-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcallbacks.py
365 lines (295 loc) · 10.8 KB
/
callbacks.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
import copy
import csv
import os
import pickle
import time
from collections import defaultdict
from pathlib import Path
from typing import Any
import numpy as np
import pandas as pd
import torch
from tensorboardX import SummaryWriter
from torch import nn, optim
from tqdm.auto import tqdm
class Callback:
def __init__(self) -> None:
pass
def on_step(self, info: dict) -> None:
pass
def on_episode_start(self, evaluation: bool = False) -> None:
pass
def on_episode_end(self, info: dict) -> None:
pass
def close(self) -> None:
pass
class WithTiming(Callback):
def __init__(self, inner: Callback):
self.inner = inner
self.time = defaultdict(float)
def on_episode_start(self, evaluation: bool) -> None:
return self.inner.on_episode_start(evaluation)
def _with_time(self, fn, info: dict):
t0 = time.monotonic()
result = fn(info)
t1 = time.monotonic()
self.time["callbacks"] += t1 - t0
return result
def _update_episode_time(self, info: dict):
for k, v in info.get("timing", {}).items():
self.time[k] += v
def on_step(self, info: dict) -> None:
self._update_episode_time(info)
return self._with_time(self.inner.on_step, info)
def on_episode_end(self, info: dict) -> None:
self._update_episode_time(info)
info["timing"] = dict(self.time)
self.time.clear()
return self._with_time(self.inner.on_episode_end, info)
def close(self) -> None:
self.inner.close()
class CallbackList(Callback):
def __init__(self, callbacks: list[Callback]) -> None:
self.callbacks = callbacks
def on_episode_start(self, evaluation: bool = False) -> None:
for callback in self.callbacks:
callback.on_episode_start(evaluation)
def on_step(self, info: dict) -> None:
for callback in self.callbacks:
callback.on_step(info)
def on_episode_end(self, info: dict) -> None:
for callback in self.callbacks:
callback.on_episode_end(info)
def close(self):
for callback in self.callbacks:
callback.close()
def append(self, callback: Callback) -> None:
self.callbacks.append(callback)
def has_type(self, callback_type: type[Callback]) -> bool:
return any(isinstance(callback, callback_type) for callback in self.callbacks)
class Tqdm(Callback):
def __init__(
self,
metrics: list[str] | None = None,
num_episodes: float | None = None,
**tqdm_kwargs,
) -> None:
if metrics is None:
metrics = []
tqdm_kwargs.setdefault("desc", "Training")
tqdm_kwargs.setdefault("unit", "episodes")
tqdm_kwargs.setdefault("smoothing", 0.0002)
self.pbar = tqdm(total=num_episodes, **tqdm_kwargs)
self.metrics = metrics.copy()
self._postfix = {}
self._eval_episodes = 0
self._evaluation = False
def on_episode_start(self, evaluation: bool = False) -> None:
self._evaluation = evaluation
def on_step(self, info: dict) -> None:
pass
def on_episode_end(self, info: dict) -> None:
if self._evaluation:
self._eval_episodes += 1
self._postfix["eval_episodes"] = self._eval_episodes
self._evaluation = False
self.pbar.set_postfix(self._postfix, refresh=True)
return
for k in self.metrics:
if k in info:
self._postfix[k] = info[k]
self.pbar.set_postfix(self._postfix, refresh=False)
self.pbar.update()
self._postfix["eval_episodes"] = 0
def close(self):
self.pbar.close()
class Tensorboard(Callback):
def __init__(self, writer: SummaryWriter | str) -> None:
if isinstance(writer, SummaryWriter):
self.writer = writer
else:
self.writer = SummaryWriter(writer)
self._num_steps = 0
self._num_episodes = 0
self._num_eval_episodes = 0
self._num_eval_steps = 0
self._evaluation = False
def on_episode_start(self, evaluation: bool = False) -> None:
self._evaluation = evaluation
def on_step(self, info: dict) -> None:
self._write_scalars(info, is_step=True)
if self._evaluation:
self._num_eval_steps += 1
else:
self._num_steps += 1
def on_episode_end(self, info: dict) -> None:
self._write_scalars(info, is_step=False)
if self._evaluation:
self._num_eval_episodes += 1
else:
self._num_episodes += 1
def _write_scalars(self, data: dict, is_step: bool) -> None:
data = _flatten_dict(data)
if is_step:
global_step = self._num_eval_steps if self._evaluation else self._num_steps
suffix = "_step"
else:
global_step = (
self._num_eval_episodes if self._evaluation else self._num_episodes
)
suffix = "_ep"
for k, v in data.items():
if isinstance(v, int | float | np.number):
if self._evaluation:
k = "eval/" + k
k += suffix
self.writer.add_scalar(k, v, global_step)
class HistoryWriter(Callback):
def __init__(self, outdir: str, convert_to_parquet: bool = True) -> None:
self.outdir = outdir
self.out_step_raw = open(outdir + "/history_step.csv", "w")
self.out_step = _AutoDictWriter(self.out_step_raw)
self.out_episode_raw = open(outdir + "/history_episode.csv", "w")
self.out_episode = _AutoDictWriter(self.out_episode_raw)
self.convert_to_parquet = convert_to_parquet
self._steps = []
self._episode = 0
self._eval_episode = 0
self._evaluation = False
def on_episode_start(self, evaluation: bool = False) -> None:
self._evaluation = evaluation
def on_step(self, info: dict) -> None:
info = _flatten_dict(info, normalize_types=True)
info["step"] = len(self._steps)
info["episode"] = self._episode
info["eval_episode"] = self._eval_episode if self._evaluation else None
self._steps.append(info)
def on_episode_end(self, info: dict) -> None:
info = _flatten_dict(info, normalize_types=True)
info["episode"] = self._episode
info["eval_episode"] = self._eval_episode if self._evaluation else None
self.out_episode.writerows([info])
self.out_step.writerows(self._steps)
self.out_episode_raw.flush()
self.out_step_raw.flush()
self._steps.clear()
if self._evaluation:
self._eval_episode += 1 # type: ignore
else:
self._episode += 1
self._eval_episode = 0
@staticmethod
def _convert_to_parquet(name: str):
path_csv = name + ".csv"
path_parquet = name + ".parquet"
data = pd.read_csv(path_csv)
data.to_parquet(path_parquet)
os.remove(path_csv)
def close(self):
self.out_step_raw.close()
self.out_episode_raw.close()
if self.convert_to_parquet:
self._convert_to_parquet(self.outdir + "/history_step")
self._convert_to_parquet(self.outdir + "/history_episode")
class _AutoDictWriter:
def __init__(self, fp):
self.fp = fp
self.inner = None
self.fieldnames = set()
def writerows(self, rowdicts: list[dict]):
keys = set().union(*(d.keys() for d in rowdicts))
if self.inner is None:
self.fieldnames = keys
self.inner = csv.DictWriter(
self.fp, fieldnames=sorted(keys), extrasaction="ignore"
)
self.inner.writeheader()
else:
extra_keys = keys - self.fieldnames
if extra_keys:
extra_keys_str = ", ".join(extra_keys)
print(
"Warning: keys not present in initial iteration will not be "
f"saved ({extra_keys_str})"
)
self.inner.writerows(rowdicts)
class ModelCheckpoint(Callback):
def __init__(
self,
model: nn.Module,
optimizer: optim.Optimizer,
freq: int,
hparams: dict[str, Any],
outdir: str | Path,
) -> None:
hparams = copy.deepcopy(hparams)
if not _picklable(hparams):
msg = f"Hparams object not picklable: {hparams}"
raise ValueError(msg)
self.model = model
self.optimizer = optimizer
self.checkpoint_freq = freq
self.hparams = hparams
self.outdir = outdir if isinstance(outdir, Path) else Path(outdir)
self.outdir.mkdir(exist_ok=True, parents=True)
self._evaluation = False
self._episode = 0
self._latest_checkpoint = None
def on_episode_start(self, evaluation: bool = False) -> None:
self._evaluation = evaluation
if not evaluation and self._episode % self.checkpoint_freq == 0:
self.save_checkpoint()
def on_episode_end(self, info: dict) -> None:
if not self._evaluation:
self._episode += 1
def save_checkpoint(self):
if self._latest_checkpoint == self._episode:
return
self._latest_checkpoint = self._episode
data = {
"episode": self._episode,
"model_state_dict": self.model.state_dict(),
"optimizer_state_dict": self.optimizer.state_dict(),
**self.hparams,
}
ckpt_file = self.outdir / f"{self._episode}.pt"
torch.save(data, ckpt_file)
def close(self):
self.save_checkpoint()
def setup_callbacks(
callbacks: list[Callback] | None,
num_episodes: int,
default_tqdm_metrics: list[str] | None = None,
with_timing: bool = True,
) -> Callback:
cb = CallbackList(callbacks or [])
if not cb.has_type(Tqdm):
cb.append(Tqdm(default_tqdm_metrics, num_episodes=num_episodes))
if with_timing:
cb = WithTiming(cb)
return cb
def _flatten_dict(
d: dict, prefix: str = "", out: dict | None = None, normalize_types: bool = False
) -> dict:
if out is None:
out = {}
for k, v in d.items():
k = prefix + k
if isinstance(v, dict):
_flatten_dict(v, prefix=k + "/", out=out, normalize_types=normalize_types)
elif normalize_types and isinstance(v, tuple):
for i, vi in enumerate(v):
out[f"{k}_{i}"] = vi
elif normalize_types and isinstance(v, np.ndarray):
out[k] = v.tolist()
elif normalize_types and isinstance(v, bool | np.bool_):
out[k] = int(v)
else:
out[k] = v
return out
def _picklable(obj) -> bool:
try:
pickle.dumps(obj)
return True
except pickle.PicklingError:
return False