-
Notifications
You must be signed in to change notification settings - Fork 5
/
info_gain.c
557 lines (484 loc) · 15.5 KB
/
info_gain.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
/* Functions to calculate the information gain for each word in our corpus. */
/* Copyright (C) 1997, 1998, 1999 Andrew McCallum
Written by: Sean Slattery <[email protected]>
and Andrew Kachites McCallum <[email protected]>
This file is part of the Bag-Of-Words Library, `libbow'.
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Library General Public License
as published by the Free Software Foundation, version 2.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Library General Public License for more details.
You should have received a copy of the GNU Library General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111, USA */
#include <bow/libbow.h>
#include <math.h>
#if !HAVE_LOG2F
#define log2f log
#endif
/* Return the entropy given counts for each type of element. */
double
bow_entropy (float *counts, int num_counts)
{
double total = 0; /* How many elements we have in total */
double entropy = 0.0;
double fraction;
int i;
/* First total the array. */
for (i = 0; i < num_counts; i++)
total += counts[i];
/* If we have no elements, then the entropy is zero. */
if (total == 0) {
return 0.0;
}
/* Now calculate the entropy */
for (i = 0; i < num_counts; i++)
{
if (counts[i] != 0)
{
fraction = counts[i] / total;
entropy -= fraction * log2f (fraction);
}
}
return entropy;
}
/* Return a malloc()'ed array containing an infomation-gain score for
each word index. */
float *
bow_infogain_per_wi_new_document_event (bow_barrel *barrel, int num_classes,
int *size)
{
float grand_totals[num_classes]; /* Totals for each class. */
float with_word[num_classes]; /* Totals for the set of model docs
with this word. */
float without_word[num_classes]; /* Totals for the set of model docs
without this word. */
int max_wi; /* the highest "word index" in WI2DVF. */
bow_cdoc *doc; /* The working cdoc. */
double total_entropy; /* The entropy of the total collection. */
double with_word_entropy; /* The entropy of the set of docs with
the word in question. */
double without_word_entropy; /* The entropy of the set of docs without
the word in question. */
float grand_total = 0;
float with_word_total = 0;
float without_word_total = 0;
int i, j, wi, di;
bow_dv *dv;
float *ret;
bow_verbosify (bow_progress,
"Calculating info gain... words :: ");
max_wi = MIN (barrel->wi2dvf->size, bow_num_words());
*size = max_wi;
ret = bow_malloc (max_wi * sizeof (float));
/* First set all the arrays to zero */
for(i = 0; i < num_classes; i++)
{
grand_totals[i] = 0;
with_word[i] = 0;
without_word[i] = 0;
}
/* Now set up the grand totals. */
for (i = 0; i < barrel->cdocs->length ; i++)
{
doc = bow_cdocs_di2doc (barrel->cdocs, i);
if (doc->type == bow_doc_train)
{
grand_totals[doc->class] += doc->prior;
grand_total += doc->prior;
}
}
/* Calculate the total entropy */
total_entropy = bow_entropy (grand_totals, num_classes);
/* Now loop over all words. */
for (wi = 0; wi < max_wi; wi++)
{
/* Get this document vector */
dv = bow_wi2dvf_dv (barrel->wi2dvf, wi);
if (dv == NULL)
{
ret[wi] = 0;
continue;
}
with_word_total = 0;
/* Create totals for this dv. */
for (j = 0; j < dv->length; j++)
{
di = dv->entry[j].di;
doc = bow_cdocs_di2doc (barrel->cdocs, di);
if (doc->type == bow_doc_train)
{
with_word[doc->class] += doc->prior;
with_word_total += doc->prior;
}
}
/* Create without word totals. */
for (j = 0; j < num_classes; j++)
{
without_word[j] = grand_totals[j] - with_word[j];
}
without_word_total = grand_total - with_word_total;
/* Calculate entropies */
with_word_entropy = bow_entropy(with_word, num_classes);
without_word_entropy = bow_entropy(without_word, num_classes);
/* Calculate and store the information gain. */
ret[wi] = (total_entropy
- ((((double)with_word_total / (double)grand_total)
* with_word_entropy)
+ (((double)without_word_total / (double)grand_total)
* without_word_entropy)));
/* Not comparing with 0 here because of round-off error. */
assert (ret[wi] >= -1e-7);
if (ret[wi] < 0)
ret[wi] = 0;
/* Reset arrays to zero */
for(i = 0; i < num_classes; i++)
{
with_word[i] = 0;
without_word[i] = 0;
}
if (wi % 100 == 0)
bow_verbosify (bow_progress,
"\b\b\b\b\b\b\b\b\b%9d", max_wi - wi);
}
bow_verbosify (bow_progress, "\n");
return ret;
}
/* Return a malloc()'ed array containing an infomation-gain score for
each word index. */
float *
bow_infogain_per_wi_new_word_event (bow_barrel *barrel, int num_classes,
int *size)
{
float grand_totals[num_classes]; /* Totals for each class. */
float with_word[num_classes]; /* Totals for the set of model docs
with this word. */
float without_word[num_classes]; /* Totals for the set of model docs
without this word. */
int max_wi; /* the highest "word index" in WI2DVF. */
bow_cdoc *doc; /* The working cdoc. */
double total_entropy; /* The entropy of the total collection. */
double with_word_entropy; /* The entropy of the set of docs with
the word in question. */
double without_word_entropy; /* The entropy of the set of docs without
the word in question. */
float grand_total;
float with_word_total = 0;
float without_word_total = 0;
int i, j, wi, di;
bow_dv *dv;
float *ret;
bow_verbosify (bow_progress,
"Calculating info gain... words :: ");
max_wi = MIN (barrel->wi2dvf->size, bow_num_words());
*size = max_wi;
ret = bow_malloc (max_wi * sizeof (float));
/* First set the arrays to zero */
for(i = 0; i < num_classes; i++)
grand_totals[i] = 0;
grand_total = 0;
/* Now set up the grand totals. */
for (wi = 0; wi < max_wi; wi++)
{
/* Get this document vector */
dv = bow_wi2dvf_dv (barrel->wi2dvf, wi);
if (dv == NULL)
continue;
for (j = 0; j < dv->length; j++)
{
di = dv->entry[j].di;
doc = bow_array_entry_at_index (barrel->cdocs, di);
if (doc->type == bow_doc_train)
{
grand_totals[doc->class] += dv->entry[j].count;
grand_total += dv->entry[j].count;
}
}
}
/* Calculate the total entropy */
total_entropy = bow_entropy (grand_totals, num_classes);
/* Now calculate the information gain of each word. */
for (wi = 0; wi < max_wi; wi++)
{
/* Get this document vector */
dv = bow_wi2dvf_dv (barrel->wi2dvf, wi);
if (dv == NULL)
{
ret[wi] = 0;
continue;
}
/* Reset arrays to zero */
for(i = 0; i < num_classes; i++)
{
with_word[i] = 0;
without_word[i] = 0;
}
with_word_total = 0;
/* Create totals for this dv. */
for (j = 0; j < dv->length; j++)
{
di = dv->entry[j].di;
doc = bow_cdocs_di2doc (barrel->cdocs, di);
if (doc->type == bow_doc_train)
{
with_word[doc->class] += dv->entry[j].count;
with_word_total += dv->entry[j].count;
}
}
/* Create without word totals. */
for (j = 0; j < num_classes; j++)
{
without_word[j] = grand_totals[j] - with_word[j];
}
without_word_total = grand_total - with_word_total;
/* Calculate entropies */
with_word_entropy = bow_entropy(with_word, num_classes);
without_word_entropy = bow_entropy(without_word, num_classes);
/* Calculate and store the information gain. */
ret[wi] = (total_entropy
- ((((double)with_word_total / (double)grand_total)
* with_word_entropy)
+ (((double)without_word_total / (double)grand_total)
* without_word_entropy)));
/* Not comparing with 0 here because of round-off error. */
assert (ret[wi] >= -1e-7);
if (ret[wi] < 0)
ret[wi] = 0;
if (wi % 100 == 0)
bow_verbosify (bow_progress,
"\b\b\b\b\b\b\b\b\b%9d", max_wi - wi);
}
bow_verbosify (bow_progress, "\n");
return ret;
}
float *
bow_infogain_per_wi_new (bow_barrel *barrel, int num_classes, int *size)
{
if (bow_infogain_event_model == bow_event_word)
return bow_infogain_per_wi_new_word_event (barrel, num_classes, size);
else if (bow_infogain_event_model == bow_event_document)
return bow_infogain_per_wi_new_document_event (barrel, num_classes, size);
else if (bow_infogain_event_model == bow_event_document_then_word)
bow_error ("document_then_word for infogain not implemented");
else
bow_error ("bad bow_infogain_event_model");
return NULL;
}
/* Return a malloc()'ed array containing an infomation-gain score for
each word index, but the infogain scores are computing from
co-occurance of word pairs. */
float *
bow_infogain_per_wi_new_using_pairs (bow_barrel *barrel, int num_classes,
int *size)
{
/* `count' == Counts of documents.
`pair'== Pair of words. */
float count[num_classes];
float count_with_pair[num_classes];
float count_without_pair[num_classes];
bow_cdoc *doc1, *doc2;
double entropy_unconditional;
double entropy_with_pair;
double entropy_without_pair;
int max_wi = MIN (barrel->wi2dvf->size, bow_num_words());
float count_total = 0;
float count_with_pair_total = 0;
float count_without_pair_total = 0;
int i, j, wi1, wi2, dvi1, dvi2;
bow_dv *dv1, *dv2;
#if 0
struct _igpair {
float ig;
int wi1;
int wi2;
} igpair[max_wi*max_wi];
#else
float ig;
#endif
bow_verbosify (bow_progress,
"Calculating info gain... words :: ");
*size = max_wi;
/* First set all the arrays to zero */
for(i = 0; i < num_classes; i++)
{
count[i] = 0;
count_with_pair[i] = 0;
count_without_pair[i] = 0;
}
/* Now set up the unconditional counts totals. */
for (i = 0; i < barrel->cdocs->length ; i++)
{
doc1 = bow_cdocs_di2doc (barrel->cdocs, i);
if (doc1->type == bow_doc_train)
{
count[doc1->class] += doc1->prior;
count_total += doc1->prior;
}
}
/* Calculate the unconditional entropy */
entropy_unconditional = bow_entropy (count, num_classes);
/* Now loop over all pairs of words. */
for (wi1 = 0; wi1 < max_wi; wi1++)
{
for (wi2 = wi1+1; wi2 < max_wi; wi2++)
{
/* Get the document vectors */
dv1 = bow_wi2dvf_dv (barrel->wi2dvf, wi1);
dv2 = bow_wi2dvf_dv (barrel->wi2dvf, wi2);
if (dv1 == NULL || dv2 == NULL)
{
/* igpair[wi1][wi2] = 0; */
continue;
}
count_with_pair_total = 0;
/* Create totals for this pair of dv's.
...i.e. find documents in which both WI1 and WI2 occur. */
for (dvi1 = 0, dvi2 = 0; dvi1 < dv1->length; dvi1++)
{
/* Find the entry in DV2 for the same document, if it exists. */
while (dv1->entry[dvi1].di > dv2->entry[dvi2].di
&& dvi2 < dv2->length)
dvi2++;
if (dv1->entry[dvi1].di != dv2->entry[dvi2].di)
continue;
doc1 = bow_cdocs_di2doc (barrel->cdocs, dv1->entry[dvi1].di);
doc2 = bow_cdocs_di2doc (barrel->cdocs, dv2->entry[dvi2].di);
/* We found a document with both WI1 and WI2 */
if (doc1->type == bow_doc_train && doc2->type == bow_doc_train)
{
count_with_pair[doc1->class] += doc1->prior;
count_with_pair_total += doc1->prior;
}
}
/* Set the without-pair totals. */
for (j = 0; j < num_classes; j++)
{
count_without_pair[j] = count[j] - count_with_pair[j];
}
count_without_pair_total = count_total - count_with_pair_total;
/* Calculate entropies */
entropy_with_pair = bow_entropy (count_with_pair, num_classes);
entropy_without_pair = bow_entropy (count_without_pair, num_classes);
/* Calculate and store the information gain. */
ig =
(entropy_unconditional
- ((((double)count_with_pair_total / count_total)
* entropy_with_pair)
+ (((double)count_without_pair_total / count_total)
* entropy_without_pair)));
/* Not comparing with 0 here because of round-off error. */
assert (ig >= -1e-7);
if (ig < 0)
ig = 0;
if (ig > 0.01)
printf ("%12.9f %20s %20s\n",
ig, bow_int2word (wi1), bow_int2word (wi2));
/* Reset arrays to zero */
for(i = 0; i < num_classes; i++)
{
count_with_pair[i] = 0;
count_without_pair[i] = 0;
}
}
if (wi1 % 100 == 0)
bow_verbosify (bow_progress,
"\b\b\b\b\b\b\b\b\b%9d", max_wi - wi1);
}
bow_verbosify (bow_progress, "\n");
#if 0
/* Now loop over all pairs of words, printing the result. */
for (wi1 = 0; wi1 < max_wi; wi1++)
for (wi2 = 0; wi2 < max_wi; wi2++)
{
printf ("%8.5f %20s %20s\n",
igpair[wi1][wi2],
bow_int2word (wi1),
bow_int2word (wi2));
}
#endif
return NULL;
}
/* Return a word array containing information gain scores, unsorted.
Only includes words with non-zero infogain. */
bow_wa *
bow_infogain_wa (bow_barrel *barrel, int num_classes)
{
float *wi2ig; /* the array of information gains */
int wi2ig_size;
int wi;
bow_wa *wa = bow_wa_new (barrel->wi2dvf->num_words);
wi2ig = bow_infogain_per_wi_new (barrel, num_classes, &wi2ig_size);
/* Create and fill and array of `word-index and information-gain
structures' that can be sorted. */
for (wi = 0; wi < wi2ig_size; wi++)
if (wi2ig[wi] > 0)
bow_wa_append (wa, wi, wi2ig[wi]);
return wa;
}
/* Return a word array containing the count for each word, with +/-
0.1 noise added. */
bow_wa *
bow_word_count_wa (bow_barrel *doc_barrel)
{
bow_wa *wa;
int wi, dvi;
bow_dv *dv;
bow_cdoc *cdoc;
wa = bow_wa_new (0);
for (wi = 0; wi < doc_barrel->wi2dvf->size; wi++)
{
dv = bow_wi2dvf_dv (doc_barrel->wi2dvf, wi);
if (!dv)
continue;
for (dvi = 0; dvi < dv->length; dvi++)
{
cdoc = bow_array_entry_at_index (doc_barrel->cdocs,
dv->entry[dvi].di);
if (cdoc->type == bow_doc_train)
bow_wa_add_to_end (wa, wi,
dv->entry[dvi].count + bow_random_01 () * 0.01);
}
}
return wa;
}
/* Print to stdout the sorted results of bow_infogain_per_wi_new().
It will print the NUM_TO_PRINT words with the highest infogain. */
void
bow_infogain_per_wi_print (FILE *fp, bow_barrel *barrel, int num_classes,
int num_to_print)
{
float *wi2ig; /* the array of information gains */
int wi2ig_size;
int wi, i;
struct wiig { int wi; float ig; } *wiigs;
int wiig_compare (const void *wiig1, const void *wiig2)
{
if (((struct wiig*)wiig1)->ig > ((struct wiig*)wiig2)->ig)
return -1;
else if (((struct wiig*)wiig1)->ig == ((struct wiig*)wiig2)->ig)
return 0;
else
return 1;
}
wi2ig = bow_infogain_per_wi_new (barrel, num_classes, &wi2ig_size);
if (num_to_print == 0)
num_to_print = wi2ig_size;
/* Create and fill and array of `word-index and information-gain
structures' that can be sorted. */
wiigs = bow_malloc (wi2ig_size * sizeof (struct wiig));
for (wi = 0; wi < wi2ig_size; wi++)
{
wiigs[wi].wi = wi;
wiigs[wi].ig = wi2ig[wi];
}
/* Sort it. */
qsort (wiigs, wi2ig_size, sizeof (struct wiig), wiig_compare);
/* Print it. */
for (i = 0; i < num_to_print; i++)
{
fprintf (fp, "%8.5f %s\n", wiigs[i].ig, bow_int2word (wiigs[i].wi));
}
bow_free (wi2ig);
}