-
Notifications
You must be signed in to change notification settings - Fork 0
/
RISE_batch_gpu1.py
176 lines (143 loc) · 5.91 KB
/
RISE_batch_gpu1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
import os
import numpy as np
from matplotlib import pyplot as plt
from tqdm import tqdm
import sys
from srblib import abs_path
import torch
import torch.nn as nn
import torch.backends.cudnn as cudnn
import torch.utils.data
import torchvision.transforms as transforms
import torchvision.datasets as datasets
import torchvision.models as models
import skimage
#bibliotecas RISE
sys.path.insert(0, './RISE')
from utilsrise import *
from explanations import RISE
print('Explicacion RISE GPU 1')
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
imagenet_val_path = './val/'
base_img_dir = abs_path(imagenet_val_path)
input_dir_path = 'images_list.txt'
text_file = abs_path(input_dir_path)
imagenet_class_mappings = './imagenet_class_mappings'
torch.manual_seed(0)
img_name_list = []
with open(text_file, 'r') as f:
for line in f:
img_name_list.append(line.split('\n')[0])
def imagenet_label_mappings():
fileName = os.path.join(imagenet_class_mappings, 'imagenet_label_mapping')
with open(fileName, 'r') as f:
image_label_mapping = {int(x.split(":")[0]): x.split(":")[1].strip()
for x in f.readlines() if len(x.strip()) > 0}
return image_label_mapping
im_label_map = imagenet_label_mappings()
class DataProcessing:
def __init__(self, data_path, transform, img_idxs=[0, 1], if_noise=0, noise_var=0.0):
self.data_path = data_path
self.transform = transform
self.if_noise = if_noise
self.noise_mean = 0
self.noise_var = noise_var
img_list = img_name_list[img_idxs[0]:img_idxs[1]]
self.img_filenames = [os.path.join(data_path, f'{i}.JPEG') for i in img_list]
# self.img_filenames.sort()
def __getitem__(self, index):
img = Image.open(os.path.join(self.data_path, self.img_filenames[index])).convert('RGB')
target = self.get_image_class(os.path.join(self.data_path, self.img_filenames[index]))
if self.if_noise == 1:
img = skimage.util.random_noise(np.asarray(img), mode='gaussian',
mean=self.noise_mean, var=self.noise_var,
) # numpy, dtype=float64,range (0, 1)
img = Image.fromarray(np.uint8(img * 255))
img = self.transform(img)
return img, target, os.path.join(self.data_path, self.img_filenames[index])
#return img, target
def __len__(self):
return len(self.img_filenames)
def get_image_class(self, filepath):
# ImageNet 2012 validation set images?
with open(os.path.join(imagenet_class_mappings, "ground_truth_val2012")) as f:
ground_truth_val2012 = {x.split()[0]: int(x.split()[1])
for x in f.readlines() if len(x.strip()) > 0}
def get_class(f):
ret = ground_truth_val2012.get(f, None)
return ret
image_class = get_class(filepath.split('/')[-1])
return image_class
transform_val = transforms.Compose([
transforms.Resize((256, 256)),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]),
])
# Size of imput images.
input_size = (224, 224)
# Size of batches for GPU.
# Use maximum number that the GPU allows.
gpu_batch = 200 #125 #Máxima cantidad para una GPU
# gpu_batch = 30 #Máxima cantidad para una GPU (para VGG16)
# Load black box model for explanations
torch.cuda.set_device(1) # especificar cual gpu 0 o 1
# model = models.googlenet(pretrained=True)
# model = models.resnet50(pretrained=True)
# model = models.vgg16(pretrained=True)
model = models.alexnet(pretrained=True)
model = nn.Sequential(model, nn.Softmax(dim=1))
model = model.eval()
model = model.cuda()
for p in model.parameters():
p.requires_grad = False
explainer = RISE(model, input_size, gpu_batch)
# Generate masks for RISE or use the saved ones.
maskspath = 'masks.npy'
generate_new = True
if generate_new or not os.path.isfile(maskspath):
explainer.generate_masks(N=6000, s=8, p1=0.1, savepath=maskspath)
else:
explainer.load_masks(maskspath)
print('Masks are loaded.')
val_dataset = DataProcessing(base_img_dir, transform_val, img_idxs=[100, 200], if_noise=0, noise_var=0.0)
val_loader = torch.utils.data.DataLoader(val_dataset, batch_size=1, shuffle=False, num_workers=10,
pin_memory=True)
print(' {: >5} images will be explained.'.format(len(val_loader) * val_loader.batch_size))
# # Get all predicted labels first
# target = np.empty(len(val_loader), int)
# for i, (img, _) in enumerate(tqdm(val_loader, total=len(val_loader), desc='Predicting labels')):
# p, c = torch.max(model(img.cuda()), dim=1)
# target[i] = c[0]
# save_path = './resnet50_RISE'
# save_path = './vgg16_RISE'
save_path = './alexnet_RISE'
# Get saliency maps for all images in val loader
explanations = np.empty((len(val_loader), *input_size))
for i, (img, target, file_name) in enumerate(tqdm(val_loader, total=len(val_loader), desc='Explaining images')):
saliency_maps = explainer(img.cuda())
explanations[i] = saliency_maps[target.item()].cpu().numpy()
mask_file = ('{}_mask.npy'.format(file_name[0].split('/')[-1].split('.JPEG')[0]))
np.save(os.path.abspath(os.path.join(save_path, mask_file)), explanations[i])
# Rutina para graficar las explicaciones
# for i, (img, _) in enumerate(data_loader):
# p, c = torch.max(model(img.cuda()), dim=1)
# p, c = p[0].item(), c[0].item()
#
# plt.figure(figsize=(10, 5))
# plt.subplot(121)
# plt.axis('off')
# plt.title('{:.2f}% {}'.format(100 * p, get_class_name(c)))
# tensor_imshow(img[0])
#
# plt.subplot(122)
# plt.axis('off')
# plt.title(get_class_name(c))
# tensor_imshow(img[0])
# sal = explanations[i]
# plt.imshow(sal, cmap='jet', alpha=0.5)
# # plt.colorbar(fraction=0.046, pad=0.04)
#
# plt.show()