-
Notifications
You must be signed in to change notification settings - Fork 5
/
evi.c
281 lines (247 loc) · 8.71 KB
/
evi.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
/* Weight-setting and scoring for P(C|w) evidence classification */
/* Copyright (C) 1997, 1998, 1999 Andrew McCallum
Written by: Andrew Kachites McCallum <[email protected]>
This file is part of the Bag-Of-Words Library, `libbow'.
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Library General Public License
as published by the Free Software Foundation, version 2.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Library General Public License for more details.
You should have received a copy of the GNU Library General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111, USA */
#include <bow/libbow.h>
#include <math.h>
/* Function to assign `Naive Bayes'-style weights to each element of
each document vector. */
void
bow_evi_set_weights (bow_barrel *barrel)
{
int ci;
bow_cdoc *cdoc;
int wi; /* a "word index" into WI2DVF */
int max_wi; /* the highest "word index" in WI2DVF. */
bow_dv *dv; /* the "document vector" at index WI */
int dvi; /* an index into the DV */
int weight_setting_num_words = 0;
/* We assume that we have already called BOW_BARREL_NEW_VPC() on
BARREL, so BARREL already has one-document-per-class. */
assert (!strcmp (barrel->method->name, "evi"));
max_wi = MIN (barrel->wi2dvf->size, bow_num_words());
/* Get the total number of terms in each class; store this in
CDOC->WORD_COUNT. */
for (ci = 0; ci < barrel->cdocs->length; ci++)
{
cdoc = bow_array_entry_at_index (barrel->cdocs, ci);
cdoc->word_count = 0;
}
for (wi = 0; wi < max_wi; wi++)
{
dv = bow_wi2dvf_dv (barrel->wi2dvf, wi);
if (dv == NULL)
continue;
for (dvi = 0; dvi < dv->length; dvi++)
{
cdoc = bow_array_entry_at_index (barrel->cdocs,
dv->entry[dvi].di);
cdoc->word_count += dv->entry[dvi].count;
}
}
/* Set the weights in the BARREL's WI2DVF so that they are
equal to P(w|C), the probability of a word given a class. */
for (wi = 0; wi < max_wi; wi++)
{
dv = bow_wi2dvf_dv (barrel->wi2dvf, wi);
/* If the model doesn't know about this word, skip it. */
if (dv == NULL)
continue;
/* Now loop through all the elements, setting their weights */
for (dvi = 0; dvi < dv->length; dvi++)
{
cdoc = bow_array_entry_at_index (barrel->cdocs,
dv->entry[dvi].di);
/* Here CDOC->WORD_COUNT is the total number of words in the class */
/* We use Laplace Estimation. */
dv->entry[dvi].weight = ((float)
(1 + dv->entry[dvi].count)
/ (barrel->wi2dvf->num_words
+ cdoc->word_count));
assert (dv->entry[dvi].weight > 0);
}
weight_setting_num_words++;
/* Set the IDF. Evi doesn't use it; make it have no effect */
dv->idf = 1.0;
}
#if 0
fprintf (stderr, "wi2dvf num_words %d, weight-setting num_words %d\n",
barrel->wi2dvf->num_words, weight_setting_num_words);
#endif
}
/* For changing weight of unseen words.
I really should implement `deleted interpolation' */
/* M_EST_P summed over all words in the vocabulary must sum to 1.0! */
#if 1
/* This is the special case of the M-estimate that is `Laplace smoothing' */
#define M_EST_M (barrel->wi2dvf->num_words)
#define M_EST_P (1.0 / barrel->wi2dvf->num_words)
#define WORD_PRIOR_COUNT 1.0
#else
#define M_EST_M (cdoc->word_count \
? (((float)barrel->wi2dvf->num_words) / cdoc->word_count) \
: 1.0)
#define M_EST_P (1.0 / barrel->wi2dvf->num_words)
#endif
int
bow_evi_score (bow_barrel *barrel, bow_wv *query_wv,
bow_score *bscores, int bscores_len,
int loo_class)
{
double *scores; /* will become prob(class), indexed over CI */
int ci; /* a "class index" (document index) */
int wvi; /* an index into the entries of QUERY_WV. */
int dvi; /* an index into a "document vector" */
int num_scores; /* number of entries placed in SCORES */
double score_increment = 0;
double *pr_c;
double *pr_c_w; /* indexed by CI */
int *occur_per_ci;
int total_num_occur;
/* Allocate space to store scores for *all* classes (documents) */
scores = alloca (barrel->cdocs->length * sizeof (double));
pr_c_w = alloca (barrel->cdocs->length * sizeof (double));
pr_c = alloca (barrel->cdocs->length * sizeof (double));
occur_per_ci = alloca (barrel->cdocs->length * sizeof (int));
/* SCORES will start as the log() of an odds ratio, then get
converted to a probability at the end. */
if (bow_print_word_scores)
printf ("%s\n",
"(CLASS PRIOR PROBABILIES)");
/* Initialize the SCORES the term not in the recurrence. */
{
int total_num_words = 0;
bow_cdoc *cdoc;
for (ci = 0; ci < barrel->cdocs->length; ci++)
{
cdoc = bow_array_entry_at_index (barrel->cdocs, ci);
total_num_words += cdoc->word_count;
}
for (ci = 0; ci < barrel->cdocs->length; ci++)
{
cdoc = bow_array_entry_at_index (barrel->cdocs, ci);
pr_c[ci] = (double)cdoc->word_count / total_num_words;
scores[ci] = log (pr_c[ci] / (1 - pr_c[ci]));
}
}
/* Loop over each word in the word vector QUERY_WV, putting its
contribution into SCORES. */
for (wvi = 0; wvi < query_wv->num_entries; wvi++)
{
int wi; /* the word index for the word at WVI */
bow_dv *dv; /* the "document vector" for the word WI */
/* Get information about this word. */
wi = query_wv->entry[wvi].wi;
dv = bow_wi2dvf_dv (barrel->wi2dvf, wi);
/* If the model doesn't know about this word, skip it. OOV */
if (!dv)
continue;
/* Calculate Pr(C|w), the probability of a class given a word. */
{
double sum;
for (ci = 0, dvi = 0; ci < barrel->cdocs->length; ci++)
{
pr_c_w[ci] = 1; /* Like Laplace estimate */
occur_per_ci[ci] = 0;
}
total_num_occur = 0;
for (dvi = 0; dvi < dv->length; dvi++)
{
pr_c_w[dv->entry[dvi].di] += dv->entry[dvi].count;
occur_per_ci[dv->entry[dvi].di] += dv->entry[dvi].count;
total_num_occur += dv->entry[dvi].count;
}
sum = 0;
for (ci = 0, dvi = 0; ci < barrel->cdocs->length; ci++)
sum += pr_c_w[ci];
for (ci = 0, dvi = 0; ci < barrel->cdocs->length; ci++)
pr_c_w[ci] /= sum;
}
if (bow_print_word_scores)
printf ("%-30s (queryweight=%.8f)\n",
bow_int2word (wi),
query_wv->entry[wvi].weight * query_wv->normalizer);
/* Loop over all classes, putting this word's (WI's)
contribution into SCORES. */
for (ci = 0, dvi = 0; ci < barrel->cdocs->length; ci++)
{
bow_cdoc *cdoc;
cdoc = bow_array_entry_at_index (barrel->cdocs, ci);
assert (cdoc->type == bow_doc_train);
score_increment = log ((pr_c_w[ci] / (1 - pr_c_w[ci]))
* ((1 - pr_c[ci]) / pr_c[ci]));
scores[ci] += score_increment;
if (bow_print_word_scores)
printf (" %4d/%4d %8.2e %7.2f %-30s %10.7f\n",
occur_per_ci[ci],
total_num_occur,
pr_c_w[ci],
score_increment,
(strrchr (cdoc->filename, '/') ? : cdoc->filename),
scores[ci]);
}
}
/* Now SCORES[] contains a EVI divergence for each class. */
/* Return the SCORES by putting them (and the `class indices') into
SCORES in sorted order. */
{
num_scores = 0;
for (ci = 0; ci < barrel->cdocs->length; ci++)
{
if (num_scores < bscores_len
|| bscores[num_scores-1].weight < scores[ci])
{
/* We are going to put this score and CI into SCORES
because either: (1) there is empty space in SCORES, or
(2) SCORES[CI] is larger than the smallest score there
currently. */
int dsi; /* an index into SCORES */
if (num_scores < bscores_len)
num_scores++;
dsi = num_scores - 1;
/* Shift down all the entries that are smaller than SCORES[CI] */
for (; dsi > 0 && bscores[dsi-1].weight < scores[ci]; dsi--)
bscores[dsi] = bscores[dsi-1];
/* Insert the new score */
bscores[dsi].weight = scores[ci];
bscores[dsi].di = ci;
}
}
}
return num_scores;
}
rainbow_method bow_method_evi =
{
"evi",
bow_evi_set_weights,
0, /* no weight scaling function */
NULL, /* bow_barrel_normalize_weights_by_summing, */
bow_barrel_new_vpc_merge_then_weight,
bow_barrel_set_vpc_priors_by_counting,
bow_evi_score,
bow_wv_set_weights_to_count,
NULL, /* no need for extra weight normalization */
0
};
void _register_method_evi () __attribute__ ((constructor));
void _register_method_evi ()
{
static int done = 0;
if (done)
return;
bow_method_register_with_name ((bow_method*)&bow_method_evi,
"evi",
sizeof (rainbow_method),
NULL);
done = 1;
}