPYWGEZrL2PUv_KKW{c-H=sLS9_iDp-CUjHz98hjGl=G2} zx(N*yW?jX=IvEG2T6wb8cWOM+O&-jbgVfA7Ee0d63B3ctEN|?(z!)$ZH<#Wg4+bJRgLMBPbUNog>r_LJYD6s$VCUgBqJ`Z#YBgk#n?t zd9K~=V7rXRR6Z(DTcE9s!Wg2GY{&RTaEqEb(^lVr3oprR*Lw78po<5Qv-g0OP`l_i zfAo;5Dsnl!zx=;xv?3t`2U+fVK)r$~OKu{@y4$x7f?)Qo;Kwe2syv83^~d7r!^XXo zR;2{>$L;dJ3)6cQR?a2;7G)#Ay(2$ZnO}B~=NTX`@diw(K$%mjSw`eWvw7?BUC1f} z2DVonyo|ndN}-i>6V6hiyk&3n1q*Ld?O&>o|EE?^14eR_H2^6elj$|4Fbb;uq6v~w z?vD<{^8}k5`gW$dkkX)a}0PH zh7(6szs}m}!d)WYztQ?Ppl;QJF$%a+o>6hcD}y4|0-#?-(SNp6+xXAh@>rRd0g9z|kl4|^PD|Kmjy*U0k5xM5z}vk< zHe<1Vay(qtd=f3Unq$B-i@$^_KE8d$U9KOi!6GJ2OvQQ+Xkttmt@kGLYc^S?38dC* z`I`m;TC)&Rxt0mN_nEYl33wYK@VMO>_P|Hv{2xOz%IOIq2bI6xC(u>>q9R#G^^F_p zCnGR*Ue}8>n-l_paf&p#yzEV;&n-$|LnLJLIv?6pg=Ts14dyaNsg-~|Nz;}ug%`7s zF1T+q4;pANjS>%()&oxHS%!YrDNgLDZTqiOKCnEJPgZH@$2#`fQLy$B=unhknB)r; zmqm3sAjQ5hvPI5~ti?F4RDP6;k~h{>ES>_CdEYIPJae)*E%&sU868{1i-^@8O~w*; zUmZPR5c5#h+_55y_l2~dF6l*H21-C##96#!6!l1te9$Ji%O^I@fGngp2=a~T@z3d; zg6d%>-sQIQ+jl3K@TF$nx++gZP;d`pVbIK=tgGX-SJik?1KC2VY>OJz#+=I<7w8-3 zw5fcg{+U3}J!xjf#5SoOxcWi!`t9y*2yv}%K)Sw`>&^M^EqB2EHf4%Mxn>;jA`H7J zvo%nU2$xpqHmC{z1bKX5Gp!%{%KUdXhjJIr%YccS>YGkxgPLCm&ehhU;ZxGE3bgzy zHNdB3&L*Ul^i}Lbiqw?^>mJ-Vh0^2~4+D=7uHgP_|4t&1Y+-|QCtbr?VYlg-P7V

ctPRSMXh#G!JDr?> z<25Zrx$y1!YL`P?`HJ&Z_vbVL@7e3U0WmiWE}=f^aGcV+UW~A7YmRbhJG461`!_#c z_$&54XmJ%;HU-AmSK{}TP2WyNf1{!IQD|1!`b~eVlpQAdM1Al>N?1GA^`iEL3p!c$ zlX%UXxcP`O@FAbDsn+I5uvFASJPjgJBfzY#=N4ilY_H& zcxngtJR=@!syn{D|7B>V=3#^TzgQ;&O-he!HVw*HQRR^attc$(=_XDXN8@Y`_+;mC> zgZ$5ryV4SNabKf-p)4jOk2HQYUY@A|7CG4cGoD9nrSbykytcUWuI(ktxQP`IUK|0*>TTf`63 zgKDNA$lyf&VJ+Fx>4W?5<=&#JQ0_s#Jf^-n zJcN?Vu}+RrX$<|@xVvNaz)xG+;$Y_GHL&a#t9#r1t2-7&RdpX82t?p~w)%bs4MuBx z{Po{>KyV_lM{krEpZ}KORX1IE%<@ zy--((LTB}4r{Spx-!c>$WLYts+2-<|iXz}tAmc5!C%Re4T&MtXoNUm~SKJVy&o3>T zC)nXnk#=Ox0?P-CKY^LHKshPFV${!7+#ce|i8q(Op;)X3=#!_&L=@Pw!U4ok3DVsO zgf#joBsS4nCcsfXq64|r=YcM`kxMgyvKHT^>i3uUb~A2e15;;nA1Ew-ZKQIWcOdK< zMNPd$-Os)8VUfCLYQiE#1CcO3&^m8IY>T?Zrho$eZ%QL$&Bf))KEA0?Cu`cA<)93_PAss5So zd1+Hdhdj|l7Ev@2!w{SYHWvEvrNyIEqaPC527%u{t;{|BO_|Y0z~u6ULjm}iS}LMJ zwj#OU47Gp|(F9+nf!20?D5j4h`G=C+94i1?j(>P2P%-MpEDHPt=~C_l|o1y!9t4OK6^XIN5tP>Sjge4oJ022mgOJcuJ*@S4Fa? zk`4M5frzT`*^=^@L0Z2r>pFfU#fx6$;(6Bb^i!AyWJ|{LMzwErY>qIRJD5F&%J%$~ zJ{2VPUpjRQP{-D{P@>1g%;p;A8-?L)9n$`x0-K zb5%yT05RI)!2=t8vuWBqAfwe87X|R52KH@hqHeLX70>VTo`!t{BJ(M(!%%#8rj4h8 z2v^5R?|#>uEz*<$DZ$0G98Ar`tIB`+4;6U~_-VWT_4DV*F0DAl{{mrvvRwT>0d%Bo zshS=4aEgRq+k>TNgw*~8-Wrg6c-mqM{4XleL8NQ}PXVtJ(0J9opF;Q7^8afW29C1P zM4tfnEBKW8`^1uOc2TClO>l5EA7@1|xHt}~^&|lE5PC_JryfKj5(nAFEe@=&{G~Uv zgI=6zl7m5W);I*$4sz(BaWumLT*&&?1xo)h4+>_gC#}_PLxy&`h%V`L5)@T10jMwM zwqC5MfG}|1;-!p-`Okpxhuzn0b^h~;L`aFEo7M9?S%288_HU2u!m`Q9ej+?R`S-|# zQhY}DFNLyhB>d-f2xDm6&39O45&8d~$qQvDWhMV9GriS?O=E<|rt4N5mq&~KV+YM%9+W+59 zN`UJe3TUCAS~m$>tSf>LSMOWT(@#*6?ry zAaP?UYT}^X;{K)>|Hbre$Xn4=ItB4AW|m-c6L9~rYD(YITIch{fw`}XX}bs0!s~@# z^~Vn0Y{&VT*G63E{?|mL%lxbfP5-G*S>IAx^!>M=vo4+t?joKN<(OoMP6e zbswJBCU4V;B2sZTGxUGq_sZ-@f3z5y%o2J-qK+HBuCy4QjOa?dSQOk=m%4jU+sqPq zenI%25jPv!AR&*x_8=6h zp}>*Cah6HHDRjs0rKYAMP))bJ1ZK?gZT<(50}ZL8mSah_%L&|^3*YX2S6;PV2XEBh z5lpN%iYri#ak11p2swECzpng-pO0&O5EhD=d(DxuR-GEh{=b?38}45nGkO0% z#k`pI-?Iv>LypRqn0d-_UWLDbdV|G2bE~R!Y2YB9BC}s06D3}xwmgewv!^|)Z;iTF zJ7x@mZBCU*#=9SOHD1c62^dG<7S7CrE`XDo#CL3@GMGVvm;haY3(|AZ9)J6mH=n-U z?B9D>Wt{@#vr1BRY{C8Bvnhw-x@&c&Pru^p4Q6N-@YH+ixvZqeDyYy zKVsg*w?3juI>yRwjPWNuu`}tK=)+~;cfRThC*IGM}Y#l zwdpGOoASF-gp5-whad^xqz5V@6nji)%#;t;oXWwN4KHHEirQ;V(x|*N$-qzoC^Lgg z3LobL%bb~D18CLxJyR=G3KD12yb2iUfcsNq{L{UdAYlu=f8|=uhZygginVxwUL8Dl zlP|3{!!BbftN2+%`qvN%VTws%Sb8%P?BI>hO%rgtG5ZuPCuRpsu#tdaW`TWO2F-tK zsXWK2ZPJfcvj!D>{@XgUH=DB&l67h|VZFvxTA;}40DR|(gR)UITG(H#lAOJyr)p)q@5ao@-sHHFsMeL G;{Fe~1!EZi delta 10610 zcmbt)cR1To`?mzKVusihCDe*tqxPu1Nl_wpsiL)7B(-A{jgeZdS+hb>yP@`Isa>P3 zme#7;Mb(@3_xzsg{qw!9H~-{HzTb21bMAT0{rNny-?1YU0qlIxJOhCVN{#vB6!}-n zS1t$eFb~u8Jrn*~in<9Elhw|rX1$lL%OW)@tmTxyb8%(znmxbm()7US+tHZ|Se`MH zg2J@iyQ8HhQG|ru9fz7T5TZso87Bke!y&|=I16z>v<-+@IO@Q&!jt(Ydmst0pQw`` z^Zw%=LI%kfn0VLX)R9jdG%Cap$Y6vXaqGi`_X@n#TE7!s!vRmb+N&&jE}1qROZMR4 zjr3Eslb;5w&+lA(pVd+3J=*rw{(Ur%+^4FeeA7JfqXhKz@kmj=ERr?yVp-L^>)h}p ztn2KA5$#Ef;9UvTKz|!jdea%TNxi$E@p~0_C;maoUnwFKbGSQEzg81gk55bb_}?{w zs&ynTT)Gm;eI(86r$W&(TcLvv^1{Tzh+jFyz_T=IuLWH{?FhlD^(VlYI8n#sH~*Gc zN(R}cJ^2;^@YUw|z0Ey*gL~zb#+o{ZDLN+0YX0i)%HMbUF$x0exxPv-=`zlcy7ac! z&AZO}USDXdKRyA@#QyRo-Z@r?8;pck#a}6frA3{7&EP0|DuWD8)R}SdrQM|=*PphC zyG*Dm9P$HH>-edn-gxs0B&~gZrSVydAqjM)WalHqG<5#>sW{R!@q)mVyDEx0V@2~z zLUlsrW{cO!nnnH}6>bY6X4ht>wb{*S=;Fa!mz8y=1icas%}(h8<=;g{j+0E6{FRB5 zpe6#IW2IGDGz>}vBlsX7KUzxOAEdWI5@|H#igD2lp^tgcg5=o)v4A{ntprs=h77=n zo2(mAN^F>~*Ctp_*!-Sh4!T8!ceXX<<4;H#ef5xgRyD!*edgd|z)up6qNX zIbLMf%g`QuZg3J4Sy{Lf;Iu&rx7}n2=oQo|1I*kS#RNyf=?F%?=OUX+G#o3u)`nTh z^f!9W_3@WA`T%@bN^?8}l;ST7BHC1DQYuq*mW=673HD%JAOB{35OtZ%rpSx~-Zpd} zu&}%gidu?8{Ay1VY7WGRDa`m$DXS2}(sh6!LA0GSt(L@(r38TmII%I;mz?a2>-}9u zYSfC=B~<;6dhDD&z_XDyrhtdnl$P-PX)>pb@*Ag%3DF{O|GvB>-6dV7`VA{Gl-N!e zb`Ava3~tlT=b65RhWiuMlEh=Yafjp}!5ODvZHe_IC8h-qB1VS34F|2OoI>*TWokvE zhd9W{nKq?7E@gx8kLKdZKn$E#1){d>xgg>$2TyPxy|gWP}q8%P5$ zV~LRxrWql}UvuAi^-RSuD(MLywpaWEHjbSf>Ln{h{7}ddCT59U1)A_~J#!e(CmBaA zt+c9Buz)N~@|7T2`{GTB<ni(bAp(l%z}1UQ(nT0W4138 z-QvZd_QlS!^Uli7w|729M-^NGjk;;kGCKk!V(n2f0)lkgFb2GA3-f0RZyqDPgKnu% z@n=$@7oX~&$(`k(GxSbO!)MVyb=3>i>(Pfa%!yynmBj$|5gY>kt<>bq;^RgVD!O?DF>?LI zr(jjUeU~MnBrZKQCkcPH2L2F{OV)s79}!t3ADy^vEP>4qd)?42o$!mP*2u37^W?6J zs~LrJeB55dO8mOsm@Rp82{7cQB6BNfYVZWS!X)DwO%Gbr5mmhvFB zrc<77`!jBtiVLmH%E+vUdxQO1M&bH-IgqBON5TR&WG=J(0Bhd?xe@8}!HR$ED8x&f z(uB!|emXS37X8|`nfLhZot@bC-3s^tAeg!0O_ecVtaoOv>J5vI%_hNT201<~+JI|5 zp1x5rowE!RnMJ}pb5_ba~c+`kyFgWRtj7h z>lFin>eNbA)Y`o`$&Zb690{V$}!n8JY&dt3Q5VxC|0URr8?Z zsB9yFUOCNlF#5*TX4E5kLR%omH;Nl`j_Bs>7+K^bRZVR##@O~9_dTfxC{CST8g6zZ z4Qz~kuE*H}#8MFLPW&$7Mqcv+tCjQEr84pEtn)Ygndx9y=5JOk^cF)gH5xWvL}oNZ zPN&65SOAF^dVu!zuBe!j)|kTMTz^tJRjPjvX0a9BmbPG4$bHMX1xX- z?;$14@*^urOk8K~Mz)qdQR-u-eg4Ie{pWjdQZT`FpAEgQNkqS7!a=>QMuly#Ws7x& zbEg3ES-p&cM&YF!SHE>-oAz&c@F43X42cv@zy>6#OwwJ}O(u}iw`&$N$_bHxVmKX4_L)FIV;WrAhS#b!_hlVm|zoj#QWMOeWb}ursi3+@TVJF zR$b9z0OVk5-uukUN9-TgA8`wmK`qDEp^<=cfpTYBW!2G|-g`TlrFcLbOFHXIeq#Pm z*Kae7lkVUr{RfVZy0#J%))k1$YEhyajpoNY!~BEl^HH(0C)b%kzY*?y7@Jx%-OD&$ z58R>%x>RE1|?6}Myz9Q{y37Kr~!y9B(d}Jv)j9<`J#nB`HHRNNyO-( z74Yf7VR+ViQ7<#Cu=C52H@sqK@puZu&z2Igpr1bM~wGkiMY(r^?5wA3#GlEr`XP?SCtV!gQL4LSo zpxV)m5mN!0U3Y0toQE!q|Fo}FeOrp}j?*4i$>WA=H%KQyTpFak;WO>!cY86FZw?yh zL<}~h)faw+!)<>8KULizNB9kh^ns;WBVe8`n93M#<}`}#YB7TVm5JBluA`WnOF3xB zSn*!fX6@v;=f)F&Z>$i=VQ`jW{}BZ0EPB=ToUA;J7o@>r-XI;YbU-Uv=R>xZ^=e8H z0Cz9J%RS}T;H~WyBy)5f>vbk8Srd#dxYTad%td$6%sNWLM)>`=JRLCcK9CV0AMo^& z7xQFAUKgIBLVk79okLD!xE5#LL<3&n^_6Nj%vwOC%n5~;LdBh8DMk8H$iZe?`TXz) zp30vx)wlbc(Wd8y4BIcgfqL;BM2Z* zgACGhGzP`|x&9$qCp%vt0eIE?HMbarvzzpk?%`z z{)`qq3sjO;aSu>gG*OHArPtR1qgzR<6kx~D>k*faiq|FEgT0rtFDUlvfg!E!Fo5d9 zC1T385W_qCEn`6K8bx#<5B^DEgSo=Q0+th?lXLi(59{pwURS#Mw$OYIlW;;m0^oa# zpo2=fO!zC+`|&)MA^SEnr1+@65ejup#eNy|DuIzsV$RrAQV=Sbhh1JHro&}?r8lXA zYW<(`AcOh0-0Kb6DOfGSv~Z?D%HfnH9uB>6-aEZ)vef8JlkrkYec^0c{0GR$zfe5R znEUcVTy?S`OIN3EE&*Vo+`Rq!D0&#Ao+N6m^^OI;KS=o{bX7>hDC(?@-Joe)TxMEV z$mDKul;d;q8Cz61ncV#v3c6{UhFg4U6XkccZ!39G)+{iJv{`t$t0?;Ljfxn{DO*j? z>&MSIqxD{n-$&)r{FX8-E8Ti&%GDD@W|!l(B^3C@V`?)Mayn>kM$F_L^YWNoKgBr2 z-3B2MS;D4|9{Du}bwnQaf$3K1-8FVI)&)Ue*gV3v=x+7THP{yH92CFQKp!DGpRf*jJu)CS-!r)2AQH`L)O>SuIJ| zimJHRC1uk$7TQ!o#RN8%TJ?=)fI39XjoOXrVG6u5lAo>Es^&8zb9c3=KE*^V~SD z+>j0qZpI2k$J&0JNykoTPU|`-nRTM;GDQRtU4XaSq>8(U5ZEk^KK|)#F7xe@!S(Yv zdFDGee}_KFk-3H>~8W%UQ%;PB?WxYbx;d|P!~Hve)0Lf$MmOPclf*-Cc0@sJTX zgeAg}M!-RjXYHms<&wLx82!~hs$pA%UffpxSDtbWwCdO2mSO2`fnSyn0f(&UmS1-o zL?HvE*@x|gFQ86d>t>I2?s>4rND`$3#O@tWrYqoYjtj(DY0%!?D?U$|aTfR{I>jje zO$`z0xA564u!Sl29Nw7L!Dx(zg)s&k7{yjOxS@gD{sK~D= zdm&EwCBrkDyFh3)4R9@gYH!*Bt$%kM?KmXR%&WOTAp{TfVL=89P}JTp}`C5pJBXTJ)X-zo#!iX?bP2#|?DU7N5=!j}2pV-FcQ93opgl-_Pz z7WOP3dMwvjnx7djpK{StNxUY~=eYVfXb%%vP%GbWvmIoFw!bv)tcxOrKB@q#h44kO zct&-e-4VA=oIWVNup-<=CO(HdCfMnNgM^n5bG4ZnGsvI<8w?saOw9IJ;TjBRrcxm6 zt*V(ZSiZ9OsL-cd*UJhifRABM=|9RLr(Y&gf;m2R4=`}UW;7qweSK&~ybi!ENG9;> z$%`~^0Yt&IISh@cooXfG`=BFEGnJlGN^q`stTg3Ssw(M$7j+*D2Q@1j$yDcsC?#yB zWXXh0wv^raE~Dvd=gu}5;XkQ01-6+S^^j+k8KH@iI*HplSitCy$n{pMn(p_WRqryk zMuLF6XBByVQb_Ly0eS}FpCZ&YA`fX0+HchthIrpe_yr{nm(Wmwd#X=GEc*jT&-7;W zJ`1O%GN-Y_1FH;nyn?Q-r3`t87w9hLxMr{j-m>iT$VE3w!bT{#-n_8wOzi}es}~}P zOdYvSVxNXnZGQ$CgX?yIA*YkoaacOQ>pEni5n)<2m;$HmTRrxaCwhnJ8S`Ruv`okE)xvO0RN75;SwUNYTnI^e6hr{E8sw%Li88OOs?P_=>AE|Rr$D%a<%nU7^!WxlHk%$ z7E)1I#7w{kByxd$Ssc72m%Nn=Oc)6%G<`fD(Z44Iw7-}w8&BU7)PV^;Lqw+qu~h{o3!f9MWjzZMeSa&3CE zp^aPK4=YzHI1sb1tJV`0RZC*oyoI6cg7VGWvN`^Uxv(2$EcXxGW(hRa-BGy=b3#?6 z=EvObAXM9(E`1!!WinXt<`$%#p;~gws3ut3JoOXx#Dmv!Wut9j9@2TQ9(`2$F}K;v zWyes{EeOkPay@P2su|+36#it54ru%JtEJ_1g_D6p-ggmNBeTcX$jl?9P^ITdTv;%0 z!7iKlnbdfqd|g?}U)McUK1+Z8z0KvPRfr=yzpBk^=IDHU7$xvXGzjmk+$_mS@FbMx zdMgH8(P$%+>z8rze&T`jF2%6T%`D3k54wy=iD~8rM;3lV7v={iV!F_m!$dG^y+0K0 z|CsF&Zv>tFGzi4>4O_<8LdN>j^-t_0(o16K{2Ai&l@uL_>7FP-HzO6%d^J{_dCr`(dO*UF?3;_Qr?@U^Is2{L-yT8-3yi@7S2`T_w?rQ~P&G$?u#$ zy*c1@@GM|!=^3>jcZH(o4Va6JBsk$^R3*9IO&Cu=bIX;u)L{=YaKCSLJt09oInjr* z`gpZ|@B`HdHKM(w^}|#|u#1^^vcTzNEImh(oyJa-E~y;~_^6H{fH6&Vm7c{% zZs6n}wF(9Iq<1c1y2BLKC7(Ts6AVM~bo)kQ;)X?I9!Y4cdZ3Fjq|ONsCLD*#g>L8h zs`?D0$%sF@Q?o*FxyR#WH#wa1sOET|Z9L^i+6iY1UjzW(L;c&{He-(?mgR5>aicHoo~}wcS5Fk z!rE}7;Hr*^GC{D^T&VQX@OqFRt5E94eht0$ciy#&n*P|WuO4zOGSWnmC)&;IupdnA zMiN5E@rrz=W^7-RWlB)L-j=mmgTb}24Z2SLDxCioIzSy0SDqdROcEup8mb^OR+fhc zIQy&{CSjTMua=4Z5W8YJKhxvX>Z&)l44%NsHp>VRMKZOU(XeGEmp;A++#Rw#f%%#b z*9wI59F`eWJd(!cd+Y4W0VOOfG?_g#6*#$(6I8DtGe`4KYFA1JEDfws z?-n!KoEec1KJ1#JK3wOHhPZh?0W8=MQPyc;oeQxvbWAd?faBgPFftSk=E)ZO+^2Y! zqChHA!G4B(nhgkP8MQ;@I_a8{3=Vy;Dy5rl71^SyC~dIvR?bI>Oc}wQW0oI}L`P_E8b_;Wg_hO4 z!d3vA=PJ``u@p5wVlvE+Y|;J{T^cz(rl1fOXfcPGNr->$;PHn)wWl^FMD3{Up2vq+ zS8XtJTk0wDZGZK4^R6dtpx|!wg;*ueOQ4;d+SrSWtHdhFoXBrf$qJl-^v$tX>c4XN z&D)~l_3W{n&`+AqwdF=M^vtV1ClAdjr>#3~6@<-+DEdg&E|G#jxw-Q+J$({|HZ54;}mh@hARC z2+1({>s!iygOiF-1+16c$XRUmUJe_?M(oCDQ*?;Oa8t?;Y%hwFD_2(4)dT-JjYuv8 zq-+MA&OAIs1JVSg+{onKLIx=~8dU0|-U-k>XtEMNUp8Zp5U-@0{57koW_DQ5-OqSeo#lb+RQwbYj5re$)1B3?k7atud&9UCCSs!5 z6Cv<{ZIxCvy;ec-c~?Xl1){YZbAx1fv<=P>ur@fC!&-c!-3Dr5ULy-&+K;7{&by<& zIa{5&UFq>oh-UcjE*nP~S^olCL%n2oZBT{+z~?B5BBL6``UUJ;rrj@VdC50&qV4>z z@*5&wWIiE-7X9^%CtOIq{!)By+_0vXE6YqS#>VF9DARUersV3Jb^0_B?W8*bT*&VE zw-_7T5Fp+TMQVa`h(h&+%kkfxo(TwsP3J_%o5-#SqKJO~F$m5o<^M^-t|D5&)u_grdf~lYyavP1~V%1J8HFXhaO>A49^#-)N(WuB` zq7;kS|3ZR&eXs`F2RH2;@9=44o{V!6ei}=rc0ckHSfRscLGH#$u@uMU1dE-8F@8L6 zj^VZ@Hz_j89|+WUt|4VdqVOf(u=b0eq;uGZJMMoiR|=TCQlBDF++N@ciACUpXG%#5HZJhMAI6hH3C7u7!1s<>Vo!)n0vl0|R~2?C(B&96S)#QFszU z-)sX?m5oPSy^nhKu#KLRdIAyZ9nSa`t>6lF~X=2HDQ&R1A-)wdBrx&NG2Nc;OWKtELQ6% zpiUz!+n%{KG2Pt-jKIid0npR#iWo_I4wR4Cvr@dHBC3$-VKBG2-+a-RsC{7}6p@1f z|Ms3jS7HJiIg^`ih?nanI5B)bUs>oPLA9g_rrn(}4I{uZC<*@o=2&v?!kozQQL1Xae9NL!x@t7h zY2C2?zf&uduaTzyLGkg8HuVJFp*$SsG3iDGX8z3pFF~WYUC|yIBT}ODT?O^2%H%Dx z0;*rdP?AU+q)l^xI2zDlSNgD_{30BJ1o-eyLB8poXj1?E@iC_IZ}WIaARd^l#Ged* z$Os8Ypq5P8yZ_v4l3N-nEoqA>koc40OHe2Epg0)tCWDVBX|ChtbOV-(-aXJ%>|6&N zy?!@4qia)T)e;{pw&;$84GHKk)m8Kcsbr8J;jwI}U@qh{^zp_`uq=($`@7%NNn3^7 zg4e*HJH5*rDe;N^#)07pO64j4qvSC%u)ahe)(}qze^=(WQ#60TK_L5=4@tK)`jArP zhwoKJ%!dR(UjJ1<9yz|#T4I6*Kcjq2H^ODryHJ%}Uupg_@%?`NcaZ>xZ;edoT{nRK z!6GLK_9vnC2fdFAFg^u1?Fi1S7ePswzQ6F_4PW z5RaHPXFmUW`fqYIV%rM@AIx+4V2){FdGJoEzdriz99W=fT6u1(@{RREcvT^`) z^4I_{kGkivc0^?=@1u)WYf{A{AzK+dC=p`*0-~qDoBXIqpi4e}ZQ$bHGRuK$x)O_q z5%iws5vdpd{BMkM^daIg?ithmyV|lb=PXybpO)9^&TB?8eFh9ky=T)S3!&oet`u_;b!+7w~7|W4DVW9 z+)Bh1-=~T&OPV}Kf1CpSSB7qE9#8Q=jZztKO#?FEA!w7mkXOh1`i0}vYp(BKZ92&L zV0}Bz^6#|LF01waq!!XnNesa09N-Vj56SJa7p7xKfZuzG4Hx>mf?Y0jPjSV*onBFA z)Xe&^9BiN0;=ebqoBL92HTuc8L_|0_MLwKesY2s6?BC=M3LYzqo!&na{qL*t>z13K zt;Q2|TAwruRiD$A!ss8X+d_IIP1wZdaTiaP8q|iS>qH#}Ym^~u(DXs?4^yz1^^DjA z4n9}iL`!CW|3ot!U(>SdeakQG)4w+RydKS`zAZkPPItXOfB#t3($iuu)zw;6D1}-^ zq=%j%(9{St`oOPvN4qI2?63}W)u(GO!feC9&47gu6&A}Z(68IlE%3sy z!zKx5Db9!Hwn#`eQhJ(q5!BlLji7q>T*!9{MFdS1nc7Lhkp8EL5-7RiGY-NSg!H9C zG$WB)zIuN9y^U_|L~KogvCyxDzkVOL@9CV!>@PG}hBsG4?JuF7I}Vjz^(y$+%CJH$ z!E=}mvcC|RnZLU9{Ji+kJPyN~P0U|xv5!JaU6@CFkFt1gcRo|QhXyu3ez!^fVpil5 z$WK!thQ~wi-q8%Y^Fdur{%~4!5hVDMWUkZQQ@8b4f?bNFB zWxJ3>S)Cyhk{#L96%-p(R2-+8Zn*w=c53>t;CDhpkgAsIy&7gLfZO5