-
Notifications
You must be signed in to change notification settings - Fork 5
/
knn.c
577 lines (493 loc) · 16.6 KB
/
knn.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
/* Weight-setting and scoring implementation for Naive-Bayes classification */
/* Copyright (C) 1997, 1998, 1999 Andrew McCallum
Written by: Andrew Kachites McCallum <[email protected]>
This file is part of the Bag-Of-Words Library, `libbow'.
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Library General Public License
as published by the Free Software Foundation, version 2.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Library General Public License for more details.
You should have received a copy of the GNU Library General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111, USA */
#include <bow/libbow.h>
#include <math.h>
#include <argp/argp.h>
/*
My reading of the SMART documentation and code makes me think that the
various tf weight options - particularly 'l' and 'a' apply only to
words that occur in the document in question - which avoids any taking
the log of 0.
If you want to check this, look at the table at
http://pi0959.kub.nl:2080/Paai/Onderw/Smart/examp_10.html
(Linked to by the Advanced actions part of the SMART tutorial at
http://pi0959.kub.nl:2080/Paai/Onderw/Smart/hands-on-tekst.html#advanced)
and also look at the tfwt_log function in the SMART source tree at
src/libconvert/weights_tf.c.
The weighting options implemented here are:
Position 1 - TF. If f == 0 then TF == 0. Otherwise, for f > 0
'n' - none - f
'b' - binary - 1
'm' - max-norm - f / (max f in doc)
'a' - aug-norm - 0.5 + 0.5 * (f / (max f in doc))
'l' - log - 1.0 + ln(f)
Position 2 - IDF.
'n' - none - 1.0
't' - tfidf - ln (total docs / docs containing term)
Position 3 - NORM
'n' - none - 1.0
'c' - cosine - 1 / sqrt (sum (tf * idf)**2)
*/
/* Command-line options specific to kNN */
/* Default value for option "knn_k", the number of neighbours to look
at. */
static int knn_k = 30;
/* Default values for the weighting schemes */
static char query_weights[4] = "nnn";
static char doc_weights[4] = "nnn";
/* The integer or single char used to represent this command-line option.
Make sure it is unique across all libbow and rainbow. */
#define KNN_K_KEY 4001
#define KNN_WEIGHTING_KEY 4002
static struct argp_option knn_options[] =
{
{0,0,0,0,
"K-nearest neighbor options, --method=knn:", 40},
{"knn-k", KNN_K_KEY, "K", 0,
"Number of neighbours to use for nearest neighbour. Defaults to "
"30."},
{"knn-weighting", KNN_WEIGHTING_KEY, "xxx.xxx", 0,
"Weighting scheme to use, coded like SMART. Defaults to nnn.nnn"
"The first three chars describe how the model documents are"
"weighted, the second three describe how the test document is"
"weighted. The codes for each position are described in knn.c."
"Classification consists of summing the scores per class for the"
"k nearest neighbour documents and sorting."
},
{0, 0}
};
error_t
knn_parse_opt (int key, char *arg, struct argp_state *state)
{
switch (key)
{
case KNN_K_KEY:
knn_k = atoi (arg);
break;
case KNN_WEIGHTING_KEY:
/* Arg is a string that we need to split into two bits */
strncpy(query_weights, arg, 3);
strncpy(doc_weights, arg + 4, 3);
break;
default:
return ARGP_ERR_UNKNOWN;
}
return 0;
}
static const struct argp knn_argp =
{
knn_options,
knn_parse_opt
};
static struct argp_child knn_argp_child =
{
&knn_argp, /* This child's argp structure */
0, /* flags for child */
0, /* optional header in help message */
0 /* arbitrary group number for ordering */
};
/* End of command-line options specific to kNN */
/* Some useful macros */
#define TF_M(x) ((x)[0] == 'm')
#define TF_B(x) ((x)[0] == 'b')
#define TF_A(x) ((x)[0] == 'a')
#define TF_L(x) ((x)[0] == 'l')
#define TF_N(x) ((x)[0] == 'n')
#define IDF_T(x) ((x)[1] == 't')
#define NORM_C(x) ((x)[2] == 'c')
/* Function to assign tfidf weights to every word in the barrel
according to the contents of doc_weights */
void
bow_knn_set_weights (bow_barrel *barrel)
{
int di;
bow_cdoc *cdoc;
int wi; /* a "word index" into WI2DVF */
int max_wi; /* the highest "word index" in WI2DVF. */
bow_dv *dv; /* the "document vector" at index WI */
int dvi; /* an index into the DV */
int num_docs, total_model_docs;
/* We assume we are dealing with the full document barrel - no
whimpy vector-per-class stuff here. */
assert (!strcmp (barrel->method->name, "knn"));
max_wi = MIN (barrel->wi2dvf->size, bow_num_words());
/* Step one calculate the number of documents in the model. We'll
use this for the idf calculation later on. Also, reset each
document's word_count - we're going to use this to store the max
tf in the document which is needed by some of the tf weighting
methods. */
total_model_docs = 0;
for (di = 0; di < barrel->cdocs->length; di++)
{
cdoc = bow_cdocs_di2doc(barrel->cdocs, di);
if (cdoc->type == bow_doc_train)
{
total_model_docs++;
cdoc->word_count = 0;
}
}
/* Step two - we can calculate weights for the b, l and n weighting
schemes now. For a we can calculate the max tf in each
document. We can also calculate the idf term and store it. */
for (wi = 0; wi < max_wi; wi++)
{
/* Count the number of model docs this word occurs in */
num_docs = 0;
dv = bow_wi2dvf_dv (barrel->wi2dvf, wi);
if (dv == NULL)
continue;
for (dvi = 0; dvi < dv->length; dvi++)
{
cdoc = bow_cdocs_di2doc(barrel->cdocs, dv->entry[dvi].di);
if (cdoc->type == bow_doc_train)
{
num_docs++;
/* Set some weights */
if (TF_B(doc_weights))
{
/* Binary counts */
dv->entry[dvi].weight = 1;
}
else if (TF_L(doc_weights))
{
/* 1 + ln(tf) */
dv->entry[dvi].weight = 1 + log(dv->entry[dvi].count);
}
else if (TF_N(doc_weights))
{
/* tf */
dv->entry[dvi].weight = dv->entry[dvi].count;
}
else
{
/* Update the max tf count */
if (cdoc->word_count < dv->entry[dvi].count)
{
cdoc->word_count = dv->entry[dvi].count;
}
}
}
}
/* Set up the IDF for this word */
dv->idf = log((double)total_model_docs / (double)num_docs);
}
/* Final Step - calculate weights for methods that use max tf
stuff. Also multiply in the IDF terms. */
for (wi = 0; wi < max_wi; wi++)
{
dv = bow_wi2dvf_dv (barrel->wi2dvf, wi);
if (dv == NULL)
continue;
for (dvi = 0; dvi < dv->length; dvi++)
{
cdoc = bow_cdocs_di2doc(barrel->cdocs, dv->entry[dvi].di);
if (cdoc->type == bow_doc_train)
{
if (TF_A(doc_weights))
{
/* 0.5 + 0.5 * (tf / max_tf_in_doc) */
dv->entry[dvi].weight = 0.5 + 0.5 * ((double)dv->entry[dvi].count / (double)cdoc->word_count);
}
else if (TF_M(doc_weights))
{
/* tf / max_tf_in_doc */
dv->entry[dvi].weight = (double)dv->entry[dvi].count / (double)cdoc->word_count;
}
/* Do the IDF */
if (IDF_T(doc_weights))
dv->entry[dvi].weight *= dv->idf;
}
}
}
/* Now our barrel has the tf*idf weight for each term in each
document in our model */
}
void bow_knn_normalise_weights (bow_barrel *barrel)
{
/* This puts the euclidian doc length in cdoc->normalizer for each
document in the model. */
if (NORM_C(doc_weights))
{
bow_barrel_normalize_weights_by_vector_length(barrel);
}
}
bow_barrel *
bow_knn_classification_barrel (bow_barrel *barrel)
{
/* Just use the doc barrel - set the weights, normalise and return. */
bow_knn_set_weights(barrel);
bow_knn_normalise_weights(barrel);
return barrel;
}
/* Set the weights for the query word vector according to the
weighting scheme in query_weights */
void bow_knn_query_set_weights(bow_wv *query_wv, bow_barrel *barrel)
{
bow_dv *dv;
int wvi, max_tf;
/* null to statement to avoid compilation warning */
barrel = barrel;
/* Pass one - set weights for b,l or n. Figure out the maximum
word frequency of the document. */
max_tf = 0;
for (wvi = 0; wvi < query_wv->num_entries; wvi++)
{
if (TF_B(query_weights))
{
query_wv->entry[wvi].weight = 1;
}
else if (TF_L(query_weights))
{
query_wv->entry[wvi].weight = 1 + log(query_wv->entry[wvi].count);
}
else if (TF_N(query_weights))
{
query_wv->entry[wvi].weight = query_wv->entry[wvi].count;
}
else if (max_tf < query_wv->entry[wvi].count)
{
max_tf = query_wv->entry[wvi].count;
}
}
/* Pass two - Get the correct weights for 'a' or 'm'. Do IDF if
required. */
for(wvi = 0; wvi < query_wv->num_entries; wvi++)
{
if (TF_M(query_weights))
{
query_wv->entry[wvi].weight = (double)query_wv->entry[wvi].count / (double) max_tf;
}
else if (TF_A(query_weights))
{
query_wv->entry[wvi].weight = 0.5 + 0.5 * ((double)query_wv->entry[wvi].count / (double) max_tf);
}
/* Cheat here - we can leverage off the fact that I've so
far only implemented one IDF method. Otherwise I'd have
to store raw statistics for the word occurances for each
word. */
if (IDF_T(query_weights))
{
dv = bow_wi2dvf_dv (barrel->wi2dvf, query_wv->entry[wvi].wi);
query_wv->entry[wvi].weight *= dv->idf;
}
}
/* Done - the idf term was calculated earlier on */
}
void
bow_knn_normalise_query_weights (bow_wv *query)
{
if (NORM_C(query_weights))
{
bow_wv_normalize_weights_by_vector_length(query);
}
}
/* Little :) function lifted from tfidf.c and edited to do exactly
what we need here. Was originally called bow_tfidf_score */
int
bow_knn_get_k_best (bow_barrel *barrel, bow_wv *query_wv,
bow_score *scores, int best)
{
bow_dv_heap *heap;
bow_cdoc *doc;
int num_scores = 0; /* How many elements are in this array */
int current_di, wi, current_index, i;
double current_score = 0.0, doc_tfidf;
float tmp;
/* Create the Heap of vectors of documents */
heap = bow_make_dv_heap_from_wv (barrel->wi2dvf, query_wv);
/* Keep looking at document/word entries until the heap is emptied */
while (heap->length > 0)
{
/* Get the index of the document we're currently working on */
current_di = heap->entry[0].current_di;
/* Get the document structure */
doc = bow_cdocs_di2doc (barrel->cdocs, current_di);
/* If it's not a model document, then move on to next one */
if (doc->type != bow_doc_train)
{
do
{
bow_dv_heap_update (heap);
}
while ((current_di == heap->entry[0].current_di)
&& (heap->length > 0));
/* Try again */
continue;
}
/* Reset the index into the query word vector */
current_index = 0;
/* Reset the score */
current_score = 0.0;
/* Loop over all the words this document has in common with our
query document, summing up the score. We know the words come
out of the heap in index order and we know the words in the
query word vector are in index order as well. */
do
{
wi = heap->entry[0].wi;
doc_tfidf = heap->entry[0].dv->entry[heap->entry[0].index].weight;
/* Find the corresponding word in the query word vector */
/* Note - we know this word is in the query because we built
the heap using only the query words. */
while (wi > (query_wv->entry[current_index].wi))
current_index++;
assert (wi == query_wv->entry[current_index].wi);
/* Now we can add something to the score. Normalisation
happens outside this loop, we just need to check for the
idf factor stuff. The tf weights are just fine. */
/* Multiply the tfidf weights */
/* printf("%f * %f\n", query_wv->entry[current_index].weight,
doc_tfidf); */
tmp = query_wv->entry[current_index].weight * doc_tfidf;
/* Plop this into the current score */
current_score += tmp;
/* A test to make sure we haven't got NaN. */
assert (current_score == current_score);
/* Now we need to update the heap - moving this element on
to its
new position */
bow_dv_heap_update (heap);
}
while ((current_di == heap->entry[0].current_di)
&& (heap->length > 0));
/* Now check for normalisation */
if(NORM_C(query_weights))
{
current_score *= query_wv->normalizer;
}
if(NORM_C(doc_weights))
{
current_score *= doc->normalizer;
}
assert (current_score == current_score); /* checking for NaN */
/* We now hopefully have the correct score for doc */
/* Store the result in the SCORES array */
/* If we haven't filled the list, or we beat the last item in
the list */
if ((num_scores < best)
|| (scores[num_scores - 1].weight < current_score))
{
/* We're going to search up the list comparing element i-1 with
our current score and moving it down the list if it's worse */
if (num_scores < best)
{
i = num_scores;
num_scores++;
}
else
i = num_scores - 1;
/* Shift down all the bits of the array that need shifting */
for (; (i > 0) && (scores[i - 1].weight < current_score); i--)
{
scores[i].di = scores[i-1].di;
scores[i].weight = scores[i-1].weight;
scores[i].name = scores[i-1].name;
}
/* Insert our new score */
scores[i].weight = current_score;
scores[i].di = current_di;
scores[i].name = doc->filename;
}
}
bow_free (heap);
/* All done - return the number of elements we have */
return num_scores;
}
/* Get class scores using closest K neighbors. */
int
bow_knn_score (bow_barrel *barrel, bow_wv *query_wv,
bow_score *bscores, int bscores_len,
int loo_class)
{
int count;
int ni,ci;
double scores_sum = 0.0;
int num_scores;
bow_score *neighbors; /* Place to hold scores of nearest neighbors */
double *scores;
/* This should be initialized in case BSCORES_LEN is larger than the number
* of classes in the barrel */
for (ci=0; ci < bscores_len; ci++)
{
bscores[ci].weight = 0.0;
bscores[ci].di = 0;
bscores[ci].name = "default";
}
/* Get scores of neighbors */
neighbors = alloca (sizeof (bow_score) * knn_k);
count = bow_knn_get_k_best (barrel, query_wv, neighbors, knn_k);
/* Allocate space for class scores */
scores = alloca (bow_barrel_num_classes (barrel) * sizeof (double));
for (ci=0; ci < bow_barrel_num_classes (barrel); ci++)
scores[ci] = 0.0;
/* Put contributing document scores into class scores */
for (ni=0; ni < count; ni++)
{
/* Get the class of this document */
bow_cdoc *doc = bow_cdocs_di2doc (barrel->cdocs, neighbors[ni].di);
scores[doc->class] += neighbors[ni].weight;
scores_sum += neighbors[ni].weight;
}
num_scores = 0;
/* Put SCORES into BSCORES in sorted order */
/* Each round, find the best remainaing score and put it into bscores */
for (ci=0; ci < bow_barrel_num_classes (barrel); ci++)
{
if (num_scores < bscores_len
|| bscores[num_scores-1].weight < scores[ci])
{
int dsi;
/* We are going to put this score and class index into SCORES
* because either 1) there is an empty space in SCORES, or 2)
* SCORES[CI] is larger than the smallest score currently there */
if (num_scores < bscores_len)
num_scores++;
dsi = num_scores - 1;
/* Shift down all the entries that are smaller than SCORES[CI] */
for (; dsi > 0 && bscores[dsi-1].weight < scores[ci]; dsi--)
{
bscores[dsi].weight = bscores[dsi-1].weight;
bscores[dsi].name = bscores[dsi-1].name;
bscores[dsi].di = bscores[dsi-1].di;
}
bscores[dsi].weight = scores[ci];
bscores[dsi].di = ci;
bscores[dsi].name = "default";
}
}
return num_scores;
}
rainbow_method bow_method_knn =
{
"knn",
bow_knn_set_weights,
0, /* no weight scaling function */
bow_knn_normalise_weights,
bow_knn_classification_barrel,
NULL, /* We don't do priors */
bow_knn_score,
bow_knn_query_set_weights,
bow_knn_normalise_query_weights,
bow_barrel_free,
0
};
void _register_method_knn () __attribute__ ((constructor));
void _register_method_knn ()
{
bow_method_register_with_name ((bow_method*)&bow_method_knn, "knn",
sizeof (rainbow_method),
&knn_argp_child);
bow_argp_add_child (&knn_argp_child);
}