-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinference.py
288 lines (238 loc) · 8.77 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
# Utils
from config import args
import random
from tqdm import tqdm
# file handling
from time import time
# image
from torchvision import transforms
from PIL import Image
import cv2
# data
import numpy as np
import pandas as pd
# training/inference
import torch
import torch.nn as nn
from torch.utils.data import DataLoader, Dataset
# files
from pathlib import Path
import os
# tracking/ production monitoring
import wandb
def scalar_resize(fid, scalar=None):
img = cv2.imread(fid.path, cv2.IMREAD_UNCHANGED)
shape = np.array(img.shape)
scalar = scalar/shape[shape.argmax()]
shape = np.ceil(shape*scalar).astype(int)
dim = (shape[1], shape[0])
# resize image
return cv2.resize(img, dim, interpolation=cv2.INTER_AREA)
def get_df():
df = pd.read_csv('image_utils/ava_meta_with_int_id_230721.csv')
return df
def meta_process(df=None):
y_gt = df['mos_float'].values
ids = df['ID'].values
print(len(ids))
y_gt_std, y_gt_mean = np.std(y_gt, axis=0), np.mean(y_gt, axis=0)
exclude_below = y_gt_mean-y_gt_std*4
exclude_above = y_gt_mean+y_gt_std*4
ids = ids[np.argwhere(y_gt >= exclude_below)].ravel()
y_gt = y_gt[np.argwhere(y_gt >= exclude_below)].ravel()
print(len(y_gt))
ids = ids[np.argwhere(y_gt <= exclude_above)].ravel()
y_gt = y_gt[np.argwhere(y_gt <= exclude_above)].ravel()
print(len(ids), len(y_gt))
ids_low = ids[np.argwhere(y_gt < 5)].ravel().astype(int)
ids_high = ids[np.argwhere(y_gt > 5)].ravel().astype(int)
to_include = np.concatenate((ids_low, ids_high), axis=0)
len(to_include)
return df[df['ID'].isin(to_include)]
def one_hot(df):
return df[df.columns[2:]]
def get_labels(df):
y_df = one_hot(df)
path = Path(args.data_dir)
if not path.exists():
path.mkdir(parents=True)
labels = (
fid.name.split('.')[0]
for path in os.scandir(args.data_dir)
for fid in os.scandir(path.path))
y_g = y_df.to_dict('index')
return {str(y_g[pair_key]['ID']): y_g[pair_key] for pair_key in y_g}
def make_class_dir(df, y_g_dict):
'''creates text train val with class subdirs
⌊_train
| ⌊_class 0
| ⌊_class 1
⌊_test
| ⌊_class 0
| ⌊_class 1
⌊_val_
⌊_class 0
⌊_class 1'''
os.makedirs('../data/', exist_ok=True)
train_dir = '../data/train/'
test_dir = '../data/test/'
#!rm -rf data/train/ && rm -rf data/test/
os.makedirs(train_dir, exist_ok=True)
os.makedirs(test_dir, exist_ok=True)
not_loaded_train, not_loaded = [], []
test_df = df[df['set'] == 'test']
files_ = [i.name for i in os.scandir(args.data_dir)]
test_set = test_df['image_name'].values
for im_id in tqdm(test_set, colour=('#FF69B4')):
key = im_id.strip('.jpg')
y_g_dict[key]['fid'] = f'{args.out_dir}/test/{im_id}'
try:
os.symlink(args.data_dir+im_id, f'{args.out_dir}/test/{im_id}')
except:
not_loaded.append(im_id)
train_df = df[df['set'].isin(['training', 'validation'])]
train_set = train_df['image_name'].values
for im_id in tqdm(train_set, colour=('#FF69B4')):
key = im_id.strip('.jpg')
y_g_dict[key]['fid'] = args.data_dir+im_id
try:
os.symlink(args.data_dir+im_id, f'{args.out_dir}train/{im_id}')
except:
not_loaded_train.append(im_id)
return y_g_dict
def get_all(subset=None):
'''meta fucntion for calling other fuctions'''
df = get_df()
df = meta_process(df=df)
if subset:
df = df.head(1000)
y_g_dict = get_labels(df)
make_class_dir(df, y_g_dict)
y_g_neg = {key: y_g_dict[key]
for key in tqdm(y_g_dict) if y_g_dict[key]['threshold'] == 0}
y_g_pos = {key: y_g_dict[key]
for key in y_g_dict if y_g_dict[key]['threshold'] == 1}
sets = ['test', 'training', 'validation']
splits = {
set_: {
im_key: y_g_dict[im_key] for im_key in y_g_dict
if y_g_dict[im_key]['set'] == set_
} for set_ in sets
}
print(
f"train set n = {len(splits['training'])} \ntest_list n = {len(splits['test'])}\nvalidation_list n = {len(splits['validation'])}")
return df, y_g_dict, splits, y_g_neg, y_g_pos
def data_transforms(size=None):
'''defines data transform and returns a dict with test,train,val transforms'''
test_transforms = transforms.Compose(
[
transforms.Resize((224,224)),
transforms.ToTensor(),
]
)
return {'test': test_transforms, 'training': None, 'validation': None}
def data_samplers(data, ava_data_reflect,reflect_transforms,batch_size=None):
test_data_loader = ava_data_reflect(
data['test'], transform=reflect_transforms['test']
)
test_loader = DataLoader(
dataset=test_data_loader,
batch_size=batch_size, shuffle=True)
return {'training': None, 'validation': None, 'test':test_loader }
def seed_everything(seed):
random.seed(seed)
os.environ['PYTHONHASHSEED'] = str(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
torch.backends.cudnn.deterministic = True
class ava_data_reflect(Dataset):
'''data class wich is used by data loader retruns transformed image '''
def __init__(self, im_dict, state=None, transform=None):
self.im_dict = im_dict
self.transform = transform
self.files = list(im_dict.keys())
self.state = state
def __len__(self):
self.filelength = len(self.im_dict.keys())
return self.filelength
def __getitem__(self, idx):
#img_path = self.im_dict[self.files[idx]]['fid']
# reads symbolic links from test val train dirs returns rgb array
def read(fid): return cv2.cvtColor(cv2.imread(
os.readlink(fid)), cv2.COLOR_BGR2RGB).astype(np.uint8)
img = self.im_dict[self.files[idx]]['fid']
img = read(img)
# stacks grayscale images
if len(img.shape) != 3:
img = np.stack([np.copy(img) for i in range(3)], axis=2)
#img = self.transform(image=img)
# converst to pillow image from arry
# this is faster as open cv reads image
# faster than pillow
# pillow also returns file read errors
# for some image in ava dataset
# cv2 does not.
img = Image.fromarray(img.astype('uint8'), 'RGB')
img_transformed = self.transform(img)
# gets one hot (binary) thresholded groud truth
label = int(self.im_dict[self.files[idx]]['threshold'])
# uncomment to check that lable and data loading correctly (debug)
#print(label, self.im_dict[self.files[idx]])
return img_transformed, label, self.im_dict[self.files[idx]]['fid']
def deep_eval(model,run:wandb.run,data_load_dict:dict, model_name=None ):
'''validatioan loop ruturns metrics dict for passed model'''
criterion = nn.CrossEntropyLoss()
if torch.cuda.is_available():
device = 'cuda'
else:
device = 'cpu'
print(f'device for inference = {device}')
model.to(device)
batches_dict = {}
results_dict = {}
inference_dict = {}
images = []
labels = np.array([])
batch_acc = []
inference_time = []
pc = []
fids = []
logits = []
with torch.no_grad():
model.eval()
for data, label, fid in tqdm(data_load_dict['test']):
data = data.to(device)
# for img in data:
# images.append(wandb.Image(img))
for lab in label:
labels = np.append(labels, [lab])
label = label.to(device)
t = time()
output = model(data)
d_t = time()-t
run.log({'inference_time': d_t})
sm = torch.nn.Softmax(dim=1)
probabilities = sm(output)
for dir_, prob, lab in zip(fid, probabilities, label):
inference_dict = {
'class_probs': prob.cpu().tolist(),
'pred_class': int(prob.argmax(dim=0).cpu()),
'g_t_class': int(lab.cpu())}
run.log(inference_dict)
logits.append(prob.cpu().tolist())
pc.append(prob.argmax(dim=0).cpu())
acc = (output.argmax(dim=1) == label).float().mean()
acc = float(acc.cpu())
batch_acc.append(acc)
run.log({'batch_acc': acc})
# batches_dict['images'] = images
# batches_dict['labels'] = labels
# batches_dict['predicted'] = pc
# batches_dict['logits'] = logits
# df = pd.DataFrame.from_dict(batches_dict)
# tbl = wandb.Table(data=df)
# run.log({'batch_tablse': tbl})
run.log({'test_acc': np.mean(batch_acc)})
return results_dict