forked from Topdu/OpenOCR
-
Notifications
You must be signed in to change notification settings - Fork 0
/
svtrv2_busnet.yml
135 lines (128 loc) · 3.51 KB
/
svtrv2_busnet.yml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
Global:
device: gpu
epoch_num: 10
log_smooth_window: 20
print_batch_step: 10
output_dir: ./output/rec/u14m_filter/svtrv2_busnet/
eval_epoch_step: [0, 1]
eval_batch_step: [0, 500]
cal_metric_during_train: True
pretrained_model:
# ./output/rec/u14m_filter/svtrv2_busnet_pretraining/best.pth
checkpoints:
use_tensorboard: false
infer_img:
# for data or label process
character_dict_path: ./tools/utils/EN_symbol_dict.txt
max_text_length: 25
use_space_char: False
save_res_path: ./output/rec/u14m_filter/predicts_svtrv2_busnet.txt
use_amp: True
Optimizer:
name: AdamW
lr: 0.00065 # 4gpus bs256/gpu
weight_decay: 0.05
filter_bias_and_bn: True
LRScheduler:
name: OneCycleLR
warmup_epoch: 1 # pct_start 0.075*20 = 1.5ep
cycle_momentum: False
Architecture:
model_type: rec
algorithm: BUSBet
Transform:
Encoder:
name: SVTRv2LNConvTwo33
use_pos_embed: False
dims: [128, 256, 384]
depths: [6, 6, 6]
num_heads: [4, 8, 12]
mixer: [['Conv','Conv','Conv','Conv','Conv','Conv'],['Conv','Conv','FGlobal','Global','Global','Global'],['Global','Global','Global','Global','Global','Global']]
local_k: [[5, 5], [5, 5], [-1, -1]]
sub_k: [[1, 1], [2, 1], [-1, -1]]
last_stage: false
feat2d: False
Decoder:
name: BUSDecoder
nhead: 6
num_layers: 6
dim_feedforward: 1536
ignore_index: &ignore_index 100
pretraining: False
# return_id: 2
Loss:
name: ABINetLoss
ignore_index: *ignore_index
PostProcess:
name: ABINetLabelDecode
Metric:
name: RecMetric
main_indicator: acc
is_filter: True
Train:
dataset:
name: RatioDataSetTVResize
ds_width: True
padding: false
data_dir_list: ['../Union14M-L-LMDB-Filtered/filter_train_challenging',
'../Union14M-L-LMDB-Filtered/filter_train_hard',
'../Union14M-L-LMDB-Filtered/filter_train_medium',
'../Union14M-L-LMDB-Filtered/filter_train_normal',
'../Union14M-L-LMDB-Filtered/filter_train_easy',
]
transforms:
- DecodeImagePIL: # load image
img_mode: RGB
- PARSeqAugPIL:
- ABINetLabelEncode:
ignore_index: *ignore_index
- KeepKeys:
keep_keys: ['image', 'label', 'length'] # dataloader will return list in this order
sampler:
name: RatioSampler
scales: [[128, 32]] # w, h
# divide_factor: to ensure the width and height dimensions can be devided by downsampling multiple
first_bs: &bs 256
fix_bs: false
divided_factor: [4, 16] # w, h
is_training: True
loader:
shuffle: True
batch_size_per_card: *bs
drop_last: True
max_ratio: &max_ratio 4
num_workers: 4
Eval:
dataset:
name: RatioDataSetTVResize
ds_width: True
padding: False
data_dir_list: [
'../evaluation/CUTE80',
'../evaluation/IC13_857',
'../evaluation/IC15_1811',
'../evaluation/IIIT5k',
'../evaluation/SVT',
'../evaluation/SVTP',
]
transforms:
- DecodeImagePIL: # load image
img_mode: RGB
- ABINetLabelEncode:
ignore_index: *ignore_index
- KeepKeys:
keep_keys: ['image', 'label', 'length'] # dataloader will return list in this order
sampler:
name: RatioSampler
scales: [[128, 32]] # w, h
# divide_factor: to ensure the width and height dimensions can be devided by downsampling multiple
first_bs: *bs
fix_bs: false
divided_factor: [4, 16] # w, h
is_training: False
loader:
shuffle: False
drop_last: False
batch_size_per_card: *bs
max_ratio: *max_ratio
num_workers: 4