From ae2afe208c8a832668ef80ea1071555dd99c25b9 Mon Sep 17 00:00:00 2001 From: Tim Andrews Date: Sat, 28 Dec 2024 20:49:22 +0000 Subject: [PATCH 1/8] start mean mixing ratio augmentation --- gusto/spatial_methods/augmentation.py | 24 +++ .../model/test_mean_mixing_ratio.py | 175 ++++++++++++++++++ 2 files changed, 199 insertions(+) create mode 100644 integration-tests/model/test_mean_mixing_ratio.py diff --git a/gusto/spatial_methods/augmentation.py b/gusto/spatial_methods/augmentation.py index 42aedaa64..8e5fbc52e 100644 --- a/gusto/spatial_methods/augmentation.py +++ b/gusto/spatial_methods/augmentation.py @@ -236,3 +236,27 @@ def update(self, x_in_mixed): logger.debug('Vorticity solve') self.solver.solve() self.x_in.subfunctions[1].assign(self.Z_in) + + +#class MeanMixingRatio(Augmentation): + """ + This augments a transport problem involving a mixing ratio to + include a mean mixing ratio field. This enables posivity to be + ensured during conservative transport. + + Args: + domain (:class:`Domain`): The domain object. + eqns (:class:`PrognosticEquationSet`): The overarching equation set. + mixing_ratio (:class: list): List of mixing ratios that + are to have augmented mean mixing ratio fields. + OR, keep as a single mixing ratio, but define + multiple augmentations? + """ + + # def __init__( + # self, domain, eqns, mX_name + # ): + + + # Extract the mixing ratio in question: + # field_idx = self.eqns.field_names.index(mX_name) diff --git a/integration-tests/model/test_mean_mixing_ratio.py b/integration-tests/model/test_mean_mixing_ratio.py new file mode 100644 index 000000000..35bdf2c75 --- /dev/null +++ b/integration-tests/model/test_mean_mixing_ratio.py @@ -0,0 +1,175 @@ +""" +Tests the mean mixing ratio augmentation. Here a mixing ratio is transported +conservatively along with the dry density. The mean mixing ratio augmentation +should ensure that the mixing ratio remains non-negative. To test this, +a physics scheme of a sink is applied, which without the mean mixing ratio +will lead to negative values. Hence, a check is performed that the +mixing ratio has no negative values after a couple of time steps. +""" + +from gusto import * +from firedrake import ( + PeriodicIntervalMesh, ExtrudedMesh, exp, cos, sin, SpatialCoordinate, + assemble, dx, FunctionSpace, pi, min_value, as_vector, BrokenElement, + errornorm +) +import pytest + + +def setup_mean_mixing_ratio(dirname, pair_of_spaces): + + # Domain + Lx = 2000. + Hz = 2000. + + # Time parameters + dt = 2. + tmax = 2000. + + nlayers = 10. # horizontal layers + columns = 10. # number of columns + + # Define the spaces for the tracers + if pair_of_spaces == 'same': + rho_d_space = 'DG' + m_X_space = 'DG' + else: + rho_d_space = 'DG' + m_X_space = 'theta' + + period_mesh = PeriodicIntervalMesh(columns, Lx) + mesh = ExtrudedMesh(period_mesh, layers=nlayers, layer_height=Hz/nlayers) + domain = Domain(mesh, dt, "CG", 1) + x, z = SpatialCoordinate(mesh) + + V_rho = domain.spaces(rho_d_space) + V_m_X = domain.spaces(m_X_space) + + m_X = ActiveTracer(name='m_X', space=m_X_space, + variable_type=TracerVariableType.mixing_ratio, + transport_eqn=TransportEquationType.tracer_conservative, + density_name='rho_d') + + rho_d = ActiveTracer(name='rho_d', space=rho_d_space, + variable_type=TracerVariableType.density, + transport_eqn=TransportEquationType.conservative) + + # Define m_X first to test that the tracers will be + # automatically re-ordered such that the density field + # is indexed before the mixing ratio. + tracers = [m_X, rho_d] + + # Equation + V = domain.spaces("HDiv") + eqn = CoupledTransportEquation(domain, active_tracers=tracers, Vu=V) + + # IO + output = OutputParameters(dirname=dirname) + io = IO(domain, output) + + + if pair_of_spaces == 'diff': + Vt_brok = FunctionSpace(mesh, BrokenElement(V_m_X.ufl_element())) + suboptions = { + 'rho_d': EmbeddedDGOptions(embedding_space=Vt_brok), + 'm_X': ConservativeEmbeddedDGOptions( + rho_name='rho_d', + orig_rho_space=V_rho + ) + } + else: + suboptions = {} + + opts = MixedFSOptions(suboptions=suboptions) + + transport_scheme = SSPRK3( + domain, options=opts, rk_formulation=RungeKuttaFormulation.predictor + ) + transport_methods = [DGUpwind(eqn, "m_X"), DGUpwind(eqn, "rho_d")] + + #physics_schemes = [(SourceSink(eqn, 'm_X', -Constant(0.1)), SSPRK3(domain))] + + # Timestepper + time_varying = True + #stepper = SplitPrescribedTransport( + # eqn, transport_scheme, + # io, time_varying, transport_methods, + # physics_schemes=physics_schemes + #) + stepper = PrescribedTransport( + eqn, transport_scheme, io, time_varying, transport_methods + ) + + # Initial Conditions + # Specify locations of the two Gaussians + xc1 = 5.*Lx/8. + zc1 = Hz/2. + + xc2 = 3.*Lx/8. + zc2 = Hz/2. + + def l2_dist(xc, zc): + return min_value(abs(x-xc), Lx-abs(x-xc))**2 + (z-zc)**2 + + lc = 2.*Lx/25. + m0 = 0.02 + + # Set the initial state with two Gaussians for the density + # and a linear variation in mixing ratio. + + f0 = 0.5 + rho_b = 0.5 + + g1 = f0*exp(-l2_dist(xc1, zc1)/(lc**2)) + g2 = f0*exp(-l2_dist(xc2, zc2)/(lc**2)) + + rho_d_0 = rho_b + g1 + g2 + + # Constant mass field, starting with no mixing + # ratio at z=0 and m=0.5 at the model top + m_X_0 = m0 + 0.5*z/Hz + + # Set up the divergent, time-varying, velocity field + U = Lx/tmax + W = U/10. + + def u_t(t): + xd = x - U*t + u = U - (W*pi*Lx/Hz)*cos(pi*t/tmax)*cos(2*pi*xd/Lx)*cos(pi*z/Hz) + w = 2*pi*W*cos(pi*t/tmax)*sin(2*pi*xd/Lx)*sin(pi*z/Hz) + + u_expr = as_vector((u, w)) + + return u_expr + + stepper.setup_prescribed_expr(u_t) + + stepper.fields("m_X").interpolate(m_X_0) + stepper.fields("rho_d").interpolate(rho_d_0) + stepper.fields("u").project(u_t(0)) + + m_X_init = Function(V_m_X) + rho_d_init = Function(V_rho) + + m_X_init.assign(stepper.fields("m_X")) + rho_d_init.assign(stepper.fields("rho_d")) + + return stepper, m_X_init, rho_d_init + + +@pytest.mark.parametrize("pair_of_spaces", ["same", "diff"]) +def test_mean_mixing_ratio(tmpdir, pair_of_spaces): + + # Setup and run + dirname = str(tmpdir) + + stepper, m_X_0, rho_d_0 = \ + setup_mean_mixing_ratio(dirname, pair_of_spaces) + + # Run for two timesteps + stepper.run(t=0, tmax=4) + m_X = stepper.fields("m_X") + rho_d = stepper.fields("rho_d") + + # Check that the mixing ratio has no negative values + assert all(m_X_0 >= 0.0), "mean mixing ratio field has not ensured non-negativity" \ No newline at end of file From fa1062dc6163b2e3a313252e79058ba1fbb54cd1 Mon Sep 17 00:00:00 2001 From: Tim Andrews Date: Sun, 29 Dec 2024 16:29:19 +0000 Subject: [PATCH 2/8] create new mixed space for mean mixing ratio --- gusto/spatial_methods/augmentation.py | 124 ++++++++++++++++++++++++-- 1 file changed, 117 insertions(+), 7 deletions(-) diff --git a/gusto/spatial_methods/augmentation.py b/gusto/spatial_methods/augmentation.py index 8e5fbc52e..5a5807d7e 100644 --- a/gusto/spatial_methods/augmentation.py +++ b/gusto/spatial_methods/augmentation.py @@ -11,10 +11,12 @@ transpose, nabla_grad, outer, dS, dS_h, dS_v, sign, jump, div, Constant, sqrt, cross, curl, FunctionSpace, assemble, DirichletBC ) -from firedrake.fml import subject +from firedrake.fml import ( + subject, all_terms, replace_subject, keep, replace_test_function +) from gusto import ( time_derivative, transport, transporting_velocity, TransportEquationType, - logger + logger, prognostic, mass_weighted ) @@ -238,7 +240,7 @@ def update(self, x_in_mixed): self.x_in.subfunctions[1].assign(self.Z_in) -#class MeanMixingRatio(Augmentation): +class MeanMixingRatio(Augmentation): """ This augments a transport problem involving a mixing ratio to include a mean mixing ratio field. This enables posivity to be @@ -251,12 +253,120 @@ def update(self, x_in_mixed): are to have augmented mean mixing ratio fields. OR, keep as a single mixing ratio, but define multiple augmentations? + START with just a single. """ - # def __init__( - # self, domain, eqns, mX_name - # ): + def __init__( + self, domain, eqns, mX_name + ): + + self.eqns = eqns + exist_spaces = eqns.spaces + self.idx_orig = len(exist_spaces) + mean_idx = self.idx_orig # Extract the mixing ratio in question: - # field_idx = self.eqns.field_names.index(mX_name) + mX_idx = eqns.field_names.index(mX_name) + + # Define the mean mixing ratio on the DG0 space + DG0 = FunctionSpace(domain.mesh, "DG", 0) + + # Set up the scheme for the mean mixing ratio + + mean_mX = Function(DG0) + mean_space = DG0 + exist_spaces.append(mean_space) + + self.fs = MixedFunctionSpace(exist_spaces) + self.X = Function(self.fs) + self.tests = TestFunctions(self.fs) + + self.x_in = Function(self.fs) + self.x_out = Function(self.fs) + + # Compute the new mean mass weighted term, + # IF this is conservatively transported. + mX_idx = eqns.field_names.index(mX_name) + + #mean_mass = + + # Now, extract the existing residual: + old_residual = eqns.residual + + # Extract terms relating to the mixing ratio of interest + mX_residual = old_residual.label_map( + lambda t: t.get(prognostic) == mX_name, + map_if_true=keep + ) + + # Replace trial and test functions with the new mixed + # function space + # Does this work is the subject is mass-weighted??? + for idx in range(self.idx_orig): + field = eqns.field_names[idx] + # Seperate logic if mass-weighted or not? + print(idx) + print(field) + + + old_residual = old_residual.label_map( + lambda t: t.get(prognostic) == field and not t.has_label(mass_weighted), + map_if_true=replace_subject(self.X[idx], old_idx=idx) + ) + old_residual = old_residual.label_map( + lambda t: t.get(prognostic) == field and not t.has_label(mass_weighted), + map_if_true=replace_test_function(self.tests[idx], old_idx=idx) + ) + + # Define the mean mixing ratio residual + mean_residual = mX_residual.label_map( + lambda t: t.has_label(mass_weighted), + #map_if_true=replace_subject(mean_mass, old_idx=mX_idx), + map_if_false=replace_subject(self.X[mean_idx], old_idx = mX_idx) + ) + + mean_residual = mean_residual.label_map( + lambda t: t.has_label(mass_weighted), + map_if_false=replace_test_function(self.tests[mean_idx], old_idx=mX_idx) + ) + + self.residual = old_residual + mean_residual + + self.bcs = [] + + + def pre_apply(self, x_in): + """ + Sets the original fields, i.e. not the mean mixing ratios + + Args: + x_in (:class:`Function`): The input fields + """ + + #for idx, field in enumerate(self.eqn.field_names): + # self.x_in.subfunctions[idx].assign(x_in.subfunctions[idx]) + for idx in range(self.idx_orig): + self.x_in.subfunctions[idx].assign(x_in.subfunctions[idx]) + + + def post_apply(self, x_out): + """ + Sets the output fields, i.e. not the mean mixing ratios + + Args: + x_out (:class:`Function`): The output fields + """ + + for idx, field in enumerate(self.eqn.field_names): + x_out.subfunctions[idx].assign(self.x_out.subfunctions[idx]) + + def update(self, x_in_mixed): + """ + ... + + Args: + x_in_mixed (:class:`Function`): The mixed function to update. + """ + + pass \ No newline at end of file From e9b05a285f58ea1d8885083518a41100d384c822 Mon Sep 17 00:00:00 2001 From: Tim Andrews Date: Thu, 2 Jan 2025 16:25:44 +0000 Subject: [PATCH 3/8] set the mean mixing ratio augmentation residual --- gusto/spatial_methods/augmentation.py | 107 ++++++++++++++++++++++---- 1 file changed, 93 insertions(+), 14 deletions(-) diff --git a/gusto/spatial_methods/augmentation.py b/gusto/spatial_methods/augmentation.py index 5a5807d7e..9734bf21a 100644 --- a/gusto/spatial_methods/augmentation.py +++ b/gusto/spatial_methods/augmentation.py @@ -12,7 +12,8 @@ Constant, sqrt, cross, curl, FunctionSpace, assemble, DirichletBC ) from firedrake.fml import ( - subject, all_terms, replace_subject, keep, replace_test_function + subject, all_terms, replace_subject, keep, replace_test_function, + replace_trial_function, drop ) from gusto import ( time_derivative, transport, transporting_velocity, TransportEquationType, @@ -274,7 +275,7 @@ def __init__( # Set up the scheme for the mean mixing ratio - mean_mX = Function(DG0) + mean_mX = Function(DG0, name='mean_mX') mean_space = DG0 exist_spaces.append(mean_space) @@ -282,6 +283,10 @@ def __init__( self.X = Function(self.fs) self.tests = TestFunctions(self.fs) + print(self.X) + + self.bcs = [] + self.x_in = Function(self.fs) self.x_out = Function(self.fs) @@ -289,17 +294,91 @@ def __init__( # IF this is conservatively transported. mX_idx = eqns.field_names.index(mX_name) - #mean_mass = + old_residual = eqns.residual + + mean_residual = old_residual.label_map( + lambda t: t.get(prognostic) == mX_name, + map_if_false=drop + ) + + # Replace trial functions with those in the new mixed function space + for term in eqns.residual: + print('\n') + print(term.form) + for idx in range(self.idx_orig): + field = eqns.field_names[idx] + # Seperate logic if mass-weighted or not? + print(idx) + print(field) + + prog = split(self.X)[idx] + + print('\n residual before change') + print(old_residual.form) + old_residual = old_residual.label_map( + lambda t: t.get(prognostic) == field and not t.has_label(mass_weighted), + map_if_true=replace_subject(self.X, old_idx=idx, new_idx = idx) + ) + old_residual = old_residual.label_map( + lambda t: t.get(prognostic) == field and not t.has_label(mass_weighted), + map_if_true=replace_test_function(self.tests, old_idx=idx, new_idx=idx) + ) + print('\n residual after change') + print(old_residual.form) + + #old_residual = old_residual.label_map( + # lambda t: t.get(prognostic) == field and not t.has_label(mass_weighted), + # map_if_true=replace_subject(self.X[idx], old_idx=idx) + #) + #old_residual = old_residual.label_map( + # lambda t: t.get(prognostic) == field and not t.has_label(mass_weighted), + # map_if_true=replace_test_function(self.tests[idx], old_idx=idx) + #) + + # Define the mean mixing ratio residual + #mean_residual = mX_residual.label_map( + # lambda t: t.has_label(mass_weighted), + #map_if_true=replace_subject(mean_mass, old_idx=mX_idx), + # map_if_false=replace_subject(self.X[mean_idx], old_idx = mX_idx) + #) + + print('\n mean mX residual before change') + print(mean_residual.form) + mean_residual = mean_residual.label_map( + all_terms, + replace_subject(self.X, old_idx=mX_idx, new_idx = mean_idx) + ) + mean_residual = mean_residual.label_map( + all_terms, + replace_test_function(self.tests, old_idx=mX_idx, new_idx = mean_idx) + ) + print('\n mean mX residual after change') + print(mean_residual.form) + + # Form the new residual + self.residual = old_residual + mean_residual + + print('\n full residual') + print(self.residual.form) + + + + def setup_residual(self): + # Update the residual # Now, extract the existing residual: old_residual = eqns.residual + print(old_residual.form) + # Extract terms relating to the mixing ratio of interest mX_residual = old_residual.label_map( lambda t: t.get(prognostic) == mX_name, - map_if_true=keep + map_if_false=drop ) + print(mX_residual.form) + # Replace trial and test functions with the new mixed # function space # Does this work is the subject is mass-weighted??? @@ -309,15 +388,16 @@ def __init__( print(idx) print(field) + prog = split(self.X)[idx] - old_residual = old_residual.label_map( - lambda t: t.get(prognostic) == field and not t.has_label(mass_weighted), - map_if_true=replace_subject(self.X[idx], old_idx=idx) - ) - old_residual = old_residual.label_map( - lambda t: t.get(prognostic) == field and not t.has_label(mass_weighted), - map_if_true=replace_test_function(self.tests[idx], old_idx=idx) - ) + #old_residual = old_residual.label_map( + # lambda t: t.get(prognostic) == field and not t.has_label(mass_weighted), + # map_if_true=replace_subject(self.X[idx], old_idx=idx) + #) + #old_residual = old_residual.label_map( + # lambda t: t.get(prognostic) == field and not t.has_label(mass_weighted), + # map_if_true=replace_test_function(self.tests[idx], old_idx=idx) + #) # Define the mean mixing ratio residual mean_residual = mX_residual.label_map( @@ -331,10 +411,9 @@ def __init__( map_if_false=replace_test_function(self.tests[mean_idx], old_idx=mX_idx) ) + # Form the new residual self.residual = old_residual + mean_residual - self.bcs = [] - def pre_apply(self, x_in): """ From 9adf64e223779fa357e435a184bfe6d339959706 Mon Sep 17 00:00:00 2001 From: Tim Andrews Date: Fri, 3 Jan 2025 15:42:27 +0000 Subject: [PATCH 4/8] more augmentation changes --- gusto/spatial_methods/augmentation.py | 77 +++++++++---------------- gusto/timestepping/split_timestepper.py | 10 ++++ 2 files changed, 36 insertions(+), 51 deletions(-) diff --git a/gusto/spatial_methods/augmentation.py b/gusto/spatial_methods/augmentation.py index 9734bf21a..c0d59098b 100644 --- a/gusto/spatial_methods/augmentation.py +++ b/gusto/spatial_methods/augmentation.py @@ -19,6 +19,7 @@ time_derivative, transport, transporting_velocity, TransportEquationType, logger, prognostic, mass_weighted ) +import copy class Augmentation(object, metaclass=ABCMeta): @@ -76,6 +77,8 @@ def __init__( self, domain, eqns, transpose_commutator=True, supg=False ): + self.name = 'vorticity' + V_vel = domain.spaces('HDiv') V_vort = domain.spaces('H1') @@ -261,6 +264,11 @@ def __init__( self, domain, eqns, mX_name ): + self.name = 'mean_mixing_ratio' + self.mX_name = mX_name + self.mean_name = 'mean_'+mX_name + print(self.mean_name) + self.eqns = eqns exist_spaces = eqns.spaces @@ -275,7 +283,7 @@ def __init__( # Set up the scheme for the mean mixing ratio - mean_mX = Function(DG0, name='mean_mX') + mean_mX = Function(DG0, name=self.mean_name) mean_space = DG0 exist_spaces.append(mean_space) @@ -300,6 +308,7 @@ def __init__( lambda t: t.get(prognostic) == mX_name, map_if_false=drop ) + mean_residual = prognostic.update_value(mean_residual, self.mean_name) # Replace trial functions with those in the new mixed function space for term in eqns.residual: @@ -362,58 +371,24 @@ def __init__( print('\n full residual') print(self.residual.form) - - - def setup_residual(self): - # Update the residual - # Now, extract the existing residual: - old_residual = eqns.residual - - print(old_residual.form) - - # Extract terms relating to the mixing ratio of interest - mX_residual = old_residual.label_map( - lambda t: t.get(prognostic) == mX_name, - map_if_false=drop - ) - - print(mX_residual.form) - - # Replace trial and test functions with the new mixed - # function space - # Does this work is the subject is mass-weighted??? - for idx in range(self.idx_orig): - field = eqns.field_names[idx] - # Seperate logic if mass-weighted or not? - print(idx) - print(field) - - prog = split(self.X)[idx] - - #old_residual = old_residual.label_map( - # lambda t: t.get(prognostic) == field and not t.has_label(mass_weighted), - # map_if_true=replace_subject(self.X[idx], old_idx=idx) - #) - #old_residual = old_residual.label_map( - # lambda t: t.get(prognostic) == field and not t.has_label(mass_weighted), - # map_if_true=replace_test_function(self.tests[idx], old_idx=idx) - #) - - # Define the mean mixing ratio residual - mean_residual = mX_residual.label_map( - lambda t: t.has_label(mass_weighted), - #map_if_true=replace_subject(mean_mass, old_idx=mX_idx), - map_if_false=replace_subject(self.X[mean_idx], old_idx = mX_idx) - ) + print('yoyoyoy') - mean_residual = mean_residual.label_map( - lambda t: t.has_label(mass_weighted), - map_if_false=replace_test_function(self.tests[mean_idx], old_idx=mX_idx) - ) - - # Form the new residual - self.residual = old_residual + mean_residual + for term in self.residual: + print(term.get(prognostic)) + def setup_transport(self, spatial_methods): + # Copy spatial method for the mixing ratio onto the + # mean mixing ratio. + mX_spatial_method = next(method for method in spatial_methods if method.variable == self.mX_name) + + mean_spatial_method = copy.copy(mX_spatial_method) + mean_spatial_method.variable = self.mean_name + self.spatial_methods = copy.copy(spatial_methods) + self.spatial_methods.append(mean_spatial_method) + for method in self.spatial_methods: + print(method.variable) + #method.equation.residual = self.residual + print(len(method.equation.residual)) def pre_apply(self, x_in): """ diff --git a/gusto/timestepping/split_timestepper.py b/gusto/timestepping/split_timestepper.py index 2006c73ac..5d9886436 100644 --- a/gusto/timestepping/split_timestepper.py +++ b/gusto/timestepping/split_timestepper.py @@ -296,7 +296,17 @@ def transporting_velocity(self): return self.fields('u') def setup_scheme(self): + print('Setting up base equation') self.setup_equation(self.equation) + + # If there is an augmentation, set up these transport terms + if self.scheme.augmentation is not None: + if self.scheme.augmentation.name == 'mean_mixing_ratio': + self.scheme.augmentation.setup_transport(self.spatial_methods) + print('Setting up augmented equation') + self.setup_equation(self.scheme.augmentation) + + # Go through and label all non-physics terms with a "dynamics" label dynamics = Label('dynamics') self.equation.label_terms(lambda t: not any(t.has_label(time_derivative, physics_label)), dynamics) From 97b8917f250ee91da31532f98cc8a1678cd5f82d Mon Sep 17 00:00:00 2001 From: Tim Andrews Date: Tue, 7 Jan 2025 20:27:03 +0000 Subject: [PATCH 5/8] implementation for a single mixing ratio --- gusto/spatial_methods/augmentation.py | 204 ++++++++++++++++++------ gusto/timestepping/split_timestepper.py | 4 +- 2 files changed, 160 insertions(+), 48 deletions(-) diff --git a/gusto/spatial_methods/augmentation.py b/gusto/spatial_methods/augmentation.py index c0d59098b..740afe31d 100644 --- a/gusto/spatial_methods/augmentation.py +++ b/gusto/spatial_methods/augmentation.py @@ -9,7 +9,8 @@ LinearVariationalProblem, LinearVariationalSolver, lhs, rhs, dot, ds_b, ds_v, ds_t, ds, FacetNormal, TestFunction, TrialFunction, transpose, nabla_grad, outer, dS, dS_h, dS_v, sign, jump, div, - Constant, sqrt, cross, curl, FunctionSpace, assemble, DirichletBC + Constant, sqrt, cross, curl, FunctionSpace, assemble, DirichletBC, + Projector ) from firedrake.fml import ( subject, all_terms, replace_subject, keep, replace_test_function, @@ -19,6 +20,7 @@ time_derivative, transport, transporting_velocity, TransportEquationType, logger, prognostic, mass_weighted ) +from gusto.spatial_methods.transport_methods import DGUpwind import copy @@ -269,17 +271,26 @@ def __init__( self.mean_name = 'mean_'+mX_name print(self.mean_name) - self.eqns = eqns + self.eqn_orig = eqns + self.domain=domain exist_spaces = eqns.spaces self.idx_orig = len(exist_spaces) mean_idx = self.idx_orig + self.mean_idx = mean_idx # Extract the mixing ratio in question: mX_idx = eqns.field_names.index(mX_name) + self.mX_idx = mX_idx # Define the mean mixing ratio on the DG0 space DG0 = FunctionSpace(domain.mesh, "DG", 0) + self.DG0 = Function(DG0) + mX_space = eqns.spaces[mean_idx] + + self.mX_in = Function(mX_space) + self.mean_in = Function(mean_space) + self.compute_mean = Projector(mX_space, DG0) # Set up the scheme for the mean mixing ratio @@ -293,48 +304,57 @@ def __init__( print(self.X) - self.bcs = [] + self.bcs = None self.x_in = Function(self.fs) self.x_out = Function(self.fs) # Compute the new mean mass weighted term, # IF this is conservatively transported. - mX_idx = eqns.field_names.index(mX_name) - old_residual = eqns.residual + #old_residual = eqns.residual - mean_residual = old_residual.label_map( - lambda t: t.get(prognostic) == mX_name, - map_if_false=drop - ) - mean_residual = prognostic.update_value(mean_residual, self.mean_name) + #mean_residual = old_residual.label_map( + # lambda t: t.get(prognostic) == mX_name, + # map_if_false=drop + #) + #mean_residual = prognostic.update_value(mean_residual, self.mean_name) # Replace trial functions with those in the new mixed function space - for term in eqns.residual: - print('\n') - print(term.form) + #for term in eqns.residual: + # print('\n') + # print(term.form) - for idx in range(self.idx_orig): - field = eqns.field_names[idx] - # Seperate logic if mass-weighted or not? - print(idx) - print(field) - - prog = split(self.X)[idx] + # If I do this later on with the transport terms, maybe I don't need to do this here? - print('\n residual before change') - print(old_residual.form) - old_residual = old_residual.label_map( - lambda t: t.get(prognostic) == field and not t.has_label(mass_weighted), - map_if_true=replace_subject(self.X, old_idx=idx, new_idx = idx) - ) - old_residual = old_residual.label_map( - lambda t: t.get(prognostic) == field and not t.has_label(mass_weighted), - map_if_true=replace_test_function(self.tests, old_idx=idx, new_idx=idx) - ) - print('\n residual after change') - print(old_residual.form) + #for idx in range(self.idx_orig): + # field = eqns.field_names[idx] + # Seperate logic if mass-weighted or not? + # print(idx) + # print(field) + + # prog = split(self.X)[idx] + + # print('\n residual term before change') + # print(old_residual.label_map( + # lambda t: t.get(prognostic) == field and not t.has_label(mass_weighted), + # map_if_false=drop + # ).form) + + # old_residual = old_residual.label_map( + # lambda t: t.get(prognostic) == field and not t.has_label(mass_weighted), + # map_if_true=replace_subject(self.X, old_idx=idx, new_idx = idx) + # ) + # old_residual = old_residual.label_map( + # lambda t: t.get(prognostic) == field and not t.has_label(mass_weighted), + # map_if_true=replace_test_function(self.tests, old_idx=idx, new_idx=idx) + # ) + + # print('\n residual term after change') + # print(old_residual.label_map( + # lambda t: t.get(prognostic) == field and not t.has_label(mass_weighted), + # map_if_false=drop + # ).form) #old_residual = old_residual.label_map( # lambda t: t.get(prognostic) == field and not t.has_label(mass_weighted), @@ -352,15 +372,87 @@ def __init__( # map_if_false=replace_subject(self.X[mean_idx], old_idx = mX_idx) #) - print('\n mean mX residual before change') + #print('\n mean mX residual before change') + #print(mean_residual.form) + #mean_residual = mean_residual.label_map( + # all_terms, + # replace_subject(self.X, old_idx=mX_idx, new_idx = mean_idx) + #) + #mean_residual = mean_residual.label_map( + # all_terms, + # replace_test_function(self.tests, old_idx=mX_idx, new_idx = mean_idx) + #) + #print('\n mean mX residual after change') + #print(mean_residual.form) + + # Form the new residual + #self.residual = old_residual + mean_residual + + #print('\n full residual') + #print(self.residual.form) + + #print('yoyoyoy') + + #for term in self.residual: + # print(term.get(prognostic)) + + def setup_transport(self, spatial_methods, equation): + # Copy spatial method for the mixing ratio onto the + # mean mixing ratio. + + old_residual = equation.residual + + # Copy the mean mixing ratio residual terms: + mean_residual = old_residual.label_map( + lambda t: t.get(prognostic) == self.mX_name, + map_if_false=drop + ) + mean_residual = prognostic.update_value(mean_residual, self.mean_name) + + print('\n in setup_transport') + + # Replace the tests and trial functions for all terms + # of the fields in the original equation + for idx in range(self.idx_orig): + field = self.eqn_orig.field_names[idx] + # Seperate logic if mass-weighted or not? + print('\n', idx) + print(field) + + prog = split(self.X)[idx] + + print('\n residual term before change') + print(old_residual.label_map( + lambda t: t.get(prognostic) == field, + map_if_false=drop + ).form) + + old_residual = old_residual.label_map( + lambda t: t.get(prognostic) == field, + map_if_true=replace_subject(self.X, old_idx=idx, new_idx = idx) + ) + old_residual = old_residual.label_map( + lambda t: t.get(prognostic) == field, + map_if_true=replace_test_function(self.tests, old_idx=idx, new_idx=idx) + ) + print('\n residual term after change') + print(old_residual.label_map( + lambda t: t.get(prognostic) == field, + map_if_false=drop + ).form) + + print('\n now setting up mean mixing ratio residual terms') + + + print('\n mean mX residual after change') print(mean_residual.form) mean_residual = mean_residual.label_map( all_terms, - replace_subject(self.X, old_idx=mX_idx, new_idx = mean_idx) + replace_subject(self.X, old_idx=self.mX_idx, new_idx=self.mean_idx) ) mean_residual = mean_residual.label_map( all_terms, - replace_test_function(self.tests, old_idx=mX_idx, new_idx = mean_idx) + replace_test_function(self.tests, old_idx=self.mX_idx, new_idx=self.mean_idx) ) print('\n mean mX residual after change') print(mean_residual.form) @@ -368,17 +460,13 @@ def __init__( # Form the new residual self.residual = old_residual + mean_residual - print('\n full residual') - print(self.residual.form) + #Check these two forms + print('\n Original equation with residual of length, ', len(equation.residual)) + print('\n Augmented equation with residual of length, ', len(self.residual)) - print('yoyoyoy') - for term in self.residual: - print(term.get(prognostic)) - def setup_transport(self, spatial_methods): - # Copy spatial method for the mixing ratio onto the - # mean mixing ratio. + def setup_transport_old(self, spatial_methods): mX_spatial_method = next(method for method in spatial_methods if method.variable == self.mX_name) mean_spatial_method = copy.copy(mX_spatial_method) @@ -387,9 +475,19 @@ def setup_transport(self, spatial_methods): self.spatial_methods.append(mean_spatial_method) for method in self.spatial_methods: print(method.variable) - #method.equation.residual = self.residual + method.equation.residual = self.residual + print(method.form.form) print(len(method.equation.residual)) + # Alternatively, redo all the spatial methods + # using the new mixed function space. + # So, want to make a new list of spatial methods + new_spatial_methods = [] + for method in self.spatial_methods: + # Determine the tye of transport method: + new_method = DGUpwind(self, method.variable) + new_spatial_methods.append(new_method) + def pre_apply(self, x_in): """ Sets the original fields, i.e. not the mean mixing ratios @@ -403,6 +501,12 @@ def pre_apply(self, x_in): for idx in range(self.idx_orig): self.x_in.subfunctions[idx].assign(x_in.subfunctions[idx]) + # Set the mean mixing ratio to be zero, just because + #DG0 = FunctionSpace(self.domain.mesh, "DG", 0) + #mean_mX = Function(DG0, name=self.mean_name) + + #self.x_in.subfunctions[self.mean_idx].assign(mean_mX) + def post_apply(self, x_out): """ @@ -412,7 +516,7 @@ def post_apply(self, x_out): x_out (:class:`Function`): The output fields """ - for idx, field in enumerate(self.eqn.field_names): + for idx in range(self.idx_orig): x_out.subfunctions[idx].assign(self.x_out.subfunctions[idx]) def update(self, x_in_mixed): @@ -422,5 +526,13 @@ def update(self, x_in_mixed): Args: x_in_mixed (:class:`Function`): The mixed function to update. """ - + + # Compute the mean mixing ratio + # How do I do this? + self.mX_in.assign(x_in_mixed[self.mX_idx]) + + # Project this into the lowest order space: + self.compute_mean.project() + + self.x_in.subfunctions[self.mean_idx].assign(self.mean_out) pass \ No newline at end of file diff --git a/gusto/timestepping/split_timestepper.py b/gusto/timestepping/split_timestepper.py index 5d9886436..98b9cb841 100644 --- a/gusto/timestepping/split_timestepper.py +++ b/gusto/timestepping/split_timestepper.py @@ -300,11 +300,11 @@ def setup_scheme(self): self.setup_equation(self.equation) # If there is an augmentation, set up these transport terms + # Or, perhaps set up the whole residual now ... ? if self.scheme.augmentation is not None: if self.scheme.augmentation.name == 'mean_mixing_ratio': - self.scheme.augmentation.setup_transport(self.spatial_methods) + self.scheme.augmentation.setup_transport(self.spatial_methods, self.equation) print('Setting up augmented equation') - self.setup_equation(self.scheme.augmentation) # Go through and label all non-physics terms with a "dynamics" label From bb5cbe133d812994f52a6ff45375095802c67071 Mon Sep 17 00:00:00 2001 From: Tim Andrews Date: Thu, 9 Jan 2025 17:02:20 +0000 Subject: [PATCH 6/8] first version of mean mixing ratio working --- gusto/spatial_methods/augmentation.py | 153 ++++++------------------ gusto/timestepping/split_timestepper.py | 19 ++- 2 files changed, 49 insertions(+), 123 deletions(-) diff --git a/gusto/spatial_methods/augmentation.py b/gusto/spatial_methods/augmentation.py index 740afe31d..1c577c877 100644 --- a/gusto/spatial_methods/augmentation.py +++ b/gusto/spatial_methods/augmentation.py @@ -255,7 +255,7 @@ class MeanMixingRatio(Augmentation): Args: domain (:class:`Domain`): The domain object. eqns (:class:`PrognosticEquationSet`): The overarching equation set. - mixing_ratio (:class: list): List of mixing ratios that + mixing_ratio (:class: list): A list of mixing ratios that are to have augmented mean mixing ratio fields. OR, keep as a single mixing ratio, but define multiple augmentations? @@ -267,15 +267,16 @@ def __init__( ): self.name = 'mean_mixing_ratio' + self.mX_name = mX_name self.mean_name = 'mean_'+mX_name - print(self.mean_name) self.eqn_orig = eqns self.domain=domain exist_spaces = eqns.spaces - self.idx_orig = len(exist_spaces) + + # Change this to adjust for a list mean_idx = self.idx_orig self.mean_idx = mean_idx @@ -285,12 +286,14 @@ def __init__( # Define the mean mixing ratio on the DG0 space DG0 = FunctionSpace(domain.mesh, "DG", 0) - self.DG0 = Function(DG0) - mX_space = eqns.spaces[mean_idx] + mX_space = eqns.spaces[mX_idx] + + # But, what if the mixing ratios are in + # different function spaces??? self.mX_in = Function(mX_space) - self.mean_in = Function(mean_space) - self.compute_mean = Projector(mX_space, DG0) + self.mean = Function(DG0) + self.compute_mean = Projector(self.mX_in, self.mean) # Set up the scheme for the mean mixing ratio @@ -302,101 +305,13 @@ def __init__( self.X = Function(self.fs) self.tests = TestFunctions(self.fs) - print(self.X) - self.bcs = None self.x_in = Function(self.fs) self.x_out = Function(self.fs) - # Compute the new mean mass weighted term, - # IF this is conservatively transported. - - #old_residual = eqns.residual - - #mean_residual = old_residual.label_map( - # lambda t: t.get(prognostic) == mX_name, - # map_if_false=drop - #) - #mean_residual = prognostic.update_value(mean_residual, self.mean_name) - - # Replace trial functions with those in the new mixed function space - #for term in eqns.residual: - # print('\n') - # print(term.form) - - # If I do this later on with the transport terms, maybe I don't need to do this here? - - #for idx in range(self.idx_orig): - # field = eqns.field_names[idx] - # Seperate logic if mass-weighted or not? - # print(idx) - # print(field) - - # prog = split(self.X)[idx] - - # print('\n residual term before change') - # print(old_residual.label_map( - # lambda t: t.get(prognostic) == field and not t.has_label(mass_weighted), - # map_if_false=drop - # ).form) - - # old_residual = old_residual.label_map( - # lambda t: t.get(prognostic) == field and not t.has_label(mass_weighted), - # map_if_true=replace_subject(self.X, old_idx=idx, new_idx = idx) - # ) - # old_residual = old_residual.label_map( - # lambda t: t.get(prognostic) == field and not t.has_label(mass_weighted), - # map_if_true=replace_test_function(self.tests, old_idx=idx, new_idx=idx) - # ) - - # print('\n residual term after change') - # print(old_residual.label_map( - # lambda t: t.get(prognostic) == field and not t.has_label(mass_weighted), - # map_if_false=drop - # ).form) - - #old_residual = old_residual.label_map( - # lambda t: t.get(prognostic) == field and not t.has_label(mass_weighted), - # map_if_true=replace_subject(self.X[idx], old_idx=idx) - #) - #old_residual = old_residual.label_map( - # lambda t: t.get(prognostic) == field and not t.has_label(mass_weighted), - # map_if_true=replace_test_function(self.tests[idx], old_idx=idx) - #) - - # Define the mean mixing ratio residual - #mean_residual = mX_residual.label_map( - # lambda t: t.has_label(mass_weighted), - #map_if_true=replace_subject(mean_mass, old_idx=mX_idx), - # map_if_false=replace_subject(self.X[mean_idx], old_idx = mX_idx) - #) - - #print('\n mean mX residual before change') - #print(mean_residual.form) - #mean_residual = mean_residual.label_map( - # all_terms, - # replace_subject(self.X, old_idx=mX_idx, new_idx = mean_idx) - #) - #mean_residual = mean_residual.label_map( - # all_terms, - # replace_test_function(self.tests, old_idx=mX_idx, new_idx = mean_idx) - #) - #print('\n mean mX residual after change') - #print(mean_residual.form) - # Form the new residual - #self.residual = old_residual + mean_residual - - #print('\n full residual') - #print(self.residual.form) - - #print('yoyoyoy') - - #for term in self.residual: - # print(term.get(prognostic)) - - def setup_transport(self, spatial_methods, equation): + def setup_residual(self, spatial_methods, equation): # Copy spatial method for the mixing ratio onto the # mean mixing ratio. @@ -416,16 +331,16 @@ def setup_transport(self, spatial_methods, equation): for idx in range(self.idx_orig): field = self.eqn_orig.field_names[idx] # Seperate logic if mass-weighted or not? - print('\n', idx) - print(field) + #print('\n', idx) + #print(field) prog = split(self.X)[idx] - print('\n residual term before change') - print(old_residual.label_map( - lambda t: t.get(prognostic) == field, - map_if_false=drop - ).form) + #print('\n residual term before change') + #print(old_residual.label_map( + # lambda t: t.get(prognostic) == field, + # map_if_false=drop + #).form) old_residual = old_residual.label_map( lambda t: t.get(prognostic) == field, @@ -435,17 +350,17 @@ def setup_transport(self, spatial_methods, equation): lambda t: t.get(prognostic) == field, map_if_true=replace_test_function(self.tests, old_idx=idx, new_idx=idx) ) - print('\n residual term after change') - print(old_residual.label_map( - lambda t: t.get(prognostic) == field, - map_if_false=drop - ).form) + #print('\n residual term after change') + #print(old_residual.label_map( + # lambda t: t.get(prognostic) == field, + # map_if_false=drop + #).form) - print('\n now setting up mean mixing ratio residual terms') + #print('\n now setting up mean mixing ratio residual terms') - print('\n mean mX residual after change') - print(mean_residual.form) + #print('\n mean mX residual after change') + #print(mean_residual.form) mean_residual = mean_residual.label_map( all_terms, replace_subject(self.X, old_idx=self.mX_idx, new_idx=self.mean_idx) @@ -454,15 +369,17 @@ def setup_transport(self, spatial_methods, equation): all_terms, replace_test_function(self.tests, old_idx=self.mX_idx, new_idx=self.mean_idx) ) - print('\n mean mX residual after change') - print(mean_residual.form) + #print('\n mean mX residual after change') + #print(mean_residual.form) # Form the new residual - self.residual = old_residual + mean_residual + residual = old_residual + mean_residual + self.residual = subject(residual, self.X) #Check these two forms - print('\n Original equation with residual of length, ', len(equation.residual)) - print('\n Augmented equation with residual of length, ', len(self.residual)) + #print('\n Original equation with residual of length, ', len(equation.residual)) + #print('\n Augmented equation with residual of length, ', len(self.residual)) + @@ -529,10 +446,10 @@ def update(self, x_in_mixed): # Compute the mean mixing ratio # How do I do this? - self.mX_in.assign(x_in_mixed[self.mX_idx]) + self.mX_in.assign(x_in_mixed.subfunctions[self.mX_idx]) # Project this into the lowest order space: self.compute_mean.project() - self.x_in.subfunctions[self.mean_idx].assign(self.mean_out) + self.x_in.subfunctions[self.mean_idx].assign(self.mean) pass \ No newline at end of file diff --git a/gusto/timestepping/split_timestepper.py b/gusto/timestepping/split_timestepper.py index 98b9cb841..4738688d1 100644 --- a/gusto/timestepping/split_timestepper.py +++ b/gusto/timestepping/split_timestepper.py @@ -4,7 +4,7 @@ from firedrake.fml import Label, drop from pyop2.profiling import timed_stage from gusto.core import TimeLevelFields, StateFields -from gusto.core.labels import time_derivative, physics_label +from gusto.core.labels import time_derivative, physics_label, dynamics_label from gusto.time_discretisation.time_discretisation import ExplicitTimeDiscretisation from gusto.timestepping.timestepper import BaseTimestepper, Timestepper from numpy import ones @@ -299,13 +299,21 @@ def setup_scheme(self): print('Setting up base equation') self.setup_equation(self.equation) - # If there is an augmentation, set up these transport terms - # Or, perhaps set up the whole residual now ... ? + # If there is an augmentation, set up the residual now if self.scheme.augmentation is not None: if self.scheme.augmentation.name == 'mean_mixing_ratio': - self.scheme.augmentation.setup_transport(self.spatial_methods, self.equation) + self.scheme.augmentation.setup_residual(self.spatial_methods, self.equation) print('Setting up augmented equation') - + # Go through and label all non-physics terms with a "dynamics" label + dynamics = Label('dynamics') + self.scheme.augmentation.residual = self.scheme.augmentation.residual.label_map( + lambda t: not any(t.has_label(time_derivative, physics_label)), + map_if_true=lambda t: dynamics(t) + ) + print(len(self.scheme.augmentation.residual.label_map( + lambda t: t.has_label(dynamics), + map_if_false=drop + ))) # Go through and label all non-physics terms with a "dynamics" label dynamics = Label('dynamics') @@ -316,6 +324,7 @@ def setup_scheme(self): if self.io.output.log_courant: self.scheme.courant_max = self.io.courant_max + def setup_prescribed_expr(self, expr_func): """ Sets up the prescribed transporting velocity, through a python function From 965e15af9f0502ed644aac4f95c5946c87e85384 Mon Sep 17 00:00:00 2001 From: Tim Andrews Date: Wed, 15 Jan 2025 20:14:23 +0000 Subject: [PATCH 7/8] added a loopy kernel and limiter for the mean mixing ratio --- gusto/core/kernels.py | 48 +++++ gusto/spatial_methods/augmentation.py | 173 +++++++++++------- gusto/spatial_methods/limiters.py | 78 +++++++- .../explicit_runge_kutta.py | 2 + 4 files changed, 235 insertions(+), 66 deletions(-) diff --git a/gusto/core/kernels.py b/gusto/core/kernels.py index 6b78691dc..422b7456b 100644 --- a/gusto/core/kernels.py +++ b/gusto/core/kernels.py @@ -113,6 +113,54 @@ def apply(self, field, field_in): {"field": (field, WRITE), "field_in": (field_in, READ)}) +class MeanMixingRatioWeights(): + """ + Finds the lambda values for blending a mixing ratio and its + mean DG0 field in the MeanMixingRatioLimiter. + + First, each cell is looped over and the minimum value is computed + """ + + def __init__(self, V): + """ + Args: + V (:class:`FunctionSpace`): The space of the field to be clipped. + """ + # Using DG1-equispaced, with 4 DOFs per cell + shapes = {'nDOFs': V.finat_element.space_dimension(), + 'nDOFs_base': int(V.finat_element.space_dimension() / 4)} + domain = "{{[i]: 0 <= i < {nDOFs_base}}}".format(**shapes) + + instrs = (""" + min_value = 0.0 + for i + min_value = fmin(mX_field[i*4], mX_field[i*4+1]) + min_value = fmin(min_value, mX_field[i*4+2]) + min_value = fmin(min_value, mX_field[i*4+3]) + if min_value < 0.0 + lamda[i] = -min_value/(mean_field[i] - min_value) + else + lamda[i] = 0.0 + end + end + """) + + self._kernel = (domain, instrs) + + def apply(self, lamda, mX_field, mean_field): + """ + Performs the par loop. + + Args: + w (:class:`Function`): the field in which to store the weights. This + lives in the continuous target space. + """ + par_loop(self._kernel, dx, + {"lamda": (lamda, WRITE), + "mX_field": (mX_field, READ), + "mean_field": (mean_field, READ)}) + + class MinKernel(): """Finds the minimum DoF value of a field.""" diff --git a/gusto/spatial_methods/augmentation.py b/gusto/spatial_methods/augmentation.py index 1c577c877..e271061f0 100644 --- a/gusto/spatial_methods/augmentation.py +++ b/gusto/spatial_methods/augmentation.py @@ -20,9 +20,9 @@ time_derivative, transport, transporting_velocity, TransportEquationType, logger, prognostic, mass_weighted ) -from gusto.spatial_methods.transport_methods import DGUpwind +from gusto.spatial_methods.limiters import MeanLimiter, MixedFSLimiter import copy - +import numpy as np class Augmentation(object, metaclass=ABCMeta): """ @@ -55,6 +55,13 @@ def update(self, x_in_mixed): pass + def limit(self, x_in_mixed): + """ + Apply any special limiting as part of the augmentation + """ + + pass + class VorticityTransport(Augmentation): """ @@ -255,52 +262,64 @@ class MeanMixingRatio(Augmentation): Args: domain (:class:`Domain`): The domain object. eqns (:class:`PrognosticEquationSet`): The overarching equation set. - mixing_ratio (:class: list): A list of mixing ratios that - are to have augmented mean mixing ratio fields. - OR, keep as a single mixing ratio, but define - multiple augmentations? - START with just a single. + mX_names (:class: list): A list of mixing ratios that + require augmented mean mixing ratio fields. """ def __init__( - self, domain, eqns, mX_name + self, domain, eqns, mX_names ): self.name = 'mean_mixing_ratio' - - self.mX_name = mX_name - self.mean_name = 'mean_'+mX_name + self.mX_names = mX_names + self.mX_num = len(mX_names) + # Store information about original equation set self.eqn_orig = eqns - self.domain=domain + self.domain = domain exist_spaces = eqns.spaces self.idx_orig = len(exist_spaces) - # Change this to adjust for a list - mean_idx = self.idx_orig - self.mean_idx = mean_idx - - # Extract the mixing ratio in question: - mX_idx = eqns.field_names.index(mX_name) - self.mX_idx = mX_idx - # Define the mean mixing ratio on the DG0 space DG0 = FunctionSpace(domain.mesh, "DG", 0) - mX_space = eqns.spaces[mX_idx] - - # But, what if the mixing ratios are in - # different function spaces??? - - self.mX_in = Function(mX_space) - self.mean = Function(DG0) - self.compute_mean = Projector(self.mX_in, self.mean) - - # Set up the scheme for the mean mixing ratio - - mean_mX = Function(DG0, name=self.mean_name) - mean_space = DG0 - exist_spaces.append(mean_space) + # Set up fields and names for each mixing ratio + self.mean_names = [] + self.mean_idxs = [] + self.mX_idxs = [] + mX_spaces = [] + mean_spaces = [] + self.limiters = [] + #self.sublimiters = {} + + for i in range(self.mX_num): + mX_name = mX_names[i] + print(mX_names) + print(mX_name) + self.mean_names.append('mean_'+mX_name) + mean_spaces.append(DG0) + exist_spaces.append(DG0) + self.mean_idxs.append(self.idx_orig + i) + + # Extract the mixing ratio in question: + mX_idx = eqns.field_names.index(mX_name) + mX_spaces.append(eqns.spaces[mX_idx]) + self.mX_idxs.append(mX_idx) + + # Define a limiter + self.limiters.append(MeanLimiter(eqns.spaces[mX_idx])) + #self.sublimiters.update({mX_name: MeanLimiter(eqns.spaces[mX_idx])}) + + #self.limiter = MixedFSLimiter(self.eqn_orig, self.sublimiters) + #self.limiter = MixedFSLimiter(sublimiters) + + # Contruct projectors for computing the mean mixing ratios + self.mX_ins = [Function(mX_spaces[i]) for i in range(self.mX_num)] + self.mean_outs = [Function(mean_spaces[i]) for i in range(self.mX_num)] + self.compute_means = [Projector(self.mX_ins[i], self.mean_outs[i]) \ + for i in range(self.mX_num)] + + # Create the new mixed function space: self.fs = MixedFunctionSpace(exist_spaces) self.X = Function(self.fs) self.tests = TestFunctions(self.fs) @@ -315,14 +334,24 @@ def setup_residual(self, spatial_methods, equation): # Copy spatial method for the mixing ratio onto the # mean mixing ratio. - old_residual = equation.residual + orig_residual = equation.residual # Copy the mean mixing ratio residual terms: - mean_residual = old_residual.label_map( - lambda t: t.get(prognostic) == self.mX_name, - map_if_false=drop - ) - mean_residual = prognostic.update_value(mean_residual, self.mean_name) + for i in range(self.mX_num): + if i == 0: + mean_residual = orig_residual.label_map( + lambda t: t.get(prognostic) == self.mX_names[i], + map_if_false=drop + ) + mean_residual = prognostic.update_value(mean_residual, self.mean_names[i]) + else: + mean_residual_term = orig_residual.label_map( + lambda t: t.get(prognostic) == self.mX_names[i], + map_if_false=drop + ) + mean_residual_term = prognostic.update_value(mean_residual_term,\ + self.mean_names[i]) + mean_residual = mean_residual + mean_residual_term print('\n in setup_transport') @@ -334,7 +363,7 @@ def setup_residual(self, spatial_methods, equation): #print('\n', idx) #print(field) - prog = split(self.X)[idx] + #prog = split(self.X)[idx] #print('\n residual term before change') #print(old_residual.label_map( @@ -342,11 +371,11 @@ def setup_residual(self, spatial_methods, equation): # map_if_false=drop #).form) - old_residual = old_residual.label_map( + orig_residual = orig_residual.label_map( lambda t: t.get(prognostic) == field, map_if_true=replace_subject(self.X, old_idx=idx, new_idx = idx) ) - old_residual = old_residual.label_map( + orig_residual = orig_residual.label_map( lambda t: t.get(prognostic) == field, map_if_true=replace_test_function(self.tests, old_idx=idx, new_idx=idx) ) @@ -361,19 +390,25 @@ def setup_residual(self, spatial_methods, equation): #print('\n mean mX residual after change') #print(mean_residual.form) - mean_residual = mean_residual.label_map( - all_terms, - replace_subject(self.X, old_idx=self.mX_idx, new_idx=self.mean_idx) - ) - mean_residual = mean_residual.label_map( - all_terms, - replace_test_function(self.tests, old_idx=self.mX_idx, new_idx=self.mean_idx) - ) + + # Update the subject and test functions for the + # mean mixing ratios + for i in range(self.mX_num): + mean_residual = mean_residual.label_map( + all_terms, + replace_subject(self.X, old_idx=self.mX_idxs[i], new_idx=self.mean_idxs[i]) + ) + mean_residual = mean_residual.label_map( + all_terms, + replace_test_function(self.tests, old_idx=self.mX_idxs[i], new_idx=self.mean_idxs[i]) + ) + + #print('\n mean mX residual after change') #print(mean_residual.form) # Form the new residual - residual = old_residual + mean_residual + residual = orig_residual + mean_residual self.residual = subject(residual, self.X) #Check these two forms @@ -383,6 +418,7 @@ def setup_residual(self, spatial_methods, equation): + def setup_transport_old(self, spatial_methods): mX_spatial_method = next(method for method in spatial_methods if method.variable == self.mX_name) @@ -427,6 +463,7 @@ def pre_apply(self, x_in): def post_apply(self, x_out): """ + Apply the limiters. Sets the output fields, i.e. not the mean mixing ratios Args: @@ -438,18 +475,28 @@ def post_apply(self, x_out): def update(self, x_in_mixed): """ - ... + Compute the mean mixing ratio field by projecting the mixing + ratio from DG1 into DG0. + + SHouldn't this be a conservative projection??!! + This requires density fields... Args: x_in_mixed (:class:`Function`): The mixed function to update. """ - - # Compute the mean mixing ratio - # How do I do this? - self.mX_in.assign(x_in_mixed.subfunctions[self.mX_idx]) - - # Project this into the lowest order space: - self.compute_mean.project() - - self.x_in.subfunctions[self.mean_idx].assign(self.mean) - pass \ No newline at end of file + print('in update') + for i in range(self.mX_num): + self.mX_ins[i].assign(x_in_mixed.subfunctions[self.mX_idxs[i]]) + self.compute_means[i].project() + self.x_in.subfunctions[self.mean_idxs[i]].assign(self.mean_outs[i]) + + def limit(self, x_in_mixed): + # Ensure non-negativity by applying the blended limiter + for i in range(self.mX_num): + print('limiting within the augmentation') + mX_field = x_in_mixed.subfunctions[self.mX_idxs[i]] + mean_field = x_in_mixed.subfunctions[self.mean_idxs[i]] + print(np.min(x_in_mixed.subfunctions[self.mX_idxs[i]].dat.data)) + self.limiters[i].apply(mX_field, mean_field) + print(np.min(x_in_mixed.subfunctions[self.mX_idxs[i]].dat.data)) + #x_in_mixed.subfunctions[self.mX_idxs[i]].assign(mX_field) diff --git a/gusto/spatial_methods/limiters.py b/gusto/spatial_methods/limiters.py index 8a782a054..c04311540 100644 --- a/gusto/spatial_methods/limiters.py +++ b/gusto/spatial_methods/limiters.py @@ -6,14 +6,14 @@ """ from firedrake import (BrokenElement, Function, FunctionSpace, interval, - FiniteElement, TensorProductElement) + FiniteElement, TensorProductElement, Constant) from firedrake.slope_limiter.vertex_based_limiter import VertexBasedLimiter -from gusto.core.kernels import LimitMidpoints, ClipZero +from gusto.core.kernels import LimitMidpoints, ClipZero, MeanMixingRatioWeights import numpy as np __all__ = ["DG1Limiter", "ThetaLimiter", "NoLimiter", "ZeroLimiter", - "MixedFSLimiter"] + "MixedFSLimiter", "MeanLimiter"] class DG1Limiter(object): @@ -261,3 +261,75 @@ def apply(self, fields): for field, sublimiter in self.sublimiters.items(): field = fields.subfunctions[self.field_idxs[field]] sublimiter.apply(field) + +class MeanLimiter(object): + """ + A limiter for a mixing ratio that ensures non-negativity by blending + the mixing ratio field with that of a mean mixing ratio. The blending + factor is given by the DG0 function lamda. + """ + + def __init__(self, space): + """ + Args: + space: The mixed function space for the equation set + mX_field: The mixing ratio field + mean_field: The mean mixing ratio field + Raises: + ValueError: If the space is not appropriate for the limiter. + """ + + self.space = space + mesh = space.mesh() + + # check that space is DG1 + degree = space.ufl_element().degree() + if (space.ufl_element().sobolev_space.name != 'L2' + or ((type(degree) is tuple and np.any([deg != 1 for deg in degree])) + and degree != 1)): + raise NotImplementedError('MeanLimiter only implemented for mixing' + + 'ratios in the DG1 space') + + # Create equispaced DG1 space needed for limiting + if space.extruded: + cell = mesh._base_mesh.ufl_cell().cellname() + DG1_hori_elt = FiniteElement("DG", cell, 1, variant="equispaced") + DG1_vert_elt = FiniteElement("DG", interval, 1, variant="equispaced") + DG1_element = TensorProductElement(DG1_hori_elt, DG1_vert_elt) + else: + cell = mesh.ufl_cell().cellname() + DG1_element = FiniteElement("DG", cell, 1, variant="equispaced") + + DG1_equispaced = FunctionSpace(mesh, DG1_element) + print(DG1_equispaced.finat_element.space_dimension()) + + DG0 = FunctionSpace(mesh, 'DG', 0) + + self.lamda = Function(DG1_equispaced) + self.mX_field = Function(DG1_equispaced) + self.mean_field = Function(DG0) + + self._kernel = MeanMixingRatioWeights(self.space) + + def apply(self, mX_field, mean_field): + """ + The application of the limiter to the field. + + Args: + field (:class:`Function`): the field to apply the limiter to. + + Raises: + AssertionError: If the field is not in the correct space. + """ + + #self.field_old.interpolate(mX_field) + #self.mean_field.interpolate(mean_field) + + # Compute the weights, lamda: + self._kernel.apply(self.lamda, mX_field, mean_field) + + print('applying limiter') + #print(self.lamda.dat.data) + + # Compute the blended field + mX_field.interpolate((Constant(1.0) - self.lamda)*mX_field + self.lamda*mean_field) diff --git a/gusto/time_discretisation/explicit_runge_kutta.py b/gusto/time_discretisation/explicit_runge_kutta.py index 16732bd50..bbd37e565 100644 --- a/gusto/time_discretisation/explicit_runge_kutta.py +++ b/gusto/time_discretisation/explicit_runge_kutta.py @@ -477,6 +477,8 @@ def apply_cycle(self, x_out, x_in): for i in range(self.nStages): self.solve_stage(x_in, i) + if self.augmentation is not None: + self.augmentation.limit(self.x1) x_out.assign(self.x1) From f53d9ca1441cfdc40a8205be5e9773e0836a7915 Mon Sep 17 00:00:00 2001 From: Tim Andrews Date: Thu, 16 Jan 2025 17:31:48 +0000 Subject: [PATCH 8/8] correcting mean mixing ratio limiter --- gusto/core/kernels.py | 19 ++++---- gusto/spatial_methods/augmentation.py | 39 ++++++++++++++-- gusto/spatial_methods/limiters.py | 64 +++++++++++++++++++-------- 3 files changed, 92 insertions(+), 30 deletions(-) diff --git a/gusto/core/kernels.py b/gusto/core/kernels.py index 422b7456b..44ad8457a 100644 --- a/gusto/core/kernels.py +++ b/gusto/core/kernels.py @@ -10,7 +10,7 @@ """ from firedrake import dx -from firedrake.parloops import par_loop, READ, WRITE, MIN, MAX, op2 +from firedrake.parloops import par_loop, READ, WRITE, INC, MIN, MAX, op2 import numpy as np @@ -132,19 +132,20 @@ def __init__(self, V): domain = "{{[i]: 0 <= i < {nDOFs_base}}}".format(**shapes) instrs = (""" + min_value1 = 0.0 + min_value2 = 0.0 min_value = 0.0 + new_lamda = 0.0 for i - min_value = fmin(mX_field[i*4], mX_field[i*4+1]) - min_value = fmin(min_value, mX_field[i*4+2]) - min_value = fmin(min_value, mX_field[i*4+3]) + min_value1 = fmin(mX_field[i*4], mX_field[i*4+1]) + min_value2 = fmin(mX_field[i*4+2], mX_field[i*4+3]) + min_value = fmin(min_value1, min_value2) if min_value < 0.0 - lamda[i] = -min_value/(mean_field[i] - min_value) - else - lamda[i] = 0.0 + lamda[i] = fmax(lamda[i],-min_value/(mean_field[i] - min_value)) end end """) - + #lamda[i] = fmax(lamda[i],-min_value/(mean_field[i] - min_value)) self._kernel = (domain, instrs) def apply(self, lamda, mX_field, mean_field): @@ -156,7 +157,7 @@ def apply(self, lamda, mX_field, mean_field): lives in the continuous target space. """ par_loop(self._kernel, dx, - {"lamda": (lamda, WRITE), + {"lamda": (lamda, INC), "mX_field": (mX_field, READ), "mean_field": (mean_field, READ)}) diff --git a/gusto/spatial_methods/augmentation.py b/gusto/spatial_methods/augmentation.py index e271061f0..a301fd302 100644 --- a/gusto/spatial_methods/augmentation.py +++ b/gusto/spatial_methods/augmentation.py @@ -307,11 +307,12 @@ def __init__( self.mX_idxs.append(mX_idx) # Define a limiter - self.limiters.append(MeanLimiter(eqns.spaces[mX_idx])) + #self.limiters.append(MeanLimiter(eqns.spaces[mX_idx])) #self.sublimiters.update({mX_name: MeanLimiter(eqns.spaces[mX_idx])}) #self.limiter = MixedFSLimiter(self.eqn_orig, self.sublimiters) #self.limiter = MixedFSLimiter(sublimiters) + self.limiters = MeanLimiter(mX_spaces) # Contruct projectors for computing the mean mixing ratios self.mX_ins = [Function(mX_spaces[i]) for i in range(self.mX_num)] @@ -451,7 +452,10 @@ def pre_apply(self, x_in): #for idx, field in enumerate(self.eqn.field_names): # self.x_in.subfunctions[idx].assign(x_in.subfunctions[idx]) + print('in pre-apply') for idx in range(self.idx_orig): + print(np.min(x_in.subfunctions[idx].dat.data)) + print('\n') self.x_in.subfunctions[idx].assign(x_in.subfunctions[idx]) # Set the mean mixing ratio to be zero, just because @@ -469,8 +473,10 @@ def post_apply(self, x_out): Args: x_out (:class:`Function`): The output fields """ - + print('in post apply') for idx in range(self.idx_orig): + print(np.min(self.x_out.subfunctions[idx].dat.data)) + print('\n') x_out.subfunctions[idx].assign(self.x_out.subfunctions[idx]) def update(self, x_in_mixed): @@ -478,7 +484,7 @@ def update(self, x_in_mixed): Compute the mean mixing ratio field by projecting the mixing ratio from DG1 into DG0. - SHouldn't this be a conservative projection??!! + To DO: Shouldn't this be a conservative projection??!! This requires density fields... Args: @@ -487,10 +493,37 @@ def update(self, x_in_mixed): print('in update') for i in range(self.mX_num): self.mX_ins[i].assign(x_in_mixed.subfunctions[self.mX_idxs[i]]) + print('\n min of mX field:') + print(np.min(self.mX_ins[i].dat.data)) self.compute_means[i].project() self.x_in.subfunctions[self.mean_idxs[i]].assign(self.mean_outs[i]) def limit(self, x_in_mixed): + # Ensure non-negativity by applying the blended limiter + mX_pre = [] + means = [] + print('limiting within the augmentation') + for i in range(self.mX_num): + mX_pre.append(x_in_mixed.subfunctions[self.mX_idxs[i]]) + means.append(x_in_mixed.subfunctions[self.mean_idxs[i]]) + + print('\n min of mX field:') + print(np.min(mX_pre[i].dat.data)) + print('\n min of mean field:') + print(np.min(means[i].dat.data)) + + self.limiters.apply(mX_pre, means) + + print('\n After applying blended limiter') + + for i in range(self.mX_num): + x_in_mixed.subfunctions[self.mX_idxs[i]].assign(mX_pre[i]) + print('\n min of mX field:') + print(np.min(mX_pre[i].dat.data)) + print('\n min of mean field:') + print(np.min(means[i].dat.data)) + + def limit_old(self, x_in_mixed): # Ensure non-negativity by applying the blended limiter for i in range(self.mX_num): print('limiting within the augmentation') diff --git a/gusto/spatial_methods/limiters.py b/gusto/spatial_methods/limiters.py index c04311540..823bb30b5 100644 --- a/gusto/spatial_methods/limiters.py +++ b/gusto/spatial_methods/limiters.py @@ -269,7 +269,7 @@ class MeanLimiter(object): factor is given by the DG0 function lamda. """ - def __init__(self, space): + def __init__(self, spaces): """ Args: space: The mixed function space for the equation set @@ -279,16 +279,19 @@ def __init__(self, space): ValueError: If the space is not appropriate for the limiter. """ - self.space = space - mesh = space.mesh() + #self.space = space + #mesh = space.mesh() # check that space is DG1 - degree = space.ufl_element().degree() - if (space.ufl_element().sobolev_space.name != 'L2' - or ((type(degree) is tuple and np.any([deg != 1 for deg in degree])) - and degree != 1)): - raise NotImplementedError('MeanLimiter only implemented for mixing' + - 'ratios in the DG1 space') + for space in spaces: + degree = space.ufl_element().degree() + if (space.ufl_element().sobolev_space.name != 'L2' + or ((type(degree) is tuple and np.any([deg != 1 for deg in degree])) + and degree != 1)): + raise NotImplementedError('MeanLimiter only implemented for mixing' + + 'ratios in the DG1 space') + self.space = spaces[0] + mesh = self.space.mesh() # Create equispaced DG1 space needed for limiting if space.extruded: @@ -301,17 +304,22 @@ def __init__(self, space): DG1_element = FiniteElement("DG", cell, 1, variant="equispaced") DG1_equispaced = FunctionSpace(mesh, DG1_element) - print(DG1_equispaced.finat_element.space_dimension()) - DG0 = FunctionSpace(mesh, 'DG', 0) - self.lamda = Function(DG1_equispaced) + self.lamda = Function(DG0) + #self.minus_lamda = Function(DG0) self.mX_field = Function(DG1_equispaced) self.mean_field = Function(DG0) + print(DG1_equispaced.finat_element.space_dimension()) + print(DG0.finat_element.space_dimension()) + print(self.space.finat_element.space_dimension()) + print(self.space.mesh().topological_dimension()) + self._kernel = MeanMixingRatioWeights(self.space) + self._clip_zero_kernel = ClipZero(self.space) - def apply(self, mX_field, mean_field): + def apply(self, mX_fields, mean_fields): """ The application of the limiter to the field. @@ -322,14 +330,34 @@ def apply(self, mX_field, mean_field): AssertionError: If the field is not in the correct space. """ - #self.field_old.interpolate(mX_field) - #self.mean_field.interpolate(mean_field) + # Set the weights, lamda, to zero + self.lamda.interpolate(Constant(0.0)) + + for i in range(len(mX_fields)): + # Update the weights, lamda + self._kernel.apply(self.lamda, mX_fields[i], mean_fields[i]) + #print(self.lamda.dat.data) + + #self.minus_lamda.interpolate(Constant(1.0) - self.lamda) + + #As a hack for now, clip zero when required + + for i in range(len(mX_fields)): + + #mX_fields[i].interpolate(self.minus_lamda*mX_fields[i] + self.lamda*mean_fields[i]) + mX_fields[i].interpolate((Constant(1.0) - self.lamda)*mX_fields[i] + self.lamda*mean_fields[i]) + #mX_fields[i].interpolate(self.one_m_lamda*mX_fields[i] + self.lamda*mean_fields[i]) + #mX_fields[i].interpolate(self.lamda*mean_fields[i]) + #As a hack for now, clip zero when required + self._clip_zero_kernel.apply(mX_fields[i], mX_fields[i]) + + # Compute the weights, lamda: - self._kernel.apply(self.lamda, mX_field, mean_field) + #self._kernel.apply(self.lamda, mX_field, mean_field) - print('applying limiter') + #print('applying limiter') #print(self.lamda.dat.data) # Compute the blended field - mX_field.interpolate((Constant(1.0) - self.lamda)*mX_field + self.lamda*mean_field) + #mX_field.interpolate((Constant(1.0) - self.lamda)*mX_field + self.lamda*mean_field)