-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
347 lines (309 loc) · 11.3 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
import datetime
from pathlib import Path
import duckdb
import folium
import geopandas as gpd
import janitor
import pandas as pd
import streamlit as st
from folium.plugins import HeatMap
from streamlit_folium import st_folium
st.set_page_config(layout="wide")
# Load data
@st.cache_data
def load_data():
counties_path = "data/external/maryland_county_boundaries.geojson"
reports_path = "data/raw/CrashMap_REPORT_data.csv"
nonmotorists_path = "data/raw/CrashMap_NONMOTORIST_data.csv"
city_council_district_geojson_path = (
"data/external/city_council_districts.geojson"
)
neighborhoods_url = "https://services1.arcgis.com/UWYHeuuJISiGmgXx/arcgis/rest/services/Neighborhood/FeatureServer/0/query?outFields=*&where=1%3D1&f=geojson"
red_light_cameras_url = "https://services3.arcgis.com/ZTvQ9NuONePFYofE/arcgis/rest/services/Baltimore_ATVES_Red_Light_Camera/FeatureServer/25/query?outFields=*&where=1%3D1&f=geojson"
speed_cameras_url = "https://services3.arcgis.com/ZTvQ9NuONePFYofE/arcgis/rest/services/Baltimore_ATVES_Speed_Cameras/FeatureServer/0/query?outFields=*&where=1%3D1&f=geojson"
# Start duckdb process
duckdb.sql("INSTALL spatial")
duckdb.sql("LOAD spatial")
duckdb.sql(
f"""
CREATE
OR REPLACE TABLE counties AS
SELECT
county,
geom
FROM
ST_READ('{counties_path}')
"""
)
# Write a query to create a table of reports where the Latitute and Longitude are converted to a geometry column
duckdb.sql(
f"""
CREATE
OR REPLACE TABLE reports AS
SELECT
*,
ST_POINT(Longitude, Latitude) AS geom
FROM
'{reports_path}'
"""
)
# Create a table of nonmotorists
duckdb.sql(
f"""
CREATE
OR REPLACE TABLE nonmotorists AS
SELECT
*
FROM
'{nonmotorists_path}'
"""
)
nonmotorist_crashes = duckdb.sql(
"""
SELECT
reports.ReportNumber,
counties.county,
ST_X(reports.geom) AS longitude,
ST_Y(reports.geom) AS latitude,
reports.Crashdate AS crash_date,
FROM reports
JOIN counties
ON ST_WITHIN(reports.geom, counties.geom)
WHERE counties.county = 'Baltimore City'
AND reports.ReportNumber IN (
SELECT ReportNumber
FROM nonmotorists
)
"""
).df()
gdf = gpd.GeoDataFrame(
nonmotorist_crashes,
geometry=gpd.points_from_xy(
nonmotorist_crashes.longitude, nonmotorist_crashes.latitude
),
)
city_council_districts = gpd.read_file(
city_council_district_geojson_path
).clean_names()
neighborhoods = gpd.read_file(neighborhoods_url).clean_names()
red_light_cameras = gpd.read_file(red_light_cameras_url).clean_names()
# drop any red light cameras that don't have a valid geometry
red_light_cameras = red_light_cameras.dropna(subset=["geometry"])
speed_cameras = gpd.read_file(speed_cameras_url).clean_names()
# drop any speed cameras that don't have a valid geometry
speed_cameras = speed_cameras.dropna(subset=["geometry"])
return (
gdf,
city_council_districts,
neighborhoods,
red_light_cameras,
speed_cameras,
)
heatmap_defaults = {
"radius": 8,
"blur": 6,
"min_opacity": 0.3,
"gradient": {0.2: "blue", 0.4: "lime", 0.6: "yellow", 1: "red"},
}
# Reset defaults function
def reset_defaults():
st.session_state.radius = heatmap_defaults["radius"]
st.session_state.blur = heatmap_defaults["blur"]
st.session_state.min_opacity = heatmap_defaults["min_opacity"]
def main():
st.title("Crashes involving non-motorists resulting in injury or death")
# Load data
(
gdf,
city_council_districts,
neighborhoods,
red_light_cameras,
speed_cameras,
) = load_data()
# Initialize session state variables
if "radius" not in st.session_state:
st.session_state.radius = heatmap_defaults["radius"]
if "blur" not in st.session_state:
st.session_state.blur = heatmap_defaults["blur"]
if "min_opacity" not in st.session_state:
st.session_state.min_opacity = heatmap_defaults["min_opacity"]
if "zoom" not in st.session_state:
st.session_state.zoom = 12
if "center" not in st.session_state:
st.session_state.center = [
gdf.geometry.y.mean(),
gdf.geometry.x.mean(),
]
# Sidebar options
start_date_input = st.sidebar.date_input(
"Start Date", gdf["crash_date"].min()
)
# print(start_date_input)
end_date_input = st.sidebar.date_input("End Date", gdf["crash_date"].max())
if start_date_input > end_date_input:
st.sidebar.error("End date must fall after start date.")
else:
gdf = gdf[
gdf["crash_date"].between(
datetime.datetime.combine(start_date_input, datetime.time.min),
datetime.datetime.combine(end_date_input, datetime.time.max),
)
]
show_districts = st.sidebar.checkbox(
"Show city council district boundaries"
)
show_neighborhoods = st.sidebar.checkbox("Show neighborhood boundaries")
show_red_light_cameras = st.sidebar.checkbox("Show red light cameras")
show_speed_cameras = st.sidebar.checkbox("Show speed cameras")
# drop any speed cameras that don't have a valid geometry
speed_cameras = speed_cameras.dropna(subset=["geometry"])
base_map = st.sidebar.selectbox(
"Select Base Map",
[
"CartoDB positron",
"CartoDB dark_matter",
"OpenStreetMap",
],
)
# Create a slider for the radius of the heatmap
st.sidebar.markdown("## Heatmap Options")
st.session_state.radius = st.sidebar.slider(
"Radius (in pixels)",
min_value=1,
max_value=100,
value=st.session_state.radius,
)
st.session_state.blur = st.sidebar.slider(
"Blur (in pixels)",
min_value=1,
max_value=100,
value=st.session_state.blur,
)
st.session_state.min_opacity = st.sidebar.slider(
"Min Opacity",
min_value=0.0,
max_value=1.0,
value=st.session_state.min_opacity,
)
# Option to reset to default values
if st.sidebar.button("Reset to Default Values"):
reset_defaults()
# Create map
m = folium.Map(
location=[39.2904, -76.6122],
zoom_start=12,
tiles=base_map,
)
# Heatmap
heat_data = [[point.xy[1][0], point.xy[0][0]] for point in gdf.geometry]
HeatMap(
heat_data,
radius=st.session_state.radius,
blur=st.session_state.blur,
min_opacity=st.session_state.min_opacity,
gradient=heatmap_defaults["gradient"],
).add_to(m)
# Districts layer
city_council_districts_folium = folium.GeoJson(
city_council_districts,
style_function=lambda x: {
"fillColor": "transparent",
"color": "black",
"weight": 2,
},
)
# Neighborhoods layer
neighborhoods_folium = folium.GeoJson(
neighborhoods,
style_function=lambda x: {
"fillColor": "transparent",
"color": "red",
"weight": 2,
},
)
city_council_districts_feature_group = folium.FeatureGroup(
name="City Council Districts"
)
city_council_districts_feature_group.add_child(
city_council_districts_folium
)
neighborhoods_feature_group = folium.FeatureGroup(name="Neighborhoods")
neighborhoods_feature_group.add_child(neighborhoods_folium)
# Now, create a list of the feature groups we want to add to the map from the checkboxes
fg_list = []
if show_districts:
fg_list.append(city_council_districts_feature_group)
if show_neighborhoods:
fg_list.append(neighborhoods_feature_group)
red_light_cameras_feature_group = folium.FeatureGroup(
name="Red Light Cameras"
)
speed_cameras_feature_group = folium.FeatureGroup(name="Speed Cameras")
for _, camera in red_light_cameras.iterrows():
folium.Marker(
location=[camera.geometry.y, camera.geometry.x],
icon=folium.Icon(color="red", icon="camera"),
tooltip="Red Light Camera",
).add_to(red_light_cameras_feature_group)
if show_red_light_cameras:
fg_list.append(red_light_cameras_feature_group)
for _, camera in speed_cameras.iterrows():
folium.Marker(
location=[camera.geometry.y, camera.geometry.x],
icon=folium.Icon(color="blue", icon="camera"),
tooltip="Speed Camera",
).add_to(speed_cameras_feature_group)
if show_speed_cameras:
fg_list.append(speed_cameras_feature_group)
# Display map
st_data = st_folium(
m,
center=st.session_state["center"],
zoom=st.session_state["zoom"],
feature_group_to_add=fg_list,
width=900,
height=800,
)
# print(st_data['bounds'])
# print(st_data["zoom"])
# print(st.session_state["zoom"])
# print(st_data["center"])
# zoom = st_data["zoom"]
# center = [st_data["center"]['lat'], st_data["center"]['lng']]
readme_raw_url = "https://raw.githubusercontent.com/fedderw/baltimore-city-crash-analysis/74adb465cced95c0708b4ffae74e6d987c482c35/README.md"
readme_url = "https://github.com/fedderw/baltimore-city-crash-analysis/blob/5111a0363e7d955a4a94a1b58f0703117635d54b/README.md"
data_github_url = (
"https://github.com/fedderw/baltimore-city-crash-analysis"
)
app_github_url = "https://github.com/fedderw/baltimore-crash-heat-map"
crash_data_download_tool_url = (
"https://mdsp.maryland.gov/Pages/Dashboards/CrashDataDownload.aspx"
)
st.markdown(f"## About")
st.write(
f"""Data for this app was downloaded from the [Maryland State Police Crash Reporting Dashboard]({crash_data_download_tool_url}). Data was downloaded for Baltimore City and filtered to include only crashes involving non-motorists resulting in injury or death.
"""
)
st.write(
"The data was then converted to a GeoJSON file and loaded into a [DuckDB](https://duckdb.org/) database. The app uses [Streamlit](https://streamlit.io/) and [Folium](https://python-visualization.github.io/folium/) to display the data on a map."
)
st.write(
"We used the geospatial capabilities of DuckDB to perform a spatial join between the crash data and city boundary to remove crashes with missing or invalid coordinates."
)
st.write(
f"City council district and neighborhood boundaries were downloaded from [Open Baltimore](https://data.baltimorecity.gov/)."
)
st.write(
f"Red light and speed camera locations were downloaded from the following arcgis servers:"
)
st.write(
f"Red light cameras: https://services3.arcgis.com/ZTvQ9NuONePFYofE/arcgis/rest/services/Baltimore_ATVES_Red_Light_Camera/FeatureServer/1"
)
st.write(
f"Speed cameras: https://services3.arcgis.com/ZTvQ9NuONePFYofE/arcgis/rest/services/Baltimore_ATVES_Speed_Cameras/FeatureServer/0"
)
st.write(
f"See the app's [GitHub repository]({app_github_url}) for the app's source code."
)
if __name__ == "__main__":
main()