forked from christinab12/bone-cement-injection-planning
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patheval_distance.py
100 lines (92 loc) · 5.08 KB
/
eval_distance.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
import os
import numpy as np
import json
from sklearn.decomposition import PCA
import SimpleITK as sitk
from typing import List, Union, Tuple
class EvalDist():
def __init__(self, h_mask_path: str, h_ctd_path: str, p_mask_path: str, p_ctd_path: str,
eval_frac_id: List[int], n_components: int = 3):
"""
Evaluate pairwise vertebrae centroids distance and compute the scaling facotr of healthy atlas.
:param h_mask_path: str, path of healthy atlas mask
:param h_ctd_path: str, path of healthy atlas centroids
:param p_mask_path: str, path of patient spine mask
:param p_ctd_path: str, path of patient spine centroids
:param eval_frac_id: list of centroids id which are fractured
:param n_components: int, the number of pca components to keep
"""
self.h_ctd_index, self.h_ctd_pp, self.h_label, _ = self.read_centroids(h_mask_path, h_ctd_path)
self.p_ctd_index, self.p_ctd_pp, self.p_label, _ = self.read_centroids(p_mask_path, p_ctd_path)
self.eval_frac_id = eval_frac_id
self.n_components = n_components
def read_centroids(self, img_path: str, ctd_path: str) -> Tuple[np.ndarray, np.ndarray, np.ndarray, str]:
"""
Read centroids index from the output json file from segmentation network and transform to physical point.
:param img_path: str, path of scan/mask
:param ctd_path: str, path of centroids file
:return: tuple(np.ndarray, np.ndarray, np.ndarray, str)
centroids_index: voxel index coordinates of centroids
centroids_pp: physical point coordinates of centroids
label: label value of each centroid
orientation: the orientation of scan/mask
"""
img = sitk.ReadImage(img_path, sitk.sitkFloat32)
centroids_index = json.load(open(ctd_path, "r"))
orientation = "".join(centroids_index[0]['direction'])
label = np.array([c["label"] for c in centroids_index[1:]], dtype=int)
centroids_index = [[c['X'], c['Y'], c['Z']] for c in centroids_index[1:]]
centroids_index = np.array(centroids_index, dtype=float)
centroids_pp = np.array([img.TransformContinuousIndexToPhysicalPoint(pnt) for pnt in centroids_index],
dtype=float)
return centroids_index, centroids_pp, label, orientation
def compute_physical_distance(self, ctd_pp: np.ndarray, n_components: int = 3) -> np.ndarray:
"""
Get PCA components of centroids physical point and compute the distance in between.
:param ctd_pp: np.ndarray, physical point coordinates of centroids
:param n_components: int, number of PCA components
:return:
dist: np.ndarray, distance between vertebrae
"""
pca = PCA(n_components)
ctd_pp = pca.fit_transform(ctd_pp)
diff = np.diff(ctd_pp, axis=0)
dist = np.linalg.norm(diff, axis=1)
return dist
def compute_scale_factor(self, h_dist: np.ndarray, h_label: np.ndarray, p_dist: np.ndarray,
p_label: np.ndarray) -> float:
"""
Compute the scaling factor of healthy atlas
:param h_dist: np.ndarray, pairwise centroid distance of healthy atlas
:param h_label: np.ndarray, centroid labels of healthy atlas
:param p_dist: np.ndarray, pairwise centroid distance of patient spine
:param p_label: np.ndarray, centroid labels of patient spine
:return:
scale_factor: float, scale facotr of healthy atlas
"""
vert_range, h_slice_index, p_slice_index = np.intersect1d(h_label, p_label, assume_unique=True,
return_indices=True)
h_dist = h_dist[h_slice_index[:-1]]
p_dist = p_dist[p_slice_index[:-1]]
assert h_dist.shape == p_dist.shape
if len(self.eval_frac_id) > 0:
sel_mask = np.ones(vert_range.shape[0] - 1, dtype=bool)
for i in self.eval_frac_id:
sel_mask[np.argwhere(vert_range == i).item()] = False
h_dist = h_dist[sel_mask]
p_dist = p_dist[sel_mask]
scale_factor = np.mean(p_dist / h_dist, axis=-1)
return scale_factor
def run(self):
h_dist = self.compute_physical_distance(self.h_ctd_pp, self.n_components)
p_dist = self.compute_physical_distance(self.p_ctd_pp, self.n_components)
scale_factor = self.compute_scale_factor(h_dist, self.h_label, p_dist, self.p_label)
return scale_factor
if __name__ == "__main__":
h_mask_path = "./data/01_healthy_1491_1989_seg_AB.nii"
h_ctd_path = "./data/01_healthy_1491_1989_ctd.json"
p_ctd_path = "./data/sub-kypho001_ses-20160502_dir-sag_sequ-wirbelule20sag5_seg-subreg_ctd.json"
p_mask_path = "./data/sub-kypho001_ses-20160502_dir-sag_sequ-wirbelule20sag5_seg-vert_msk.nii.gz"
eval_dist = EvalDist(h_mask_path=h_mask_path, h_ctd_path=h_ctd_path, p_mask_path=p_mask_path, p_ctd_path=p_ctd_path,
eval_frac_id=[19, 20, 22, 23], n_components=2)
print(eval_dist.run())