Written by Jinsung Yoon Date: Jan 29th 2019 Generative Adversarial Imputation Networks (GAIN) Implementation on Spam Dataset Reference: J. Yoon, J. Jordon, M. van der Schaar, "GAIN: Missing Data Imputation using Generative Adversarial Nets," ICML, 2018. Paper Appendix Contact: [email protected]
python3 test_gain.py # tests the gain algorithm
python3 gain.py # implemention of GAIN, imputes missing data.
python3 create_missing.py # creates a csv with missing data.
python3 gain_ana.py # analyses the imputed data by calculating the RMSE, be sure to normalize first
python3 create_missing.py --dataset bc -o missing.csv --oref ref.csv --istarget 1 --normalize01 1
python3 gain.py -i missing.csv -o imputed.csv --target target
python3 gain_ana.py -i missing.csv --ref ref.csv --imputed imputed.csv -o result.json --target target