-
Notifications
You must be signed in to change notification settings - Fork 0
/
SHAP_coco.py
143 lines (115 loc) · 4.46 KB
/
SHAP_coco.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
import torch, torchvision
from torch import nn
from torchvision import transforms, models, datasets
import shap
import json
import os
from srblib import abs_path
import numpy as np
import matplotlib.pyplot as plt
from torch.utils.data.sampler import Sampler
from pycocotools.coco import COCO
from tqdm import tqdm, trange
from PIL import ImageFilter, Image
import skimage
from skimage.transform import resize
# Fixing for deterministic results
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
dataset_dir = './coco'
annotation_dir = './coco/annotations'
subset = 'val2014'
im_path = os.path.join(dataset_dir, subset)
ann_path = os.path.join(annotation_dir, 'instances_{}.json'.format(subset))
imagenet_class_mappings = './imagenet_class_mappings'
input_dir_path = 'coco_validation.txt'
text_file = abs_path(input_dir_path)
def imagenet_label_mappings():
fileName = os.path.join(imagenet_class_mappings, 'imagenet_label_mapping')
with open(fileName, 'r') as f:
image_label_mapping = {int(x.split(":")[0]): x.split(":")[1].strip()
for x in f.readlines() if len(x.strip()) > 0}
return image_label_mapping
def tensor_imshow(inp, title=None, **kwargs):
"""Imshow for Tensor."""
inp = inp.numpy().transpose((1, 2, 0))
# Mean and std for ImageNet
mean = np.array([0.485, 0.456, 0.406])
std = np.array([0.229, 0.224, 0.225])
inp = std * inp + mean
inp = np.clip(inp, 0, 1)
plt.imshow(inp, **kwargs)
if title is not None:
plt.title(title)
# plt.show()
class RangeSampler(Sampler):
def __init__(self, r):
self.r = r
def __iter__(self):
return iter(self.r)
def __len__(self):
return len(self.r)
img_name_list = []
with open(text_file, 'r') as f:
for line in f:
img_name_list.append(int(line.split('.jpg')[0].split('_')[-1]))
class CocoDetection:
def __init__(self, root, annFile, transform):
self.coco = COCO(annFile)
self.root = root
self.transform = transform
self.new_ids = img_name_list
def __getitem__(self, index):
id = self.new_ids[index]
path = self.coco.loadImgs(id)[0]["file_name"]
image = Image.open(os.path.join(self.root, path)).convert("RGB")
ann = (self.coco.loadAnns(self.coco.getAnnIds(id)))[0]
mask = self.coco.annToMask(ann)
if self.transform is not None:
image = self.transform(image)
mask = transforms.Resize((256, 256))(Image.fromarray(mask))
mask = transforms.CenterCrop(224)(mask)
mask = transforms.ToTensor()(mask)
mask = torch.nn.functional.normalize(mask, p=float('inf')).int()
return image, mask, path
def __len__(self):
return len(self.new_ids)
transform_coco = transforms.Compose([
transforms.Resize((256, 256)),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]),
])
torch.manual_seed(0)
torch.cuda.set_device(1) # especificar cual gpu 0 o 1
print('GPU 1 explicacion SHAP - COCO')
model = models.googlenet(pretrained=True)
model.cuda()
model.eval()
im_label_map = imagenet_label_mappings()
for param in model.parameters():
param.requires_grad = False
COCO_ds = CocoDetection(root=im_path,
annFile=ann_path,
transform=transform_coco
)
data_loader = torch.utils.data.DataLoader(COCO_ds, batch_size=1, shuffle=False,
num_workers=8, pin_memory=True,
# sampler=RangeSampler(range(1, 5))
)
print('longitud data loader:', len(data_loader))
im_label_map = imagenet_label_mappings()
save_path = './output_SHAP_coco'
iterator = enumerate(tqdm(data_loader, total=len(data_loader)))
for i, (image, mask, paths) in iterator:
image = image.cuda()
e = shap.GradientExplainer((model, model.conv2), image)
shap_values, indexes = e.shap_values(image, ranked_outputs=1, nsamples=20)
heatmap = np.clip(shap_values[0].sum(1), 0, 1)
mask_file = ('{}.npy'.format(paths[0].split('.jpg')[0]))
# np.save(os.path.abspath(os.path.join(save_path, mask_file)), resize(heatmap[0], (224, 224)))
# tensor_imshow(image[0].cpu(), title=None)
# plt.imshow(resize(heatmap[0], (224, 224)), cmap='jet', alpha=0.5)
# plt.axis('off')
# plt.show()