-
Notifications
You must be signed in to change notification settings - Fork 0
/
utils.py
84 lines (66 loc) · 2.67 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
import os
import logging
import numpy as np
import torch
import torch.nn.functional as F
from torch.nn import init
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self):
self.reset()
def reset(self):
self.count = 0
self.sum = 0.0
self.val = 0.0
self.avg = 0.0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def accuracy(output, target, topk=(1,)):
"""Computes the precision@k for the specified values of k"""
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.view(1, -1).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].view(-1).float().sum(0, keepdim=True)
res.append(correct_k.mul_(100.0 / batch_size))
return res
def norm(x):
n = np.linalg.norm(x)
return x / n
def student_eval(t_model, s_model, val_loader, args):
s_model.eval()
s_high_pressure_loss_record = AverageMeter()
s_low__pressure_loss_record = AverageMeter()
s_logits_loss_record = AverageMeter()
s_acc_record = AverageMeter()
for img, target in val_loader:
img = img.cuda()
target = target.cuda()
with torch.no_grad():
t_out, t_high_pressure_encoder_out, t_low_pressure_encoder_out, _ = t_model.forward(
img, bb_grad=False, output_decoder=False, output_encoder=True)
s_out, s_high_pressure_encoder_out, s_low_pressure_encoder_out, _ = s_model.forward(
img, bb_grad=True, output_decoder=False, output_encoder=True)
logits_loss = F.cross_entropy(s_out, target)
high_loss = F.kl_div(
F.log_softmax(s_high_pressure_encoder_out / args.low_T, dim=1),
F.softmax(t_high_pressure_encoder_out / args.low_T, dim=1),
reduction='batchmean'
) * args.low_T * args.low_T
low_loss = F.kl_div(
F.log_softmax(s_low_pressure_encoder_out / args.high_T, dim=1),
F.softmax(t_low_pressure_encoder_out / args.high_T, dim=1),
reduction='batchmean'
) * args.high_T * args.high_T
s_high_pressure_loss_record.update(high_loss.item(), img.size(0))
s_low__pressure_loss_record.update(low_loss.item(), img.size(0))
s_logits_loss_record.update(logits_loss.item(), img.size(0))
acc = accuracy(s_out.data, target)[0]
s_acc_record.update(acc.item(), img.size(0))
return s_high_pressure_loss_record, s_logits_loss_record, s_low__pressure_loss_record, s_acc_record