-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathgraph_test.py
64 lines (50 loc) · 1.46 KB
/
graph_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
import sys
import networkx as nx
import numpy as np
sys.path.append('../')
from GPnetRegressor import GPnetRegressor
from GPnetClassifier import GPnetClassifier
#%%
lattice_m = 15
lattice_n = 15
G = nx.generators.lattice.grid_graph(dim = [lattice_m,lattice_n],
periodic= False)
#%%
const = np.log(2.3)
const_scale = np.log(2.1)
length_scale= np.log(1.5)
noise = np.log(0.01)
walk_length = np.log(4)
gpr = GPnetRegressor(Graph = G,
ntrain = 125,
ntest= 100,
theta = [const, walk_length, noise],
seed = 123,
kerneltype = "pstep_walk",
relabel_nodes = True)
#%%
gpr.plot_graph()
_ = gpr.predict()
gpr.plot_predict_2d()
#gpr.plot_predict_2d_old()
#%%
labels = (np.sin(0.5*gpr.pivot_distance(0))>0).replace({True: 1, False: -1})
train_nodes = gpr.training_nodes
test_nodes = gpr.test_nodes
train_labels = labels[train_nodes]
#%%
gpc = GPnetClassifier(Graph = G,
training_nodes = train_nodes,
test_nodes = test_nodes,
training_values = train_labels,
theta = [np.log(2.1), np.log(2), np.log(0.1)],
seed = 321,
kerneltype = 'pstep_walk',
relabel_nodes = True)
#%%
#%%
gpc.predict()
gpc.plot_graph()
gpc.plot_latent()
gpc.plot_predict_graph()
gpc.plot_binary_prediction()