-
Notifications
You must be signed in to change notification settings - Fork 0
/
LIME_batch_gpu1.py
182 lines (142 loc) · 6.21 KB
/
LIME_batch_gpu1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
from __future__ import absolute_import
import warnings
warnings.simplefilter('ignore')
import time, os, sys, cv2, time, argparse
import torch
import random
from srblib import abs_path
import numpy as np
from formal_utils import *
from PIL import Image
import torch.nn as nn
import torch.nn.functional as F
from torchvision import models, transforms
from lime import lime_image
from lime.wrappers.scikit_image import SegmentationAlgorithm
import matplotlib.pyplot as plt
from tqdm import tqdm, trange
import skimage
print('Explicacion LIME GPU 0')
# Fixing for deterministic results
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
lime_background_pixel = 0
lime_superpixel_num = 50
lime_num_samples = 1000
lime_superpixel_seed = 0
lime_explainer_seed = 0
batch_size = 100
torch.cuda.set_device(1) # especificar cual gpu 0 o 1
# model = models.googlenet(pretrained=True)
# model = models.resnet50(pretrained=True)
# model = models.vgg16(pretrained=True)
model = models.alexnet(pretrained=True)
model = nn.Sequential(model, nn.Softmax(dim=1))
model.cuda()
model.eval()
for p in model.parameters():
p.requires_grad = False
imagenet_val_path = './val/'
base_img_dir = abs_path(imagenet_val_path)
input_dir_path = 'images_list.txt'
text_file = abs_path(input_dir_path)
imagenet_class_mappings = './imagenet_class_mappings'
img_name_list = []
with open(text_file, 'r') as f:
for line in f:
img_name_list.append(line.split('\n')[0])
class DataProcessing:
def __init__(self, data_path, transform, img_idxs=[0, 1], if_noise=0, noise_var=0.0):
self.data_path = data_path
self.transform = transform
self.if_noise = if_noise
self.noise_mean = 0
self.noise_var = noise_var
img_list = img_name_list[img_idxs[0]:img_idxs[1]]
self.img_filenames = [os.path.join(data_path, f'{i}.JPEG') for i in img_list]
# self.img_filenames.sort()
def __getitem__(self, index):
img = Image.open(os.path.join(self.data_path, self.img_filenames[index])).convert('RGB')
target = self.get_image_class(os.path.join(self.data_path, self.img_filenames[index]))
if self.if_noise == 1:
img = skimage.util.random_noise(np.asarray(img), mode='gaussian',
mean=self.noise_mean, var=self.noise_var,
) # numpy, dtype=float64,range (0, 1)
img = Image.fromarray(np.uint8(img * 255))
img = self.transform(img)
img = np.array(img)
return img, target, os.path.join(self.data_path, self.img_filenames[index])
# return img, target
def __len__(self):
return len(self.img_filenames)
def get_image_class(self, filepath):
# ImageNet 2012 validation set images?
with open(os.path.join(imagenet_class_mappings, "ground_truth_val2012")) as f:
ground_truth_val2012 = {x.split()[0]: int(x.split()[1])
for x in f.readlines() if len(x.strip()) > 0}
def get_class(f):
ret = ground_truth_val2012.get(f, None)
return ret
image_class = get_class(filepath.split('/')[-1])
return image_class
def get_pytorch_preprocess_transform():
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
transf = transforms.Compose([
transforms.ToTensor(),
normalize
])
return transf
def get_pil_transform():
transf = transforms.Compose([
transforms.Resize((256, 256)),
transforms.CenterCrop(224)
])
return transf
pytorch_explainer = lime_image.LimeImageExplainer(random_state=lime_explainer_seed)
slic_parameters = {'n_segments': lime_superpixel_num, 'compactness': 30, 'sigma': 3}
segmenter = SegmentationAlgorithm('slic', **slic_parameters)
pill_transf = get_pil_transform()
#########################################################
# Function to compute probabilities
# Pytorch
pytorch_preprocess_transform = get_pytorch_preprocess_transform()
def pytorch_batch_predict(images):
batch = torch.stack(tuple(pytorch_preprocess_transform(i) for i in images), dim=0)
batch = batch.cuda()
probs = model(batch)
return probs.cpu().numpy()
def LIME_explanation(img, target):
# This image will be passed to Lime Explainer
labels = (target,)
# LIME analysis
lime_img = np.squeeze(img.numpy())
pytorch_lime_explanation = pytorch_explainer.explain_instance(lime_img, pytorch_batch_predict,
batch_size=batch_size,
#segmentation_fn=segmenter,
top_labels=None, labels=labels,
hide_color=None,
num_samples=lime_num_samples,
random_seed=lime_superpixel_seed,
)
pytorch_segments = pytorch_lime_explanation.segments
pytorch_heatmap = np.zeros(pytorch_segments.shape)
local_exp = pytorch_lime_explanation.local_exp
exp = local_exp[target]
for i, (seg_idx, seg_val) in enumerate(exp):
pytorch_heatmap[pytorch_segments == seg_idx] = seg_val
return pytorch_heatmap
random.seed(0)
init_time = time.time()
val_dataset = DataProcessing(base_img_dir, pill_transf, img_idxs=[100, 200], if_noise=0, noise_var=0.0)
val_loader = torch.utils.data.DataLoader(val_dataset, batch_size=1, shuffle=False, num_workers=10,
pin_memory=True)
# save_path = './resnet50_LIME'
# save_path = './vgg16_LIME'
save_path = './alexnet_LIME'
iterator = tqdm(enumerate(val_loader), total=len(val_loader), desc='batch')
for i, (image, target, file_name) in iterator:
mask = LIME_explanation(image, target.item())
mask_file = ('{}_mask.npy'.format(file_name[0].split('/')[-1].split('.JPEG')[0]))
np.save(os.path.abspath(os.path.join(save_path, mask_file)), mask)
print('Time taken: {:.3f} secs'.format(time.time() - init_time))