forked from jonazpiazu/PTAM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Tracker.cc
1022 lines (908 loc) · 34.2 KB
/
Tracker.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// Copyright 2008 Isis Innovation Limited
#include "OpenGL.h"
#include "Tracker.h"
#include "MEstimator.h"
#include "ShiTomasi.h"
#include "SmallMatrixOpts.h"
#include "PatchFinder.h"
#include "TrackerData.h"
#include <cvd/utility.h>
#include <cvd/gl_helpers.h>
#include <cvd/fast_corner.h>
#include <cvd/vision.h>
#include <TooN/wls.h>
#include <gvars3/instances.h>
#include <gvars3/GStringUtil.h>
#include <fstream>
#include <fcntl.h>
using namespace CVD;
using namespace std;
using namespace GVars3;
// The constructor mostly sets up interal reference variables
// to the other classes..
Tracker::Tracker(ImageRef irVideoSize, const ATANCamera &c, Map &m, MapMaker &mm) :
mMap(m),
mMapMaker(mm),
mCamera(c),
mRelocaliser(mMap, mCamera),
mirSize(irVideoSize)
{
mCurrentKF.bFixed = false;
GUI.RegisterCommand("Reset", GUICommandCallBack, this);
GUI.RegisterCommand("KeyPress", GUICommandCallBack, this);
GUI.RegisterCommand("PokeTracker", GUICommandCallBack, this);
TrackerData::irImageSize = mirSize;
mpSBILastFrame = NULL;
mpSBIThisFrame = NULL;
// Most of the initialisation is done in Reset()
Reset();
}
// Resets the tracker, wipes the map.
// This is the main Reset-handler-entry-point of the program! Other classes' resets propagate from here.
// It's always called in the Tracker's thread, often as a GUI command.
void Tracker::Reset()
{
mbDidCoarse = false;
mbUserPressedSpacebar = false;
mTrackingQuality = GOOD;
mnLostFrames = 0;
mdMSDScaledVelocityMagnitude = 0;
mCurrentKF.dSceneDepthMean = 1.0;
mCurrentKF.dSceneDepthSigma = 1.0;
mnInitialStage = TRAIL_TRACKING_NOT_STARTED;
mlTrails.clear();
mCamera.SetImageSize(mirSize);
mCurrentKF.mMeasurements.clear();
mnLastKeyFrameDropped = -20;
mnFrame=0;
mv6CameraVelocity = Zeros;
mbJustRecoveredSoUseCoarse = false;
// Tell the MapMaker to reset itself..
// this may take some time, since the mapmaker thread may have to wait
// for an abort-check during calculation, so sleep while waiting.
// MapMaker will also clear the map.
mMapMaker.RequestReset();
while(!mMapMaker.ResetDone())
#ifndef WIN32
usleep(10);
#else
Sleep(1);
#endif
}
// TrackFrame is called by System.cc with each incoming video frame.
// It figures out what state the tracker is in, and calls appropriate internal tracking
// functions. bDraw tells the tracker wether it should output any GL graphics
// or not (it should not draw, for example, when AR stuff is being shown.)
void Tracker::TrackFrame(Image<byte> &imFrame, bool bDraw)
{
mbDraw = bDraw;
mMessageForUser.str(""); // Wipe the user message clean
// Take the input video image, and convert it into the tracker's keyframe struct
// This does things like generate the image pyramid and find FAST corners
mCurrentKF.mMeasurements.clear();
mCurrentKF.MakeKeyFrame_Lite(imFrame);
// Update the small images for the rotation estimator
static gvar3<double> gvdSBIBlur("Tracker.RotationEstimatorBlur", 0.75, SILENT);
static gvar3<int> gvnUseSBI("Tracker.UseRotationEstimator", 1, SILENT);
mbUseSBIInit = *gvnUseSBI;
if(!mpSBIThisFrame)
{
mpSBIThisFrame = new SmallBlurryImage(mCurrentKF, *gvdSBIBlur);
mpSBILastFrame = new SmallBlurryImage(mCurrentKF, *gvdSBIBlur);
}
else
{
delete mpSBILastFrame;
mpSBILastFrame = mpSBIThisFrame;
mpSBIThisFrame = new SmallBlurryImage(mCurrentKF, *gvdSBIBlur);
}
// From now on we only use the keyframe struct!
mnFrame++;
if(mbDraw)
{
glDrawPixels(mCurrentKF.aLevels[0].im);
if(GV2.GetInt("Tracker.DrawFASTCorners",0, SILENT))
{
glColor3f(1,0,1); glPointSize(1); glBegin(GL_POINTS);
for(unsigned int i=0; i<mCurrentKF.aLevels[0].vCorners.size(); i++)
glVertex(mCurrentKF.aLevels[0].vCorners[i]);
glEnd();
}
}
// Decide what to do - if there is a map, try to track the map ...
if(mMap.IsGood())
{
if(mnLostFrames < 3) // .. but only if we're not lost!
{
if(mbUseSBIInit)
CalcSBIRotation();
ApplyMotionModel(); //
TrackMap(); // These three lines do the main tracking work.
UpdateMotionModel(); //
AssessTrackingQuality(); // Check if we're lost or if tracking is poor.
{ // Provide some feedback for the user:
mMessageForUser << "Tracking Map, quality ";
if(mTrackingQuality == GOOD) mMessageForUser << "good.";
if(mTrackingQuality == DODGY) mMessageForUser << "poor.";
if(mTrackingQuality == BAD) mMessageForUser << "bad.";
mMessageForUser << " Found:";
for(int i=0; i<LEVELS; i++) mMessageForUser << " " << manMeasFound[i] << "/" << manMeasAttempted[i];
// mMessageForUser << " Found " << mnMeasFound << " of " << mnMeasAttempted <<". (";
mMessageForUser << " Map: " << mMap.vpPoints.size() << "P, " << mMap.vpKeyFrames.size() << "KF";
}
// Heuristics to check if a key-frame should be added to the map:
if(mTrackingQuality == GOOD &&
mMapMaker.NeedNewKeyFrame(mCurrentKF) &&
mnFrame - mnLastKeyFrameDropped > 20 &&
mMapMaker.QueueSize() < 3)
{
mMessageForUser << " Adding key-frame.";
AddNewKeyFrame();
};
}
else // what if there is a map, but tracking has been lost?
{
mMessageForUser << "** Attempting recovery **.";
if(AttemptRecovery())
{
TrackMap();
AssessTrackingQuality();
}
}
if(mbDraw)
RenderGrid();
}
else // If there is no map, try to make one.
TrackForInitialMap();
// GUI interface
while(!mvQueuedCommands.empty())
{
GUICommandHandler(mvQueuedCommands.begin()->sCommand, mvQueuedCommands.begin()->sParams);
mvQueuedCommands.erase(mvQueuedCommands.begin());
}
};
// Try to relocalise in case tracking was lost.
// Returns success or failure as a bool.
// Actually, the SBI relocaliser will almost always return true, even if
// it has no idea where it is, so graphics will go a bit
// crazy when lost. Could use a tighter SSD threshold and return more false,
// but the way it is now gives a snappier response and I prefer it.
bool Tracker::AttemptRecovery()
{
bool bRelocGood = mRelocaliser.AttemptRecovery(mCurrentKF);
if(!bRelocGood)
return false;
SE3<> se3Best = mRelocaliser.BestPose();
mse3CamFromWorld = mse3StartPos = se3Best;
mv6CameraVelocity = Zeros;
mbJustRecoveredSoUseCoarse = true;
return true;
}
// Draw the reference grid to give the user an idea of wether tracking is OK or not.
void Tracker::RenderGrid()
{
// The colour of the ref grid shows if the coarse stage of tracking was used
// (it's turned off when the camera is sitting still to reduce jitter.)
if(mbDidCoarse)
glColor4f(.0, 0.5, .0, 0.6);
else
glColor4f(0,0,0,0.6);
// The grid is projected manually, i.e. GL receives projected 2D coords to draw.
int nHalfCells = 8;
int nTot = nHalfCells * 2 + 1;
Image<Vector<2> > imVertices(ImageRef(nTot,nTot));
for(int i=0; i<nTot; i++)
for(int j=0; j<nTot; j++)
{
Vector<3> v3;
v3[0] = (i - nHalfCells) * 0.1;
v3[1] = (j - nHalfCells) * 0.1;
v3[2] = 0.0;
Vector<3> v3Cam = mse3CamFromWorld * v3;
if(v3Cam[2] < 0.001)
v3Cam[2] = 0.001;
imVertices[i][j] = mCamera.Project(project(v3Cam));
}
glEnable(GL_LINE_SMOOTH);
glEnable(GL_BLEND);
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
glLineWidth(2);
for(int i=0; i<nTot; i++)
{
glBegin(GL_LINE_STRIP);
for(int j=0; j<nTot; j++)
glVertex(imVertices[i][j]);
glEnd();
glBegin(GL_LINE_STRIP);
for(int j=0; j<nTot; j++)
glVertex(imVertices[j][i]);
glEnd();
};
glLineWidth(1);
glColor3f(1,0,0);
}
// GUI interface. Stuff commands onto the back of a queue so the tracker handles
// them in its own thread at the end of each frame. Note the charming lack of
// any thread safety (no lock on mvQueuedCommands).
void Tracker::GUICommandCallBack(void* ptr, string sCommand, string sParams)
{
Command c;
c.sCommand = sCommand;
c.sParams = sParams;
((Tracker*) ptr)->mvQueuedCommands.push_back(c);
}
// This is called in the tracker's own thread.
void Tracker::GUICommandHandler(string sCommand, string sParams) // Called by the callback func..
{
if(sCommand=="Reset")
{
Reset();
return;
}
// KeyPress commands are issued by GLWindow
if(sCommand=="KeyPress")
{
if(sParams == "Space")
{
mbUserPressedSpacebar = true;
}
else if(sParams == "r")
{
Reset();
}
else if(sParams == "q" || sParams == "Escape")
{
GUI.ParseLine("quit");
}
return;
}
if((sCommand=="PokeTracker"))
{
mbUserPressedSpacebar = true;
return;
}
cout << "! Tracker::GUICommandHandler: unhandled command "<< sCommand << endl;
exit(1);
};
// Routine for establishing the initial map. This requires two spacebar presses from the user
// to define the first two key-frames. Salient points are tracked between the two keyframes
// using cheap frame-to-frame tracking (which is very brittle - quick camera motion will
// break it.) The salient points are stored in a list of `Trail' data structures.
// What action TrackForInitialMap() takes depends on the mnInitialStage enum variable..
void Tracker::TrackForInitialMap()
{
// MiniPatch tracking threshhold.
static gvar3<int> gvnMaxSSD("Tracker.MiniPatchMaxSSD", 100000, SILENT);
MiniPatch::mnMaxSSD = *gvnMaxSSD;
// What stage of initial tracking are we at?
if(mnInitialStage == TRAIL_TRACKING_NOT_STARTED)
{
if(mbUserPressedSpacebar) // First spacebar = this is the first keyframe
{
mbUserPressedSpacebar = false;
TrailTracking_Start();
mnInitialStage = TRAIL_TRACKING_STARTED;
}
else
mMessageForUser << "Point camera at planar scene and press spacebar to start tracking for initial map." << endl;
return;
};
if(mnInitialStage == TRAIL_TRACKING_STARTED)
{
int nGoodTrails = TrailTracking_Advance(); // This call actually tracks the trails
if(nGoodTrails < 10) // if most trails have been wiped out, no point continuing.
{
Reset();
return;
}
// If the user pressed spacebar here, use trails to run stereo and make the intial map..
if(mbUserPressedSpacebar)
{
mbUserPressedSpacebar = false;
vector<pair<ImageRef, ImageRef> > vMatches; // This is the format the mapmaker wants for the stereo pairs
for(list<Trail>::iterator i = mlTrails.begin(); i!=mlTrails.end(); i++)
vMatches.push_back(pair<ImageRef, ImageRef>(i->irInitialPos,
i->irCurrentPos));
mMapMaker.InitFromStereo(mFirstKF, mCurrentKF, vMatches, mse3CamFromWorld); // This will take some time!
mnInitialStage = TRAIL_TRACKING_COMPLETE;
}
else
mMessageForUser << "Translate the camera slowly sideways, and press spacebar again to perform stereo init." << endl;
}
}
// The current frame is to be the first keyframe!
void Tracker::TrailTracking_Start()
{
mCurrentKF.MakeKeyFrame_Rest(); // This populates the Candidates list, which is Shi-Tomasi thresholded.
mFirstKF = mCurrentKF;
vector<pair<double,ImageRef> > vCornersAndSTScores;
for(unsigned int i=0; i<mCurrentKF.aLevels[0].vCandidates.size(); i++) // Copy candidates into a trivially sortable vector
{ // so that we can choose the image corners with max ST score
Candidate &c = mCurrentKF.aLevels[0].vCandidates[i];
if(!mCurrentKF.aLevels[0].im.in_image_with_border(c.irLevelPos, MiniPatch::mnHalfPatchSize))
continue;
vCornersAndSTScores.push_back(pair<double,ImageRef>(-1.0 * c.dSTScore, c.irLevelPos)); // negative so highest score first in sorted list
};
sort(vCornersAndSTScores.begin(), vCornersAndSTScores.end()); // Sort according to Shi-Tomasi score
int nToAdd = GV2.GetInt("MaxInitialTrails", 1000, SILENT);
for(unsigned int i = 0; i<vCornersAndSTScores.size() && nToAdd > 0; i++)
{
if(!mCurrentKF.aLevels[0].im.in_image_with_border(vCornersAndSTScores[i].second, MiniPatch::mnHalfPatchSize))
continue;
Trail t;
t.mPatch.SampleFromImage(vCornersAndSTScores[i].second, mCurrentKF.aLevels[0].im);
t.irInitialPos = vCornersAndSTScores[i].second;
t.irCurrentPos = t.irInitialPos;
mlTrails.push_back(t);
nToAdd--;
}
mPreviousFrameKF = mFirstKF; // Always store the previous frame so married-matching can work.
}
// Steady-state trail tracking: Advance from the previous frame, remove duds.
int Tracker::TrailTracking_Advance()
{
int nGoodTrails = 0;
if(mbDraw)
{
glPointSize(5);
glLineWidth(2);
glEnable(GL_POINT_SMOOTH);
glEnable(GL_LINE_SMOOTH);
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
glEnable(GL_BLEND);
glBegin(GL_LINES);
}
MiniPatch BackwardsPatch;
Level &lCurrentFrame = mCurrentKF.aLevels[0];
Level &lPreviousFrame = mPreviousFrameKF.aLevels[0];
for(list<Trail>::iterator i = mlTrails.begin(); i!=mlTrails.end();)
{
list<Trail>::iterator next = i; next++;
Trail &trail = *i;
ImageRef irStart = trail.irCurrentPos;
ImageRef irEnd = irStart;
bool bFound = trail.mPatch.FindPatch(irEnd, lCurrentFrame.im, 10, lCurrentFrame.vCorners);
if(bFound)
{
// Also find backwards in a married-matches check
BackwardsPatch.SampleFromImage(irEnd, lCurrentFrame.im);
ImageRef irBackWardsFound = irEnd;
bFound = BackwardsPatch.FindPatch(irBackWardsFound, lPreviousFrame.im, 10, lPreviousFrame.vCorners);
if((irBackWardsFound - irStart).mag_squared() > 2)
bFound = false;
trail.irCurrentPos = irEnd;
nGoodTrails++;
}
if(mbDraw)
{
if(!bFound)
glColor3f(0,1,1); // Failed trails flash purple before dying.
else
glColor3f(1,1,0);
glVertex(trail.irInitialPos);
if(bFound) glColor3f(1,0,0);
glVertex(trail.irCurrentPos);
}
if(!bFound) // Erase from list of trails if not found this frame.
{
mlTrails.erase(i);
}
i = next;
}
if(mbDraw)
glEnd();
mPreviousFrameKF = mCurrentKF;
return nGoodTrails;
}
// TrackMap is the main purpose of the Tracker.
// It first projects all map points into the image to find a potentially-visible-set (PVS);
// Then it tries to find some points of the PVS in the image;
// Then it updates camera pose according to any points found.
// Above may happen twice if a coarse tracking stage is performed.
// Finally it updates the tracker's current-frame-KeyFrame struct with any
// measurements made.
// A lot of low-level functionality is split into helper classes:
// class TrackerData handles the projection of a MapPoint and stores intermediate results;
// class PatchFinder finds a projected MapPoint in the current-frame-KeyFrame.
void Tracker::TrackMap()
{
// Some accounting which will be used for tracking quality assessment:
for(int i=0; i<LEVELS; i++)
manMeasAttempted[i] = manMeasFound[i] = 0;
// The Potentially-Visible-Set (PVS) is split into pyramid levels.
vector<TrackerData*> avPVS[LEVELS];
for(int i=0; i<LEVELS; i++)
avPVS[i].reserve(500);
// For all points in the map..
for(unsigned int i=0; i<mMap.vpPoints.size(); i++)
{
MapPoint &p= *(mMap.vpPoints[i]);
// Ensure that this map point has an associated TrackerData struct.
if(!p.pTData) p.pTData = new TrackerData(&p);
TrackerData &TData = *p.pTData;
// Project according to current view, and if it's not in the image, skip.
TData.Project(mse3CamFromWorld, mCamera);
if(!TData.bInImage)
continue;
// Calculate camera projection derivatives of this point.
TData.GetDerivsUnsafe(mCamera);
// And check what the PatchFinder (included in TrackerData) makes of the mappoint in this view..
TData.nSearchLevel = TData.Finder.CalcSearchLevelAndWarpMatrix(TData.Point, mse3CamFromWorld, TData.m2CamDerivs);
if(TData.nSearchLevel == -1)
continue; // a negative search pyramid level indicates an inappropriate warp for this view, so skip.
// Otherwise, this point is suitable to be searched in the current image! Add to the PVS.
TData.bSearched = false;
TData.bFound = false;
avPVS[TData.nSearchLevel].push_back(&TData);
};
// Next: A large degree of faffing about and deciding which points are going to be measured!
// First, randomly shuffle the individual levels of the PVS.
for(int i=0; i<LEVELS; i++)
random_shuffle(avPVS[i].begin(), avPVS[i].end());
// The next two data structs contain the list of points which will next
// be searched for in the image, and then used in pose update.
vector<TrackerData*> vNextToSearch;
vector<TrackerData*> vIterationSet;
// Tunable parameters to do with the coarse tracking stage:
static gvar3<unsigned int> gvnCoarseMin("Tracker.CoarseMin", 20, SILENT); // Min number of large-scale features for coarse stage
static gvar3<unsigned int> gvnCoarseMax("Tracker.CoarseMax", 60, SILENT); // Max number of large-scale features for coarse stage
static gvar3<unsigned int> gvnCoarseRange("Tracker.CoarseRange", 30, SILENT); // Pixel search radius for coarse features
static gvar3<int> gvnCoarseSubPixIts("Tracker.CoarseSubPixIts", 8, SILENT); // Max sub-pixel iterations for coarse features
static gvar3<int> gvnCoarseDisabled("Tracker.DisableCoarse", 0, SILENT); // Set this to 1 to disable coarse stage (except after recovery)
static gvar3<double> gvdCoarseMinVel("Tracker.CoarseMinVelocity", 0.006, SILENT); // Speed above which coarse stage is used.
unsigned int nCoarseMax = *gvnCoarseMax;
unsigned int nCoarseRange = *gvnCoarseRange;
mbDidCoarse = false;
// Set of heuristics to check if we should do a coarse tracking stage.
bool bTryCoarse = true;
if(*gvnCoarseDisabled ||
mdMSDScaledVelocityMagnitude < *gvdCoarseMinVel ||
nCoarseMax == 0)
bTryCoarse = false;
if(mbJustRecoveredSoUseCoarse)
{
bTryCoarse = true;
nCoarseMax *=2;
nCoarseRange *=2;
mbJustRecoveredSoUseCoarse = false;
};
// If we do want to do a coarse stage, also check that there's enough high-level
// PV map points. We use the lowest-res two pyramid levels (LEVELS-1 and LEVELS-2),
// with preference to LEVELS-1.
if(bTryCoarse && avPVS[LEVELS-1].size() + avPVS[LEVELS-2].size() > *gvnCoarseMin )
{
// Now, fill the vNextToSearch struct with an appropriate number of
// TrackerDatas corresponding to coarse map points! This depends on how many
// there are in different pyramid levels compared to CoarseMin and CoarseMax.
if(avPVS[LEVELS-1].size() <= nCoarseMax)
{ // Fewer than CoarseMax in LEVELS-1? then take all of them, and remove them from the PVS list.
vNextToSearch = avPVS[LEVELS-1];
avPVS[LEVELS-1].clear();
}
else
{ // ..otherwise choose nCoarseMax at random, again removing from the PVS list.
for(unsigned int i=0; i<nCoarseMax; i++)
vNextToSearch.push_back(avPVS[LEVELS-1][i]);
avPVS[LEVELS-1].erase(avPVS[LEVELS-1].begin(), avPVS[LEVELS-1].begin() + nCoarseMax);
}
// If didn't source enough from LEVELS-1, get some from LEVELS-2... same as above.
if(vNextToSearch.size() < nCoarseMax)
{
unsigned int nMoreCoarseNeeded = nCoarseMax - vNextToSearch.size();
if(avPVS[LEVELS-2].size() <= nMoreCoarseNeeded)
{
vNextToSearch = avPVS[LEVELS-2];
avPVS[LEVELS-2].clear();
}
else
{
for(unsigned int i=0; i<nMoreCoarseNeeded; i++)
vNextToSearch.push_back(avPVS[LEVELS-2][i]);
avPVS[LEVELS-2].erase(avPVS[LEVELS-2].begin(), avPVS[LEVELS-2].begin() + nMoreCoarseNeeded);
}
}
// Now go and attempt to find these points in the image!
unsigned int nFound = SearchForPoints(vNextToSearch, nCoarseRange, *gvnCoarseSubPixIts);
vIterationSet = vNextToSearch; // Copy over into the to-be-optimised list.
if(nFound >= *gvnCoarseMin) // Were enough found to do any meaningful optimisation?
{
mbDidCoarse = true;
for(int iter = 0; iter<10; iter++) // If so: do ten Gauss-Newton pose updates iterations.
{
if(iter != 0)
{ // Re-project the points on all but the first iteration.
for(unsigned int i=0; i<vIterationSet.size(); i++)
if(vIterationSet[i]->bFound)
vIterationSet[i]->ProjectAndDerivs(mse3CamFromWorld, mCamera);
}
for(unsigned int i=0; i<vIterationSet.size(); i++)
if(vIterationSet[i]->bFound)
vIterationSet[i]->CalcJacobian();
double dOverrideSigma = 0.0;
// Hack: force the MEstimator to be pretty brutal
// with outliers beyond the fifth iteration.
if(iter > 5)
dOverrideSigma = 1.0;
// Calculate and apply the pose update...
Vector<6> v6Update =
CalcPoseUpdate(vIterationSet, dOverrideSigma);
mse3CamFromWorld = SE3<>::exp(v6Update) * mse3CamFromWorld;
};
}
};
// So, at this stage, we may or may not have done a coarse tracking stage.
// Now do the fine tracking stage. This needs many more points!
int nFineRange = 10; // Pixel search range for the fine stage.
if(mbDidCoarse) // Can use a tighter search if the coarse stage was already done.
nFineRange = 5;
// What patches shall we use this time? The high-level ones are quite important,
// so do all of these, with sub-pixel refinement.
{
int l = LEVELS - 1;
for(unsigned int i=0; i<avPVS[l].size(); i++)
avPVS[l][i]->ProjectAndDerivs(mse3CamFromWorld, mCamera);
SearchForPoints(avPVS[l], nFineRange, 8);
for(unsigned int i=0; i<avPVS[l].size(); i++)
vIterationSet.push_back(avPVS[l][i]); // Again, plonk all searched points onto the (maybe already populate) vIterationSet.
};
// All the others levels: Initially, put all remaining potentially visible patches onto vNextToSearch.
vNextToSearch.clear();
for(int l=LEVELS - 2; l>=0; l--)
for(unsigned int i=0; i<avPVS[l].size(); i++)
vNextToSearch.push_back(avPVS[l][i]);
// But we haven't got CPU to track _all_ patches in the map - arbitrarily limit
// ourselves to 1000, and choose these randomly.
static gvar3<int> gvnMaxPatchesPerFrame("Tracker.MaxPatchesPerFrame", 1000, SILENT);
int nFinePatchesToUse = *gvnMaxPatchesPerFrame - vIterationSet.size();
if(nFinePatchesToUse < 0)
nFinePatchesToUse = 0;
if((int) vNextToSearch.size() > nFinePatchesToUse)
{
random_shuffle(vNextToSearch.begin(), vNextToSearch.end());
vNextToSearch.resize(nFinePatchesToUse); // Chop!
};
// If we did a coarse tracking stage: re-project and find derivs of fine points
if(mbDidCoarse)
for(unsigned int i=0; i<vNextToSearch.size(); i++)
vNextToSearch[i]->ProjectAndDerivs(mse3CamFromWorld, mCamera);
// Find fine points in image:
SearchForPoints(vNextToSearch, nFineRange, 0);
// And attach them all to the end of the optimisation-set.
for(unsigned int i=0; i<vNextToSearch.size(); i++)
vIterationSet.push_back(vNextToSearch[i]);
// Again, ten gauss-newton pose update iterations.
Vector<6> v6LastUpdate;
v6LastUpdate = Zeros;
for(int iter = 0; iter<10; iter++)
{
bool bNonLinearIteration; // For a bit of time-saving: don't do full nonlinear
// reprojection at every iteration - it really isn't necessary!
if(iter == 0 || iter == 4 || iter == 9)
bNonLinearIteration = true; // Even this is probably overkill, the reason we do many
else // iterations is for M-Estimator convergence rather than
bNonLinearIteration = false; // linearisation effects.
if(iter != 0) // Either way: first iteration doesn't need projection update.
{
if(bNonLinearIteration)
{
for(unsigned int i=0; i<vIterationSet.size(); i++)
if(vIterationSet[i]->bFound)
vIterationSet[i]->ProjectAndDerivs(mse3CamFromWorld, mCamera);
}
else
{
for(unsigned int i=0; i<vIterationSet.size(); i++)
if(vIterationSet[i]->bFound)
vIterationSet[i]->LinearUpdate(v6LastUpdate);
};
}
if(bNonLinearIteration)
for(unsigned int i=0; i<vIterationSet.size(); i++)
if(vIterationSet[i]->bFound)
vIterationSet[i]->CalcJacobian();
// Again, an M-Estimator hack beyond the fifth iteration.
double dOverrideSigma = 0.0;
if(iter > 5)
dOverrideSigma = 16.0;
// Calculate and update pose; also store update vector for linear iteration updates.
Vector<6> v6Update =
CalcPoseUpdate(vIterationSet, dOverrideSigma, iter==9);
mse3CamFromWorld = SE3<>::exp(v6Update) * mse3CamFromWorld;
v6LastUpdate = v6Update;
};
if(mbDraw)
{
glPointSize(6);
glEnable(GL_BLEND);
glEnable(GL_POINT_SMOOTH);
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
glBegin(GL_POINTS);
for(vector<TrackerData*>::reverse_iterator it = vIterationSet.rbegin();
it!= vIterationSet.rend();
it++)
{
if(! (*it)->bFound)
continue;
glColor(gavLevelColors[(*it)->nSearchLevel]);
glVertex((*it)->v2Image);
}
glEnd();
glDisable(GL_BLEND);
}
// Update the current keyframe with info on what was found in the frame.
// Strictly speaking this is unnecessary to do every frame, it'll only be
// needed if the KF gets added to MapMaker. Do it anyway.
// Export pose to current keyframe:
mCurrentKF.se3CfromW = mse3CamFromWorld;
// Record successful measurements. Use the KeyFrame-Measurement struct for this.
mCurrentKF.mMeasurements.clear();
for(vector<TrackerData*>::iterator it = vIterationSet.begin();
it!= vIterationSet.end();
it++)
{
if(! (*it)->bFound)
continue;
Measurement m;
m.v2RootPos = (*it)->v2Found;
m.nLevel = (*it)->nSearchLevel;
m.bSubPix = (*it)->bDidSubPix;
mCurrentKF.mMeasurements[& ((*it)->Point)] = m;
}
// Finally, find the mean scene depth from tracked features
{
double dSum = 0;
double dSumSq = 0;
int nNum = 0;
for(vector<TrackerData*>::iterator it = vIterationSet.begin();
it!= vIterationSet.end();
it++)
if((*it)->bFound)
{
double z = (*it)->v3Cam[2];
dSum+= z;
dSumSq+= z*z;
nNum++;
};
if(nNum > 20)
{
mCurrentKF.dSceneDepthMean = dSum/nNum;
mCurrentKF.dSceneDepthSigma = sqrt((dSumSq / nNum) - (mCurrentKF.dSceneDepthMean) * (mCurrentKF.dSceneDepthMean));
}
}
}
// Find points in the image. Uses the PatchFiner struct stored in TrackerData
int Tracker::SearchForPoints(vector<TrackerData*> &vTD, int nRange, int nSubPixIts)
{
int nFound = 0;
for(unsigned int i=0; i<vTD.size(); i++) // for each point..
{
// First, attempt a search at pixel locations which are FAST corners.
// (PatchFinder::FindPatchCoarse)
TrackerData &TD = *vTD[i];
PatchFinder &Finder = TD.Finder;
Finder.MakeTemplateCoarseCont(TD.Point);
if(Finder.TemplateBad())
{
TD.bInImage = TD.bPotentiallyVisible = TD.bFound = false;
continue;
}
manMeasAttempted[Finder.GetLevel()]++; // Stats for tracking quality assessmenta
bool bFound =
Finder.FindPatchCoarse(ir(TD.v2Image), mCurrentKF, nRange);
TD.bSearched = true;
if(!bFound)
{
TD.bFound = false;
continue;
}
TD.bFound = true;
TD.dSqrtInvNoise = (1.0 / Finder.GetLevelScale());
nFound++;
manMeasFound[Finder.GetLevel()]++;
// Found the patch in coarse search - are Sub-pixel iterations wanted too?
if(nSubPixIts > 0)
{
TD.bDidSubPix = true;
Finder.MakeSubPixTemplate();
bool bSubPixConverges=Finder.IterateSubPixToConvergence(mCurrentKF, nSubPixIts);
if(!bSubPixConverges)
{ // If subpix doesn't converge, the patch location is probably very dubious!
TD.bFound = false;
nFound--;
manMeasFound[Finder.GetLevel()]--;
continue;
}
TD.v2Found = Finder.GetSubPixPos();
}
else
{
TD.v2Found = Finder.GetCoarsePosAsVector();
TD.bDidSubPix = false;
}
}
return nFound;
};
//Calculate a pose update 6-vector from a bunch of image measurements.
//User-selectable M-Estimator.
//Normally this robustly estimates a sigma-squared for all the measurements
//to reduce outlier influence, but this can be overridden if
//dOverrideSigma is positive. Also, bMarkOutliers set to true
//records any instances of a point being marked an outlier measurement
//by the Tukey MEstimator.
Vector<6> Tracker::CalcPoseUpdate(vector<TrackerData*> vTD, double dOverrideSigma, bool bMarkOutliers)
{
// Which M-estimator are we using?
int nEstimator = 0;
static gvar3<string> gvsEstimator("TrackerMEstimator", "Tukey", SILENT);
if(*gvsEstimator == "Tukey")
nEstimator = 0;
else if(*gvsEstimator == "Cauchy")
nEstimator = 1;
else if(*gvsEstimator == "Huber")
nEstimator = 2;
else
{
cout << "Invalid TrackerMEstimator, choices are Tukey, Cauchy, Huber" << endl;
nEstimator = 0;
*gvsEstimator = "Tukey";
};
// Find the covariance-scaled reprojection error for each measurement.
// Also, store the square of these quantities for M-Estimator sigma squared estimation.
vector<double> vdErrorSquared;
for(unsigned int f=0; f<vTD.size(); f++)
{
TrackerData &TD = *vTD[f];
if(!TD.bFound)
continue;
TD.v2Error_CovScaled = TD.dSqrtInvNoise* (TD.v2Found - TD.v2Image);
vdErrorSquared.push_back(TD.v2Error_CovScaled * TD.v2Error_CovScaled);
};
// No valid measurements? Return null update.
if(vdErrorSquared.size() == 0)
return makeVector( 0,0,0,0,0,0);
// What is the distribution of errors?
double dSigmaSquared;
if(dOverrideSigma > 0)
dSigmaSquared = dOverrideSigma; // Bit of a waste having stored the vector of square errors in this case!
else
{
if (nEstimator == 0)
dSigmaSquared = Tukey::FindSigmaSquared(vdErrorSquared);
else if(nEstimator == 1)
dSigmaSquared = Cauchy::FindSigmaSquared(vdErrorSquared);
else
dSigmaSquared = Huber::FindSigmaSquared(vdErrorSquared);
}
// The TooN WLSCholesky class handles reweighted least squares.
// It just needs errors and jacobians.
WLS<6> wls;
wls.add_prior(100.0); // Stabilising prior
for(unsigned int f=0; f<vTD.size(); f++)
{
TrackerData &TD = *vTD[f];
if(!TD.bFound)
continue;
Vector<2> &v2 = TD.v2Error_CovScaled;
double dErrorSq = v2 * v2;
double dWeight;
if(nEstimator == 0)
dWeight= Tukey::Weight(dErrorSq, dSigmaSquared);
else if(nEstimator == 1)
dWeight= Cauchy::Weight(dErrorSq, dSigmaSquared);
else
dWeight= Huber::Weight(dErrorSq, dSigmaSquared);
// Inlier/outlier accounting, only really works for cut-off estimators such as Tukey.
if(dWeight == 0.0)
{
if(bMarkOutliers)
TD.Point.nMEstimatorOutlierCount++;
continue;
}
else
if(bMarkOutliers)
TD.Point.nMEstimatorInlierCount++;
Matrix<2,6> &m26Jac = TD.m26Jacobian;
wls.add_mJ(v2[0], TD.dSqrtInvNoise * m26Jac[0], dWeight); // These two lines are currently
wls.add_mJ(v2[1], TD.dSqrtInvNoise * m26Jac[1], dWeight); // the slowest bit of poseits
}
wls.compute();
return wls.get_mu();
}
// Just add the current velocity to the current pose.
// N.b. this doesn't actually use time in any way, i.e. it assumes
// a one-frame-per-second camera. Skipped frames etc
// are not handled properly here.
void Tracker::ApplyMotionModel()
{
mse3StartPos = mse3CamFromWorld;
Vector<6> v6Velocity = mv6CameraVelocity;
if(mbUseSBIInit)
{
v6Velocity.slice<3,3>() = mv6SBIRot.slice<3,3>();
v6Velocity[0] = 0.0;
v6Velocity[1] = 0.0;
}
mse3CamFromWorld = SE3<>::exp(v6Velocity) * mse3StartPos;
};
// The motion model is entirely the tracker's, and is kept as a decaying
// constant velocity model.
void Tracker::UpdateMotionModel()
{
SE3<> se3NewFromOld = mse3CamFromWorld * mse3StartPos.inverse();
Vector<6> v6Motion = SE3<>::ln(se3NewFromOld);
Vector<6> v6OldVel = mv6CameraVelocity;
mv6CameraVelocity = 0.9 * (0.5 * v6Motion + 0.5 * v6OldVel);
mdVelocityMagnitude = sqrt(mv6CameraVelocity * mv6CameraVelocity);
// Also make an estimate of this which has been scaled by the mean scene depth.
// This is used to decide if we should use a coarse tracking stage.
// We can tolerate more translational vel when far away from scene!
Vector<6> v6 = mv6CameraVelocity;
v6.slice<0,3>() *= 1.0 / mCurrentKF.dSceneDepthMean;
mdMSDScaledVelocityMagnitude = sqrt(v6*v6);
}
// Time to add a new keyframe? The MapMaker handles most of this.
void Tracker::AddNewKeyFrame()
{
mMapMaker.AddKeyFrame(mCurrentKF);
mnLastKeyFrameDropped = mnFrame;
}
// Some heuristics to decide if tracking is any good, for this frame.
// This influences decisions to add key-frames, and eventually
// causes the tracker to attempt relocalisation.
void Tracker::AssessTrackingQuality()
{
int nTotalAttempted = 0;
int nTotalFound = 0;
int nLargeAttempted = 0;
int nLargeFound = 0;
for(int i=0; i<LEVELS; i++)
{
nTotalAttempted += manMeasAttempted[i];
nTotalFound += manMeasFound[i];
if(i>=2) nLargeAttempted += manMeasAttempted[i];
if(i>=2) nLargeFound += manMeasFound[i];
}
if(nTotalFound == 0 || nTotalAttempted == 0)
mTrackingQuality = BAD;
else
{
double dTotalFracFound = (double) nTotalFound / nTotalAttempted;
double dLargeFracFound;
if(nLargeAttempted > 10)
dLargeFracFound = (double) nLargeFound / nLargeAttempted;
else
dLargeFracFound = dTotalFracFound;
static gvar3<double> gvdQualityGood("Tracker.TrackingQualityGood", 0.3, SILENT);
static gvar3<double> gvdQualityLost("Tracker.TrackingQualityLost", 0.13, SILENT);
if(dTotalFracFound > *gvdQualityGood)
mTrackingQuality = GOOD;
else if(dLargeFracFound < *gvdQualityLost)
mTrackingQuality = BAD;
else
mTrackingQuality = DODGY;
}
if(mTrackingQuality == DODGY)
{
// Further heuristics to see if it's actually bad, not just dodgy...
// If the camera pose estimate has run miles away, it's probably bad.
if(mMapMaker.IsDistanceToNearestKeyFrameExcessive(mCurrentKF))
mTrackingQuality = BAD;
}
if(mTrackingQuality==BAD)
mnLostFrames++;
else
mnLostFrames = 0;
}
string Tracker::GetMessageForUser()