-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmetrics.py
47 lines (38 loc) · 1.24 KB
/
metrics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
from sklearn import metrics
import warnings
warnings.filterwarnings('ignore')
def all_metric(labels,lab_predict):
micro_auc = 0
macro_auc = 0
micro_f1 = 0
macro_f1 = 0
micro_precision = 0
macro_precision = 0
micro_recall = 0
macro_recall = 0
try:
micro_auc = metrics.roc_auc_score(labels,lab_predict,average="micro")
except:pass
try:
macro_auc = metrics.roc_auc_score(labels,lab_predict,average="macro")
except:pass
lab_predict=(lab_predict > 0.5)
try:
micro_f1 = metrics.f1_score(labels,lab_predict,average="micro")
except:pass
try:
macro_f1 = metrics.f1_score(labels,lab_predict,average="macro")
except:pass
try:
micro_precision = metrics.precision_score(labels,lab_predict,average="micro")
except:pass
try:
macro_precision = metrics.precision_score(labels,lab_predict,average="macro")
except:pass
try:
micro_recall = metrics.recall_score(labels,lab_predict,average="micro")
except:pass
try:
macro_recall = metrics.recall_score(labels,lab_predict,average="macro")
except:pass
return micro_auc,macro_auc,micro_f1,macro_f1,micro_precision,macro_precision,micro_recall,macro_recall