forked from jose-pantoja/IBApi-GARCH-CrackSpreadTrading-Algo
-
Notifications
You must be signed in to change notification settings - Fork 0
/
IBApi_CrackSpreadTrading_Algo.py
503 lines (421 loc) · 21.7 KB
/
IBApi_CrackSpreadTrading_Algo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
# Import necessary libraries and packages
from ibapi.client import EClient
from ibapi.wrapper import EWrapper
from ibapi.contract import Contract
from ibapi.order import *
import pandas as pd
import numpy as np
import arch
import threading
import time
from sklearn.model_selection import TimeSeriesSplit
import logging
import datetime
# Define class that inherits from EWrapper and EClient
class IBapi(EWrapper, EClient):
def __init__(self):
# Initialize EClient superclass
EClient.__init__(self, self)
# Initialize data storage
self.df_gasoline = pd.DataFrame()
self.df_heating_oil = pd.DataFrame()
self.df_crude_oil = pd.DataFrame()
# Initialize rollover dates of contracts
self.gasoline_rollover_date = None
self.heating_oil_rollover_date = None
self.crude_oil_rollover_date = None
# Initialize contract objects of crack spread commodities
self.gasoline_contract = None
self.heating_oil_contract = None
self.crude_oil_contract = None
# Initialize position and order tracking variables
self.is_position_open = False
self.bar_count = 0
self.bardata = {}
self.nextOrderId = None
self.opening_crack_spread = None
self.opening_action = None
self.open_orders = []
self.current_pnl = 0.0
self.cumulative_pnl = 0.0
self.cumulative_paper_pnl = 0.0
# Initialize logger for logging trading moves
self.logger = logging.getLogger("CrackSpreadStrategy")
self.logger.setLevel(logging.INFO)
ch = logging.StreamHandler()
ch.setLevel(logging.INFO)
formatter = logging.Formatter("%(asctime)s - %(name)s - %(levelname)s - %(message)s")
ch.setFormatter(formatter)
self.logger.addHandler(ch)
# Initialize rollover and contract expiry dates
self.calculate_rollover_dates()
self.calculate_contract_expiry_dates()
# Initialize expired contract prices dictionary
self.expired_contract_prices = {
"CL": None,
"RB": None,
"HO": None
}
def calculate_rollover_dates(self):
"""
Calculate rollover dates of contracts for crack spread commodities given now and 30 days from now
"""
current_date = datetime.datetime.now()
self.gasoline_rollover_date = (current_date + datetime.timedelta(days=30)).strftime("%Y%m%d")
self.heating_oil_rollover_date = (current_date + datetime.timedelta(days=30)).strftime("%Y%m%d")
self.crude_oil_rollover_date = (current_date + datetime.timedelta(days=30)).strftime("%Y%m%d")
def calculate_contract_expiry_dates(self):
"""
Calculate end date and contract's last trading day or contract month given now and 30 days from now
"""
current_date = datetime.datetime.now()
self.end_date = (current_date).strftime("%Y%m%d")
self.lastTradeDayOrContractMonth = (current_date + datetime.timedelta(days=30)).strftime("%Y%m")
def historicalData(self, reqId, bar):
"""
Receive and store historical price data for crack spread commodities
"""
if reqId == 1:
self.df_crude_oil = self.df_crude_oil.append({'datetime': bar.date, 'close': bar.close}, ignore_index=True)
self.bardata["CL"] = bar.close
if self.expired_contract_prices["CL"] is None:
self.expired_contract_prices["CL"] = bar.close
elif reqId == 2:
self.df_gasoline = self.df_gasoline.append({'datetime': bar.date, 'close': bar.close}, ignore_index=True)
self.bardata["RB"] = bar.close
if self.expired_contract_prices["RB"] is None:
self.expired_contract_prices["RB"] = bar.close
elif reqId == 3:
self.df_heating_oil = self.df_heating_oil.append({'datetime': bar.date, 'close': bar.close}, ignore_index=True)
self.bardata["HO"] = bar.close
if self.expired_contract_prices["HO"] is None:
self.expired_contract_prices["HO"] = bar.close
self.bar_count += 1
def calculate_garch_volatility(self, returns_series, p=1, q=1):
"""
Calculate GARCH volatility for given returns using specific parameters
"""
model = arch.arch_model(returns_series, vol='Garch', p=p, q=q)
result = model.fit(disp='off')
return np.sqrt(result.conditional_volatility[-1])
def calculate_crack_spreads(self):
"""
Calculate crack spreads based on historical price of crack spread commodities
"""
if self.df_gasoline.empty or self.df_crude_oil.empty or self.df_heating_oil.empty:
return None
crack_spreads = (3 * self.df_crude_oil['close'] -
2 * self.df_gasoline['close'] -
1 * self.df_heating_oil['close']) / 3
return crack_spreads
def calculate_z_score(self, crack_spreads):
"""
Calculate z-score for the crack spreads given historical returns
"""
returns = crack_spreads.diff().dropna()
z_score = (returns.iloc[-1] - returns.mean()) / returns.std()
return z_score
def submit_order(self, contract, direction, qty=100, ordertype='MKT', transmit=True):
"""
Submit an order for trading with specific parameters
"""
order = Order()
order.action = direction
order.totalQuantity = qty
order.orderType = ordertype
order.transmit = transmit
self.open_orders.append(order)
self.placeOrder(self.nextOrderId, contract, order)
self.nextOrderId += 1
def optimize_parameters_cv(self, returns_series):
"""
Optimize GARCH parameters using time series splitting and cross-validation
"""
tscv = TimeSeriesSplit(n_splits=5)
best_p = 0
best_q = 0
min_avg_mse = float('inf')
for p in range(1, 6):
for q in range(1, 6):
avg_mse = 0
for train_idx, test_idx in tscv.split(returns_series):
train_data = returns_series[train_idx]
test_data = returns_series[test_idx]
model = arch.arch_model(train_data, vol='Garch', p=p, q=q)
result = model.fit(disp='off')
conditional_volatility = result.conditional_volatility[-len(test_data):]
mse = np.mean((test_data - conditional_volatility) ** 2)
avg_mse += mse
avg_mse /= tscv.n_splits
if avg_mse < min_avg_mse:
min_avg_mse = avg_mse
best_p = p
best_q = q
return best_p, best_q
def get_num_contracts(self, contract_symbol):
"""
Get the number of contracts for the specific commodity
"""
num_contracts = {
"CL": 3,
"RB": 2,
"HO": 1
}
return num_contracts.get(contract_symbol, 0)
def calculate_rollover_cost(self, contract_symbol):
"""
Calculate rollover cost based on contract symbol
"""
if contract_symbol in self.expired_contract_prices:
new_contract_price = self.bardata[contract_symbol]
expired_contract_price = self.expired_contract_prices[contract_symbol]
num_contracts = self.get_num_contracts(contract_symbol)
if self.opening_action == 'BUY':
rollover_cost = (new_contract_price - expired_contract_price) * num_contracts
elif self.opening_action == 'SELL':
rollover_cost = (expired_contract_price - new_contract_price) * num_contracts
else:
rollover_cost = 0.0
return rollover_cost
else:
return 0.0
def rollover_contract(self, contract, rollover_date):
"""
Rollover contract if rollover date is reached
"""
today = datetime.datetime.now().strftime("%Y%m%d")
if today >= rollover_date:
new_rollover_date = (rollover_date + datetime.timedelta(days=30)).strftime("%Y%m%d")
new_contract = self.create_contract(
contract.symbol,
contract.secType,
contract.exchange,
new_rollover_date,
contract.multiplier
)
if self.is_position_open:
rollover_cost = self.calculate_rollover_cost(contract.symbol)
self.cumulative_paper_pnl -= rollover_cost
self.cumulative_pnl -= rollover_cost
self.gasoline_rollover_date = new_rollover_date
self.heating_oil_rollover_date = new_rollover_date
self.crude_oil_rollover_date = new_rollover_date
return new_contract
return contract
def open_position_zscore_trigger(self):
"""
Trigger opening a trading position based on z-score and GARCH volatility
"""
self.gasoline_contract = self.rollover_contract(self.gasoline_contract, self.gasoline_rollover_date)
self.heating_oil_contract = self.rollover_contract(self.heating_oil_contract, self.heating_oil_rollover_date)
self.crude_oil_contract = self.rollover_contract(self.crude_oil_contract, self.crude_oil_rollover_date)
crack_spreads = self.calculate_crack_spreads()
if crack_spreads is not None:
z_score = self.calculate_z_score(crack_spreads)
z_score_threshold = 1.0
if abs(z_score) > z_score_threshold and not self.is_position_open:
returns = crack_spreads.diff().dropna()
best_p, best_q = self.optimize_parameters_cv(returns)
garch_volatility = self.calculate_garch_volatility(returns, p=best_p, q=best_q)
self.open_position(crack_spreads, garch_volatility, best_p, best_q)
else:
self.logger.info("Crack spreads data is not available for trading or no ideal entry.")
def open_position(self, crack_spreads, garch_volatility, p, q):
"""
Open a trading position based on calculated crack spreads and GARCH parameters
"""
last_crack_spread = crack_spreads.iloc[-1]
if last_crack_spread > garch_volatility:
self.opening_action = 'BUY'
self.submit_order(self.crude_oil_contract, 'BUY', 3, 'MKT', False)
self.submit_order(self.gasoline_contract, 'SELL', 2, 'MKT', False)
self.submit_order(self.heating_oil_contract, 'SELL', 1, 'MKT', True)
else:
self.opening_action = 'SELL'
self.submit_order(self.crude_oil_contract, 'SELL', 3, 'MKT', False)
self.submit_order(self.gasoline_contract, 'BUY', 2, 'MKT', False)
self.submit_order(self.heating_oil_contract, 'BUY', 1, 'MKT', True)
self.opening_crack_spread = last_crack_spread
self.is_position_open = True
self.bar_count = 0
self.logger.info(f"Position opened. Opening Crack Spread: {self.opening_crack_spread:.2f}")
def close_position_zscore_trigger(self):
"""
Trigger closing a trading position based on z-score and GARCH volatility
"""
crack_spreads = self.calculate_crack_spreads()
if crack_spreads is not None and self.is_position_open:
z_score = self.calculate_z_score(crack_spreads)
volatility_adjusted_threshold = 2.0
if abs(z_score) < volatility_adjusted_threshold:
self.close_position(crack_spreads)
else:
last_crack_spread = crack_spreads.iloc[-1]
closing_crack_spread = last_crack_spread
position_pnl = 0.0
if self.opening_action == 'BUY':
position_pnl = (closing_crack_spread - self.opening_crack_spread)
self.current_pnl = position_pnl
self.cumulative_paper_pnl += position_pnl
self.logger.info(f"Position kept open. PnL: {position_pnl:.2f} | Cumulative Paper PnL: {self.cumulative_paper_pnl:.2f}")
else:
position_pnl = (self.opening_crack_spread - closing_crack_spread)
self.current_pnl = position_pnl
self.cumulative_paper_pnl += position_pnl
self.logger.info(f"Position kept open. PnL: {position_pnl:.2f} | Cumulative Paper PnL: {self.cumulative_paper_pnl:.2f}")
else:
self.logger.info("Crack spreads data is not available for trading or have no position.")
def close_position(self, crack_spreads):
"""
Close a trading position based on calculated crack spreads, GARCH parameters, and GARCH volatility threshold
"""
returns = crack_spreads.diff().dropna()
best_p, best_q = self.optimize_parameters_cv(returns)
garch_volatility = self.calculate_garch_volatility(returns, p=best_p, q=best_q)
last_crack_spread = crack_spreads.iloc[-1]
closing_crack_spread = last_crack_spread
position_pnl = 0.0
if self.bar_count >= 5:
low_vol_threshold = 0.5
high_vol_threshold = 1.5
if self.opening_action == 'BUY':
if last_crack_spread > garch_volatility * high_vol_threshold:
self.submit_order(self.crude_oil_contract, 'SELL', 3, 'MKT', False)
self.submit_order(self.gasoline_contract, 'BUY', 2, 'MKT', False)
self.submit_order(self.heating_oil_contract, 'BUY', 1, 'MKT', True)
position_pnl = max(closing_crack_spread - self.opening_crack_spread, 0)
self.current_pnl = position_pnl
self.cumulative_paper_pnl += position_pnl
self.cumulative_pnl += position_pnl
self.logger.info(f"Position closed. PnL: {position_pnl:.2f} | Cumulative Paper PnL: {self.cumulative_paper_pnl:.2f} | Cumulative PnL: {self.cumulative_pnl:.2f}")
self.opening_crack_spread = None
self.is_position_open = False
self.bar_count = 0
self.opening_action = None
elif last_crack_spread < garch_volatility * low_vol_threshold:
self.submit_order(self.crude_oil_contract, 'SELL', 3, 'MKT', False)
self.submit_order(self.gasoline_contract, 'BUY', 2, 'MKT', False)
self.submit_order(self.heating_oil_contract, 'BUY', 1, 'MKT', True)
position_pnl = max(closing_crack_spread - self.opening_crack_spread, 0)
self.current_pnl = position_pnl
self.cumulative_paper_pnl += position_pnl
self.cumulative_pnl += position_pnl
self.logger.info(f"Position closed. PnL: {position_pnl:.2f} | Cumulative Paper PnL: {self.cumulative_paper_pnl:.2f} | Cumulative PnL: {self.cumulative_pnl:.2f}")
self.opening_crack_spread = None
self.is_position_open = False
self.bar_count = 0
self.opening_action = None
else:
position_pnl = (closing_crack_spread - self.opening_crack_spread)
self.current_pnl = position_pnl
self.cumulative_paper_pnl += position_pnl
self.logger.info(f"Position kept open. PnL: {position_pnl:.2f} | Cumulative Paper PnL: {self.cumulative_paper_pnl:.2f}")
else:
if last_crack_spread > garch_volatility * high_vol_threshold:
self.submit_order(self.crude_oil_contract, 'BUY', 3, 'MKT', False)
self.submit_order(self.gasoline_contract, 'SELL', 2, 'MKT', False)
self.submit_order(self.heating_oil_contract, 'SELL', 1, 'MKT', True)
position_pnl = (self.opening_crack_spread - closing_crack_spread)
self.current_pnl = position_pnl
self.cumulative_paper_pnl += position_pnl
self.cumulative_pnl += position_pnl
self.logger.info(f"Position closed. PnL: {position_pnl:.2f} | Cumulative Paper PnL: {self.cumulative_paper_pnl:.2f} | Cumulative PnL: {self.cumulative_pnl:.2f}")
self.opening_crack_spread = None
self.is_position_open = False
self.bar_count = 0
self.opening_action = None
elif last_crack_spread < garch_volatility * low_vol_threshold:
self.submit_order(self.crude_oil_contract, 'BUY', 3, 'MKT', False)
self.submit_order(self.gasoline_contract, 'SELL', 2, 'MKT', False)
self.submit_order(self.heating_oil_contract, 'SELL', 1, 'MKT', True)
position_pnl = (self.opening_crack_spread - closing_crack_spread)
self.current_pnl = position_pnl
self.cumulative_paper_pnl += position_pnl
self.cumulative_pnl += position_pnl
self.logger.info(f"Position closed. PnL: {position_pnl:.2f} | Cumulative Paper PnL: {self.cumulative_paper_pnl:.2f} | Cumulative PnL: {self.cumulative_pnl:.2f}")
self.opening_crack_spread = None
self.is_position_open = False
self.bar_count = 0
self.opening_action = None
else:
position_pnl = (self.opening_crack_spread - closing_crack_spread)
self.current_pnl = position_pnl
self.cumulative_paper_pnl += position_pnl
self.logger.info(f"Position kept open. PnL: {position_pnl:.2f} | Cumulative Paper PnL: {self.cumulative_paper_pnl:.2f}")
else:
if self.opening_action == 'BUY':
position_pnl = (closing_crack_spread - self.opening_crack_spread)
self.current_pnl = position_pnl
self.cumulative_paper_pnl += position_pnl
self.logger.info(f"Position kept open. PnL: {position_pnl:.2f} | Cumulative Paper PnL: {self.cumulative_paper_pnl:.2f}")
else:
position_pnl = (self.opening_crack_spread - closing_crack_spread)
self.current_pnl = position_pnl
self.cumulative_paper_pnl += position_pnl
self.logger.info(f"Position kept open. PnL: {position_pnl:.2f} | Cumulative Paper PnL: {self.cumulative_paper_pnl:.2f}")
def create_contract(self, symbol, secType='FUT', exchange='NYMEX', lastTradeDayOrContractMonth='202309', multiplier='100'):
"""
Create a contract with specific parameters
"""
contract = Contract()
contract.symbol = symbol
contract.secType = secType
contract.exchange = exchange
contract.lastTradeDayOrContractMonth = lastTradeDayOrContractMonth
contract.multiplier = multiplier
return contract
def nextValidId(self, orderId: int):
"""
Receive next valid order ID from the API
"""
super().nextValidId(orderId)
self.nextOrderId = orderId
self.logger.info(f'The next valid order id is: {self.nextOrderId}')
def run_loop(self):
"""
Start event loop for the IBApi
"""
self.run()
def main():
# Instantiate IBApi class
app = IBapi()
# Specify parameters to create a connection
app.connect("127.0.0.1", 7497, 1)
# Create seperate thread for API event loop
api_thread = threading.Thread(target=app.run_loop, daemon=True)
api_thread.start()
# Wait for nextOrderId to be set before proceeding
while True:
if isinstance(app.nextOrderId, int):
app.logger.info("Connected")
app.logger.info("")
break
else:
app.logger.info("Waiting for connection")
time.sleep(1)
time.sleep(1)
app.reqIds(1)
app.calculate_rollover_dates()
app.calculate_contract_expiry_dates()
app.gasoline_contract = app.create_contract("RB", "FUT", "NYMEX", app.lastTradeDayOrContractMonth, "100")
app.heating_oil_contract = app.create_contract("HO", "FUT", "NYMEX", app.lastTradeDayOrContractMonth, "100")
app.crude_oil_contract = app.create_contract("CL", "FUT", "NYMEX", app.lastTradeDayOrContractMonth, "100")
app.df_gasoline = pd.DataFrame(columns=["datetime", "close"])
app.df_heating_oil = pd.DataFrame(columns=["datetime", "close"])
app.df_crude_oil = pd.DataFrame(columns=["datetime", "close"])
app.reqHistoricalData(1, app.gasoline_contract, app.end_date, "30 D", "1 day", "TRADES", 1, 1, False, [])
app.reqHistoricalData(2, app.heating_oil_contract, app.end_date, "30 D", "1 day", "TRADES", 1, 1, False, [])
app.reqHistoricalData(3, app.crude_oil_contract, app.end_date, "30 D", "1 day", "TRADES", 1, 1, False, [])
# Trading loop
try:
while True:
app.open_position_zscore_trigger()
app.close_position_zscore_trigger()
time.sleep(60)
except KeyboardInterrupt:
print("\nCtrl+C detected. Stopping the trading strategy...")
finally:
app.disconnect()
app.logger.info("Trading strategy has been stopped and disconnected.")
if __name__ == '__main__':
main()