-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy path_pkgdown.yaml
138 lines (134 loc) · 3.92 KB
/
_pkgdown.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
url: "https://ruta.software"
template:
params:
bootswatch: lumen
authors:
David Charte:
href: http://deivi.ch
navbar:
title: Ruta
type: default
left:
- text: "Home"
href: ""
icon: fa-home
- text: "Get started"
href: "articles/examples/autoencoder_basic.html"
icon: fa-code
- text: "Examples"
menu:
- text: "Building neural architectures"
href: "articles/architectures.html"
- text: "-----------------------------"
- text: "Autoencoder variants"
- text: "Contractive autoencoder"
href: "articles/examples/autoencoder_contractive.html"
- text: "Denoising autoencoder"
href: "articles/examples/autoencoder_denoising.html"
- text: "Robust autoencoder"
href: "articles/examples/autoencoder_robust.html"
- text: "Sparse autoencoder"
href: "articles/examples/autoencoder_sparse.html"
- text: "Variational autoencoder"
href: "articles/examples/autoencoder_variational.html"
- text: "Convolutional autoencoder"
href: "articles/examples/autoencoder_convolutional.html"
- text: "Troubleshooting"
href: "articles/troubleshooting.html"
icon: fa-wrench
right:
- text: "Documentation"
icon: fa-book
href: "reference/"
- icon: fa-github
href: "https://github.com/fdavidcl/ruta"
reference:
- title: "Neural network architecture"
desc: >
This set of functions provide the necessary functionality to define the
neural architectures of autoencoders, by connecting layers of units.
contents:
- input
- dense
- variational_block
- conv
- output
- dropout
- layer_keras
- "c.ruta_network"
- "[.ruta_network"
- "plot.ruta_network"
- new_layer
- new_network
- as_network
- encoding_index
- title: "Autoencoder and variants"
desc: >
These functions allow to create and customize autoencoder learners.
contents:
- autoencoder
- starts_with("autoencoder_")
- add_weight_decay
- weight_decay
- starts_with("make_")
- is_contractive
- is_denoising
- is_robust
- is_sparse
- is_variational
- sparsity
- new_autoencoder
- title: "Loss functions"
desc: >
These functions define different objective functions which an autoencoder
may optimize. Along with these, one may use any loss defined in Keras (such
as `"binary_crossentropy"` or `"mean_squared_error"`).
contents:
- contraction
- correntropy
- loss_variational
- as_loss
- title: "Model training"
desc: >
The following functions allow to train an autoencoder with input data.
contents:
- autoencode
- starts_with("apply_filter")
- configure
- starts_with("to_ker")
- train.ruta_autoencoder
- is_trained
- title: "Model evaluation"
desc: >
Evaluation metrics for trained models.
contents:
- starts_with("evaluate")
- evaluation_metric
- title: "Tasks for trained models"
desc: >
The following functions can be applied when an autoencoder has been
trained, in order to transform data from the input space onto the latent
space and viceversa.
contents:
- encode
- decode
- reconstruct
- starts_with("generate")
- save_as
- title: "Noise generators"
desc: >
These objects act as input filters which generate some noise into the
training inputs when fitting denoising autoencoders.
contents:
- starts_with("noise")
- title: "Keras conversions"
desc: >
These are internal functions which convert Ruta wrapper objects into
Keras objects and functions.
contents:
- starts_with("to_keras")
- title: "Other methods"
desc: >
Some methods for R generics.
contents:
- starts_with("print.")