forked from LostRuins/koboldcpp
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathkoboldcpp.py
3783 lines (3392 loc) · 196 KB
/
koboldcpp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#!/usr/bin/env python3
#-*- coding: utf-8 -*-
# KoboldCpp is an easy-to-use AI text-generation software for GGML models.
# It's a single self contained distributable from Concedo, that builds off llama.cpp,
# and adds a versatile Kobold API endpoint, additional format support,
# backward compatibility, as well as a fancy UI with persistent stories,
# editing tools, save formats, memory, world info, author's note, characters,
# scenarios and everything Kobold and KoboldAI Lite have to offer.
import ctypes
import os, math, re
import argparse
import platform
import base64
import json, sys, http.server, time, asyncio, socket, threading
from concurrent.futures import ThreadPoolExecutor
sampler_order_max = 7
stop_token_max = 16
ban_token_max = 16
tensor_split_max = 16
logit_bias_max = 16
images_max = 4
bias_min_value = -100.0
bias_max_value = 100.0
class logit_bias(ctypes.Structure):
_fields_ = [("token_id", ctypes.c_int32),
("bias", ctypes.c_float)]
class token_count_outputs(ctypes.Structure):
_fields_ = [("count", ctypes.c_int),
("ids", ctypes.POINTER(ctypes.c_int))]
class load_model_inputs(ctypes.Structure):
_fields_ = [("threads", ctypes.c_int),
("blasthreads", ctypes.c_int),
("max_context_length", ctypes.c_int),
("low_vram", ctypes.c_bool),
("use_mmq", ctypes.c_bool),
("use_rowsplit", ctypes.c_bool),
("executable_path", ctypes.c_char_p),
("model_filename", ctypes.c_char_p),
("lora_filename", ctypes.c_char_p),
("lora_base", ctypes.c_char_p),
("mmproj_filename", ctypes.c_char_p),
("use_mmap", ctypes.c_bool),
("use_mlock", ctypes.c_bool),
("use_smartcontext", ctypes.c_bool),
("use_contextshift", ctypes.c_bool),
("clblast_info", ctypes.c_int),
("cublas_info", ctypes.c_int),
("vulkan_info", ctypes.c_char_p),
("blasbatchsize", ctypes.c_int),
("debugmode", ctypes.c_int),
("forceversion", ctypes.c_int),
("gpulayers", ctypes.c_int),
("rope_freq_scale", ctypes.c_float),
("rope_freq_base", ctypes.c_float),
("flash_attention", ctypes.c_bool),
("tensor_split", ctypes.c_float * tensor_split_max),
("quant_k", ctypes.c_int),
("quant_v", ctypes.c_int)]
class generation_inputs(ctypes.Structure):
_fields_ = [("seed", ctypes.c_int),
("prompt", ctypes.c_char_p),
("memory", ctypes.c_char_p),
("images", ctypes.c_char_p * images_max),
("max_context_length", ctypes.c_int),
("max_length", ctypes.c_int),
("temperature", ctypes.c_float),
("top_k", ctypes.c_int),
("top_a", ctypes.c_float),
("top_p", ctypes.c_float),
("min_p", ctypes.c_float),
("typical_p", ctypes.c_float),
("tfs", ctypes.c_float),
("rep_pen", ctypes.c_float),
("rep_pen_range", ctypes.c_int),
("rep_pen_slope", ctypes.c_float),
("presence_penalty", ctypes.c_float),
("mirostat", ctypes.c_int),
("mirostat_tau", ctypes.c_float),
("mirostat_eta", ctypes.c_float),
("sampler_order", ctypes.c_int * sampler_order_max),
("sampler_len", ctypes.c_int),
("allow_eos_token", ctypes.c_bool),
("bypass_eos_token", ctypes.c_bool),
("render_special", ctypes.c_bool),
("stop_sequence", ctypes.c_char_p * stop_token_max),
("stream_sse", ctypes.c_bool),
("grammar", ctypes.c_char_p),
("grammar_retain_state", ctypes.c_bool),
("quiet", ctypes.c_bool),
("dynatemp_range", ctypes.c_float),
("dynatemp_exponent", ctypes.c_float),
("smoothing_factor", ctypes.c_float),
("logit_biases", logit_bias * logit_bias_max),
("banned_tokens", ctypes.c_char_p * ban_token_max)]
class generation_outputs(ctypes.Structure):
_fields_ = [("status", ctypes.c_int),
("stopreason", ctypes.c_int),
("text", ctypes.c_char_p)]
class sd_load_model_inputs(ctypes.Structure):
_fields_ = [("model_filename", ctypes.c_char_p),
("executable_path", ctypes.c_char_p),
("clblast_info", ctypes.c_int),
("cublas_info", ctypes.c_int),
("vulkan_info", ctypes.c_char_p),
("threads", ctypes.c_int),
("quant", ctypes.c_int),
("taesd", ctypes.c_bool),
("vae_filename", ctypes.c_char_p),
("lora_filename", ctypes.c_char_p),
("lora_multiplier", ctypes.c_float),
("debugmode", ctypes.c_int)]
class sd_generation_inputs(ctypes.Structure):
_fields_ = [("prompt", ctypes.c_char_p),
("negative_prompt", ctypes.c_char_p),
("init_images", ctypes.c_char_p),
("denoising_strength", ctypes.c_float),
("cfg_scale", ctypes.c_float),
("sample_steps", ctypes.c_int),
("width", ctypes.c_int),
("height", ctypes.c_int),
("seed", ctypes.c_int),
("sample_method", ctypes.c_char_p),
("clip_skip", ctypes.c_int),
("quiet", ctypes.c_bool)]
class sd_generation_outputs(ctypes.Structure):
_fields_ = [("status", ctypes.c_int),
("data", ctypes.c_char_p)]
class whisper_load_model_inputs(ctypes.Structure):
_fields_ = [("model_filename", ctypes.c_char_p),
("executable_path", ctypes.c_char_p),
("clblast_info", ctypes.c_int),
("cublas_info", ctypes.c_int),
("vulkan_info", ctypes.c_char_p),
("debugmode", ctypes.c_int)]
class whisper_generation_inputs(ctypes.Structure):
_fields_ = [("prompt", ctypes.c_char_p),
("audio_data", ctypes.c_char_p),
("quiet", ctypes.c_bool)]
class whisper_generation_outputs(ctypes.Structure):
_fields_ = [("status", ctypes.c_int),
("data", ctypes.c_char_p)]
handle = None
def getdirpath():
return os.path.dirname(os.path.realpath(__file__))
def getabspath():
return os.path.dirname(os.path.abspath(__file__))
def file_exists(filename):
return os.path.exists(os.path.join(getdirpath(), filename))
def pick_existant_file(ntoption,nonntoption):
precompiled_prefix = "precompiled_"
ntexist = file_exists(ntoption)
nonntexist = file_exists(nonntoption)
precompiled_ntexist = file_exists(precompiled_prefix+ntoption)
precompiled_nonntexist = file_exists(precompiled_prefix+nonntoption)
if os.name == 'nt':
if not ntexist and precompiled_ntexist:
return (precompiled_prefix+ntoption)
if nonntexist and not ntexist:
return nonntoption
return ntoption
else:
if not nonntexist and precompiled_nonntexist:
return (precompiled_prefix+nonntoption)
if ntexist and not nonntexist:
return ntoption
return nonntoption
lib_default = pick_existant_file("koboldcpp_default.dll","koboldcpp_default.so")
lib_failsafe = pick_existant_file("koboldcpp_failsafe.dll","koboldcpp_failsafe.so")
lib_openblas = pick_existant_file("koboldcpp_openblas.dll","koboldcpp_openblas.so")
lib_noavx2 = pick_existant_file("koboldcpp_noavx2.dll","koboldcpp_noavx2.so")
lib_clblast = pick_existant_file("koboldcpp_clblast.dll","koboldcpp_clblast.so")
lib_clblast_noavx2 = pick_existant_file("koboldcpp_clblast_noavx2.dll","koboldcpp_clblast_noavx2.so")
lib_cublas = pick_existant_file("koboldcpp_cublas.dll","koboldcpp_cublas.so")
lib_hipblas = pick_existant_file("koboldcpp_hipblas.dll","koboldcpp_hipblas.so")
lib_vulkan = pick_existant_file("koboldcpp_vulkan.dll","koboldcpp_vulkan.so")
lib_vulkan_noavx2 = pick_existant_file("koboldcpp_vulkan_noavx2.dll","koboldcpp_vulkan_noavx2.so")
libname = ""
def init_library():
global handle, args, libname
global lib_default,lib_failsafe,lib_openblas,lib_noavx2,lib_clblast,lib_clblast_noavx2,lib_cublas,lib_hipblas,lib_vulkan,lib_vulkan_noavx2
libname = ""
use_openblas = False # if true, uses OpenBLAS for acceleration. libopenblas.dll must exist in the same dir.
use_clblast = False #uses CLBlast instead
use_cublas = False #uses cublas instead
use_hipblas = False #uses hipblas instead
use_noavx2 = False #uses no avx2 instructions
use_failsafe = False #uses no intrinsics, failsafe mode
use_vulkan = False #uses vulkan (needs avx2)
if args.noavx2:
use_noavx2 = True
if args.useclblast:
if not file_exists(lib_clblast_noavx2) or (os.name=='nt' and not file_exists("clblast.dll")):
print("Warning: NoAVX2 CLBlast library file not found. Non-BLAS library will be used.")
else:
print("Attempting to use NoAVX2 CLBlast library for faster prompt ingestion. A compatible clblast will be required.")
use_clblast = True
elif (args.usevulkan is not None):
if not file_exists(lib_vulkan_noavx2):
print("Warning: NoAVX2 Vulkan library file not found. Non-BLAS library will be used.")
else:
print("Attempting to use NoAVX2 Vulkan library for faster prompt ingestion. A compatible Vulkan will be required.")
use_vulkan = True
else:
if not file_exists(lib_noavx2):
print("Warning: NoAVX2 library file not found. Failsafe library will be used.")
elif (args.noblas and args.nommap):
use_failsafe = True
print("!!! Attempting to use FAILSAFE MODE !!!")
else:
print("Attempting to use non-avx2 compatibility library.")
elif args.useclblast:
if not file_exists(lib_clblast) or (os.name=='nt' and not file_exists("clblast.dll")):
print("Warning: CLBlast library file not found. Non-BLAS library will be used.")
else:
print("Attempting to use CLBlast library for faster prompt ingestion. A compatible clblast will be required.")
use_clblast = True
elif (args.usecublas is not None):
if not file_exists(lib_cublas) and not file_exists(lib_hipblas):
print("Warning: CuBLAS library file not found. Non-BLAS library will be used.")
else:
if file_exists(lib_cublas):
print("Attempting to use CuBLAS library for faster prompt ingestion. A compatible CuBLAS will be required.")
use_cublas = True
elif file_exists(lib_hipblas):
print("Attempting to use hipBLAS library for faster prompt ingestion. A compatible AMD GPU will be required.")
use_hipblas = True
elif (args.usevulkan is not None):
if not file_exists(lib_vulkan):
print("Warning: Vulkan library file not found. Non-BLAS library will be used.")
else:
print("Attempting to use Vulkan library for faster prompt ingestion. A compatible Vulkan will be required.")
use_vulkan = True
else:
if not file_exists(lib_openblas) or (os.name=='nt' and not file_exists("libopenblas.dll")):
print("Warning: OpenBLAS library file not found. Non-BLAS library will be used.")
elif args.noblas:
print("Attempting to library without OpenBLAS.")
else:
use_openblas = True
print("Attempting to use OpenBLAS library for faster prompt ingestion. A compatible libopenblas will be required.")
if sys.platform=="darwin":
print("Mac OSX note: Some people have found Accelerate actually faster than OpenBLAS. To compare, run Koboldcpp with --noblas instead.")
if use_noavx2:
if use_failsafe:
libname = lib_failsafe
elif use_clblast:
libname = lib_clblast_noavx2
elif use_vulkan:
libname = lib_vulkan_noavx2
else:
libname = lib_noavx2
else:
if use_clblast:
libname = lib_clblast
elif use_cublas:
libname = lib_cublas
elif use_hipblas:
libname = lib_hipblas
elif use_openblas:
libname = lib_openblas
elif use_vulkan:
libname = lib_vulkan
else:
libname = lib_default
print("Initializing dynamic library: " + libname)
dir_path = getdirpath()
abs_path = getabspath()
#add all potential paths
if os.name=='nt':
os.add_dll_directory(dir_path)
os.add_dll_directory(abs_path)
os.add_dll_directory(os.getcwd())
if libname == lib_cublas and "CUDA_PATH" in os.environ:
newpath = os.path.join(os.environ["CUDA_PATH"], "bin")
if os.path.exists(newpath):
os.add_dll_directory(newpath)
if libname == lib_hipblas and "HIP_PATH" in os.environ:
newpath = os.path.join(os.environ["HIP_PATH"], "bin")
if os.path.exists(newpath):
os.add_dll_directory(newpath)
handle = ctypes.CDLL(os.path.join(dir_path, libname))
handle.load_model.argtypes = [load_model_inputs]
handle.load_model.restype = ctypes.c_bool
handle.generate.argtypes = [generation_inputs]
handle.generate.restype = generation_outputs
handle.new_token.restype = ctypes.c_char_p
handle.new_token.argtypes = [ctypes.c_int]
handle.get_stream_count.restype = ctypes.c_int
handle.has_finished.restype = ctypes.c_bool
handle.get_last_eval_time.restype = ctypes.c_float
handle.get_last_process_time.restype = ctypes.c_float
handle.get_last_token_count.restype = ctypes.c_int
handle.get_last_seed.restype = ctypes.c_int
handle.get_total_gens.restype = ctypes.c_int
handle.get_last_stop_reason.restype = ctypes.c_int
handle.abort_generate.restype = ctypes.c_bool
handle.token_count.restype = token_count_outputs
handle.get_pending_output.restype = ctypes.c_char_p
handle.sd_load_model.argtypes = [sd_load_model_inputs]
handle.sd_load_model.restype = ctypes.c_bool
handle.sd_generate.argtypes = [sd_generation_inputs]
handle.sd_generate.restype = sd_generation_outputs
handle.whisper_load_model.argtypes = [whisper_load_model_inputs]
handle.whisper_load_model.restype = ctypes.c_bool
handle.whisper_generate.argtypes = [whisper_generation_inputs]
handle.whisper_generate.restype = whisper_generation_outputs
def set_backend_props(inputs):
clblastids = 0
if args.useclblast:
clblastids = 100 + int(args.useclblast[0])*10 + int(args.useclblast[1])
inputs.clblast_info = clblastids
# we must force an explicit tensor split
# otherwise the default will divide equally and multigpu crap will slow it down badly
inputs.cublas_info = 0
if not args.tensor_split:
if (args.usecublas and "0" in args.usecublas):
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
os.environ["HIP_VISIBLE_DEVICES"] = "0"
elif (args.usecublas and "1" in args.usecublas):
os.environ["CUDA_VISIBLE_DEVICES"] = "1"
os.environ["HIP_VISIBLE_DEVICES"] = "1"
elif (args.usecublas and "2" in args.usecublas):
os.environ["CUDA_VISIBLE_DEVICES"] = "2"
os.environ["HIP_VISIBLE_DEVICES"] = "2"
elif (args.usecublas and "3" in args.usecublas):
os.environ["CUDA_VISIBLE_DEVICES"] = "3"
os.environ["HIP_VISIBLE_DEVICES"] = "3"
else:
if (args.usecublas and "0" in args.usecublas):
inputs.cublas_info = 0
elif (args.usecublas and "1" in args.usecublas):
inputs.cublas_info = 1
elif (args.usecublas and "2" in args.usecublas):
inputs.cublas_info = 2
elif (args.usecublas and "3" in args.usecublas):
inputs.cublas_info = 3
if args.usevulkan: #is an empty array if using vulkan without defined gpu
s = ""
for l in range(0,len(args.usevulkan)):
s += str(args.usevulkan[l])
inputs.vulkan_info = s.encode("UTF-8")
else:
inputs.vulkan_info = "".encode("UTF-8")
return inputs
def end_trim_to_sentence(input_text):
enders = ['.', '!', '?', '*', '"', ')', '}', '`', ']', ';', '…']
last = -1
for ender in enders:
last = max(last, input_text.rfind(ender))
nl = input_text.rfind("\n")
last = max(last, nl)
if last > 0:
return input_text[:last + 1].strip()
return input_text.strip()
def tryparseint(value):
try:
return int(value)
except ValueError:
return value
def load_model(model_filename):
global args
inputs = load_model_inputs()
inputs.model_filename = model_filename.encode("UTF-8")
inputs.max_context_length = maxctx #initial value to use for ctx, can be overwritten
inputs.threads = args.threads
inputs.low_vram = (True if (args.usecublas and "lowvram" in args.usecublas) else False)
inputs.use_mmq = (True if (args.usecublas and "mmq" in args.usecublas) else False)
inputs.use_rowsplit = (True if (args.usecublas and "rowsplit" in args.usecublas) else False)
inputs.vulkan_info = "0".encode("UTF-8")
inputs.blasthreads = args.blasthreads
inputs.use_mmap = (not args.nommap)
inputs.use_mlock = args.usemlock
inputs.lora_filename = "".encode("UTF-8")
inputs.lora_base = "".encode("UTF-8")
if args.lora:
inputs.lora_filename = args.lora[0].encode("UTF-8")
inputs.use_mmap = False
if len(args.lora) > 1:
inputs.lora_base = args.lora[1].encode("UTF-8")
inputs.mmproj_filename = args.mmproj.encode("UTF-8") if args.mmproj else "".encode("UTF-8")
inputs.use_smartcontext = args.smartcontext
inputs.use_contextshift = (0 if args.noshift else 1)
inputs.flash_attention = args.flashattention
if args.quantkv>0:
inputs.quant_k = inputs.quant_v = args.quantkv
inputs.flash_attention = True
inputs.use_contextshift = 0
else:
inputs.quant_k = inputs.quant_v = 0
inputs.blasbatchsize = args.blasbatchsize
inputs.forceversion = args.forceversion
inputs.gpulayers = args.gpulayers
inputs.rope_freq_scale = args.ropeconfig[0]
if len(args.ropeconfig)>1:
inputs.rope_freq_base = args.ropeconfig[1]
else:
inputs.rope_freq_base = 10000
for n in range(tensor_split_max):
if args.tensor_split and n < len(args.tensor_split):
inputs.tensor_split[n] = float(args.tensor_split[n])
else:
inputs.tensor_split[n] = 0
inputs = set_backend_props(inputs)
inputs.executable_path = (getdirpath()+"/").encode("UTF-8")
inputs.debugmode = args.debugmode
ret = handle.load_model(inputs)
return ret
def generate(prompt, memory="", images=[], max_length=32, max_context_length=512, temperature=0.7, top_k=100, top_a=0.0, top_p=0.92, min_p=0.0, typical_p=1.0, tfs=1.0, rep_pen=1.0, rep_pen_range=128, rep_pen_slope=1.0, presence_penalty=0.0, mirostat=0, mirostat_tau=5.0, mirostat_eta=0.1, sampler_order=[6,0,1,3,4,2,5], seed=-1, stop_sequence=[], use_default_badwordsids=False, stream_sse=False, grammar='', grammar_retain_state=False, genkey='', trimstop=False, quiet=False, dynatemp_range=0.0, dynatemp_exponent=1.0, smoothing_factor=0.0, logit_biases={}, render_special=False, banned_tokens=[], bypass_eos_token=False):
global maxctx, args, currentusergenkey, totalgens, pendingabortkey
inputs = generation_inputs()
inputs.prompt = prompt.encode("UTF-8")
inputs.memory = memory.encode("UTF-8")
for n in range(images_max):
if not images or n >= len(images):
inputs.images[n] = "".encode("UTF-8")
else:
inputs.images[n] = images[n].encode("UTF-8")
if max_length >= (max_context_length-1):
max_length = max_context_length-1
print("\nWarning: You are trying to generate with max_length near or exceeding max_context_length. Most of the context will be removed, and your outputs will not be very coherent.")
global showmaxctxwarning
if max_context_length > maxctx:
if showmaxctxwarning:
print(f"\n(Warning! Request max_context_length={max_context_length} exceeds allocated context size of {maxctx}. It will be reduced to fit. Consider launching with increased --contextsize to avoid errors. This message will only show once per session.)")
showmaxctxwarning = False
max_context_length = maxctx
inputs.max_context_length = max_context_length # this will resize the context buffer if changed
inputs.max_length = max_length
inputs.temperature = temperature
inputs.top_k = top_k
inputs.top_a = top_a
inputs.top_p = top_p
inputs.min_p = min_p
inputs.typical_p = typical_p
inputs.tfs = tfs
inputs.rep_pen = rep_pen
inputs.rep_pen_range = rep_pen_range
inputs.rep_pen_slope = rep_pen_slope
inputs.presence_penalty = presence_penalty
inputs.stream_sse = stream_sse
inputs.quiet = quiet
inputs.dynatemp_range = dynatemp_range
inputs.dynatemp_exponent = dynatemp_exponent
inputs.smoothing_factor = smoothing_factor
inputs.grammar = grammar.encode("UTF-8")
inputs.grammar_retain_state = grammar_retain_state
inputs.allow_eos_token = not use_default_badwordsids
inputs.bypass_eos_token = bypass_eos_token
inputs.render_special = render_special
if mirostat in (1, 2):
inputs.mirostat = mirostat
inputs.mirostat_tau = mirostat_tau
inputs.mirostat_eta = mirostat_eta
else:
inputs.mirostat = inputs.mirostat_tau = inputs.mirostat_eta = 0
if sampler_order and 0 < len(sampler_order) <= sampler_order_max:
try:
for i, sampler in enumerate(sampler_order):
inputs.sampler_order[i] = sampler
inputs.sampler_len = len(sampler_order)
global showsamplerwarning
if showsamplerwarning and inputs.mirostat==0 and inputs.sampler_len>0 and (inputs.sampler_order[0]!=6 or inputs.sampler_order[inputs.sampler_len-1]!=5):
print("\n(Note: Non-default sampler_order detected. Recommended sampler values are [6,0,1,3,4,2,5]. This message will only show once per session.)")
showsamplerwarning = False
except TypeError as e:
print("ERROR: sampler_order must be a list of integers: " + str(e))
inputs.seed = seed
for n in range(stop_token_max):
if not stop_sequence or n >= len(stop_sequence):
inputs.stop_sequence[n] = "".encode("UTF-8")
elif stop_sequence[n]==None:
inputs.stop_sequence[n] = "".encode("UTF-8")
else:
inputs.stop_sequence[n] = stop_sequence[n].encode("UTF-8")
bias_list = []
try:
if logit_biases and len(logit_biases) > 0:
bias_list = [{"key": key, "value": value} for key, value in logit_biases.items()]
except Exception as ex:
print(f"Logit bias dictionary is invalid: {ex}")
for n in range(logit_bias_max):
if n >= len(bias_list):
inputs.logit_biases[n] = logit_bias(-1, 0.0)
else:
try:
t_id = int(bias_list[n]['key'])
bias = float(bias_list[n]['value'])
t_id = -1 if t_id < 0 else t_id
bias = (bias_max_value if bias > bias_max_value else (bias_min_value if bias < bias_min_value else bias))
inputs.logit_biases[n] = logit_bias(t_id, bias)
except Exception as ex:
inputs.logit_biases[n] = logit_bias(-1, 0.0)
print(f"Skipped unparsable logit bias:{ex}")
for n in range(ban_token_max):
if not banned_tokens or n >= len(banned_tokens):
inputs.banned_tokens[n] = "".encode("UTF-8")
else:
inputs.banned_tokens[n] = banned_tokens[n].encode("UTF-8")
currentusergenkey = genkey
totalgens += 1
#early exit if aborted
if pendingabortkey!="" and pendingabortkey==genkey:
print(f"\nDeferred Abort for GenKey: {pendingabortkey}")
pendingabortkey = ""
return {"text":"","status":-1,"stopreason":-1}
else:
ret = handle.generate(inputs)
outstr = ""
if ret.status==1:
outstr = ret.text.decode("UTF-8","ignore")
if trimstop:
for trim_str in stop_sequence:
sindex = outstr.find(trim_str)
if sindex != -1 and trim_str!="":
outstr = outstr[:sindex]
return {"text":outstr,"status":ret.status,"stopreason":ret.stopreason}
def sd_load_model(model_filename,vae_filename,lora_filename):
global args
inputs = sd_load_model_inputs()
inputs.debugmode = args.debugmode
inputs.executable_path = (getdirpath()+"/").encode("UTF-8")
inputs.model_filename = model_filename.encode("UTF-8")
thds = args.threads
quant = 0
if args.sdthreads and args.sdthreads > 0:
sdt = int(args.sdthreads)
if sdt > 0:
thds = sdt
if args.sdquant:
quant = 1
inputs.threads = thds
inputs.quant = quant
inputs.taesd = True if args.sdvaeauto else False
inputs.vae_filename = vae_filename.encode("UTF-8")
inputs.lora_filename = lora_filename.encode("UTF-8")
inputs.lora_multiplier = args.sdloramult
inputs = set_backend_props(inputs)
ret = handle.sd_load_model(inputs)
return ret
def sd_generate(genparams):
global maxctx, args, currentusergenkey, totalgens, pendingabortkey, chatcompl_adapter
default_adapter = {} if chatcompl_adapter is None else chatcompl_adapter
adapter_obj = genparams.get('adapter', default_adapter)
forced_negprompt = adapter_obj.get("add_sd_negative_prompt", "")
forced_posprompt = adapter_obj.get("add_sd_prompt", "")
prompt = genparams.get("prompt", "high quality")
negative_prompt = genparams.get("negative_prompt", "")
if forced_negprompt!="":
if negative_prompt!="":
negative_prompt += ", " + forced_negprompt
else:
negative_prompt = forced_negprompt
if forced_posprompt!="":
if prompt!="":
prompt += ", " + forced_posprompt
else:
prompt = forced_posprompt
init_images_arr = genparams.get("init_images", [])
init_images = ("" if (not init_images_arr or len(init_images_arr)==0 or not init_images_arr[0]) else init_images_arr[0])
denoising_strength = genparams.get("denoising_strength", 0.6)
cfg_scale = genparams.get("cfg_scale", 5)
sample_steps = tryparseint(genparams.get("steps", 20))
width = tryparseint(genparams.get("width", 512))
height = tryparseint(genparams.get("height", 512))
seed = tryparseint(genparams.get("seed", -1))
sample_method = genparams.get("sampler_name", "k_euler_a")
is_quiet = True if (args.quiet or args.debugmode == -1) else False
clip_skip = tryparseint(genparams.get("clip_skip", -1))
#clean vars
width = width - (width%64)
height = height - (height%64)
cfg_scale = (1 if cfg_scale < 1 else (25 if cfg_scale > 25 else cfg_scale))
sample_steps = (1 if sample_steps < 1 else (80 if sample_steps > 80 else sample_steps))
reslimit = 1024
width = (64 if width < 64 else width)
height = (64 if height < 64 else height)
if args.sdclamped:
sample_steps = (40 if sample_steps > 40 else sample_steps)
reslimit = int(args.sdclamped)
reslimit = (512 if reslimit<512 else reslimit)
print(f"\nImgGen: Clamped Mode (For Shared Use). Step counts and resolution are clamped to {reslimit}x{reslimit}.")
biggest = max(width,height)
if biggest > reslimit:
scaler = biggest / reslimit
width = int(width / scaler)
height = int(height / scaler)
width = width - (width%64)
height = height - (height%64)
inputs = sd_generation_inputs()
inputs.prompt = prompt.encode("UTF-8")
inputs.negative_prompt = negative_prompt.encode("UTF-8")
inputs.init_images = init_images.encode("UTF-8")
inputs.cfg_scale = cfg_scale
inputs.denoising_strength = denoising_strength
inputs.sample_steps = sample_steps
inputs.width = width
inputs.height = height
inputs.seed = seed
inputs.sample_method = sample_method.lower().encode("UTF-8")
inputs.quiet = is_quiet
inputs.clip_skip = clip_skip
ret = handle.sd_generate(inputs)
outstr = ""
if ret.status==1:
outstr = ret.data.decode("UTF-8","ignore")
return outstr
def whisper_load_model(model_filename):
global args
inputs = whisper_load_model_inputs()
inputs.debugmode = args.debugmode
inputs.executable_path = (getdirpath()+"/").encode("UTF-8")
inputs.model_filename = model_filename.encode("UTF-8")
inputs = set_backend_props(inputs)
ret = handle.whisper_load_model(inputs)
return ret
def whisper_generate(genparams):
global args
is_quiet = True if (args.quiet or args.debugmode == -1) else False
prompt = genparams.get("prompt", "")
audio_data = genparams.get("audio_data", "")
if audio_data.startswith("data:audio"):
audio_data = audio_data.split(",", 1)[1]
inputs = whisper_generation_inputs()
inputs.prompt = prompt.encode("UTF-8")
inputs.audio_data = audio_data.encode("UTF-8")
inputs.quiet = is_quiet
ret = handle.whisper_generate(inputs)
outstr = ""
if ret.status==1:
outstr = ret.data.decode("UTF-8","ignore")
return outstr
def utfprint(str):
maxlen = 25000
strlength = len(str)
if strlength > maxlen: #limit max output len
str = str[:maxlen] + f"... (+{strlength-maxlen} chars)"
try:
print(str)
except UnicodeEncodeError:
# Replace or omit the problematic character
utf_string = str.encode('ascii', 'ignore').decode('ascii',"ignore")
utf_string = utf_string.replace('\a', '') #remove bell characters
print(utf_string)
def bring_terminal_to_foreground():
if os.name=='nt':
ctypes.windll.user32.ShowWindow(ctypes.windll.kernel32.GetConsoleWindow(), 9)
ctypes.windll.user32.SetForegroundWindow(ctypes.windll.kernel32.GetConsoleWindow())
def string_contains_sequence_substring(inputstr,sequences):
if inputstr.strip()=="":
return False
for s in sequences:
if s.strip()=="":
continue
if s.strip() in inputstr.strip() or inputstr.strip() in s.strip():
return True
return False
#################################################################
### A hacky simple HTTP server simulating a kobold api by Concedo
### we are intentionally NOT using flask, because we want MINIMAL dependencies
#################################################################
friendlymodelname = "inactive"
friendlysdmodelname = "inactive"
fullsdmodelpath = "" #if empty, it's not initialized
mmprojpath = "" #if empty, it's not initialized
password = "" #if empty, no auth key required
fullwhispermodelpath = "" #if empty, it's not initialized
maxctx = 2048
maxhordectx = 2048
maxhordelen = 256
modelbusy = threading.Lock()
requestsinqueue = 0
defaultport = 5001
KcppVersion = "1.69.1"
showdebug = True
showsamplerwarning = True
showmaxctxwarning = True
session_kudos_earned = 0
session_jobs = 0
session_starttime = None
exitcounter = -1
punishcounter = 0 #causes a timeout if too many errors
rewardcounter = 0 #reduces error counts for successful jobs
totalgens = 0
currentusergenkey = "" #store a special key so polled streaming works even in multiuser
pendingabortkey = "" #if an abort is received for the non-active request, remember it (at least 1) to cancel later
args = None #global args
gui_layers_untouched = True
runmode_untouched = True
preloaded_story = None
chatcompl_adapter = None
embedded_kailite = None
embedded_kcpp_docs = None
embedded_kcpp_sdui = None
sslvalid = False
nocertify = False
start_time = time.time()
last_req_time = time.time()
last_non_horde_req_time = time.time()
currfinishreason = "null"
using_gui_launcher = False
using_outdated_flags = False
def transform_genparams(genparams, api_format):
#api format 1=basic,2=kai,3=oai,4=oai-chat,5=interrogate
#alias all nonstandard alternative names for rep pen.
rp1 = genparams.get('repeat_penalty', 1.0)
rp2 = genparams.get('repetition_penalty', 1.0)
rp3 = genparams.get('rep_pen', 1.0)
rp_max = max(rp1,rp2,rp3)
genparams["rep_pen"] = rp_max
if api_format==1:
genparams["prompt"] = genparams.get('text', "")
genparams["top_k"] = int(genparams.get('top_k', 120))
genparams["max_length"] = genparams.get('max', 150)
elif api_format==2:
if "ignore_eos" in genparams and not ("use_default_badwordsids" in genparams):
genparams["use_default_badwordsids"] = genparams.get('ignore_eos', False)
elif api_format==3 or api_format==4:
genparams["max_length"] = genparams.get('max_tokens', (256 if api_format==4 else 150))
presence_penalty = genparams.get('presence_penalty', genparams.get('frequency_penalty', 0.0))
genparams["presence_penalty"] = presence_penalty
# openai allows either a string or a list as a stop sequence
if isinstance(genparams.get('stop',[]), list):
genparams["stop_sequence"] = genparams.get('stop', [])
else:
genparams["stop_sequence"] = [genparams.get('stop')]
genparams["sampler_seed"] = tryparseint(genparams.get('seed', -1))
genparams["use_default_badwordsids"] = genparams.get('ignore_eos', False)
genparams["mirostat"] = genparams.get('mirostat_mode', 0)
if api_format==4:
# translate openai chat completion messages format into one big string.
messages_array = genparams.get('messages', [])
default_adapter = {} if chatcompl_adapter is None else chatcompl_adapter
adapter_obj = genparams.get('adapter', default_adapter)
messages_string = ""
system_message_start = adapter_obj.get("system_start", "\n### Instruction:\n")
system_message_end = adapter_obj.get("system_end", "")
user_message_start = adapter_obj.get("user_start", "\n### Instruction:\n")
user_message_end = adapter_obj.get("user_end", "")
assistant_message_start = adapter_obj.get("assistant_start", "\n### Response:\n")
assistant_message_end = adapter_obj.get("assistant_end", "")
images_added = []
for message in messages_array:
if message['role'] == "system":
messages_string += system_message_start
elif message['role'] == "user":
messages_string += user_message_start
elif message['role'] == "assistant":
messages_string += assistant_message_start
# content can be a string or an array of objects
curr_content = message['content']
if isinstance(curr_content, str):
messages_string += curr_content
elif isinstance(curr_content, list): #is an array
for item in curr_content:
if item['type']=="text":
messages_string += item['text']
elif item['type']=="image_url":
if item['image_url'] and item['image_url']['url'] and item['image_url']['url'].startswith("data:image"):
images_added.append(item['image_url']['url'].split(",", 1)[1])
if message['role'] == "system":
messages_string += system_message_end
elif message['role'] == "user":
messages_string += user_message_end
elif message['role'] == "assistant":
messages_string += assistant_message_end
messages_string += assistant_message_start
genparams["prompt"] = messages_string
if len(images_added)>0:
genparams["images"] = images_added
if len(genparams.get('stop_sequence', []))==0: #only set stop seq if it wont overwrite existing
genparams["stop_sequence"] = [user_message_start.strip(),assistant_message_start.strip()]
else:
genparams["stop_sequence"].append(user_message_start.strip())
genparams["stop_sequence"].append(assistant_message_start.strip())
genparams["trim_stop"] = True
elif api_format==5:
firstimg = genparams.get('image', "")
genparams["images"] = [firstimg]
genparams["max_length"] = 42
genparams["prompt"] = "### Instruction: In one sentence, write a descriptive caption for this image.\n### Response:"
return genparams
class ServerRequestHandler(http.server.SimpleHTTPRequestHandler):
sys_version = ""
server_version = "ConcedoLlamaForKoboldServer"
def __init__(self, addr, port):
self.addr = addr
self.port = port
def __call__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
def log_message(self, format, *args):
global showdebug
if showdebug:
super().log_message(format, *args)
pass
def extract_b64string_from_file_upload(self, body):
try:
if 'content-type' in self.headers and self.headers['content-type']:
boundary = self.headers['content-type'].split("=")[1].encode()
if boundary:
fparts = body.split(boundary)
for fpart in fparts:
detected_upload_filename = re.findall(r'Content-Disposition.*name="file"; filename="(.*)"', fpart.decode('utf-8',errors='ignore'))
if detected_upload_filename and len(detected_upload_filename)>0:
utfprint(f"Detected uploaded file: {detected_upload_filename[0]}")
file_data = fpart.split(b'\r\n\r\n')[1].rsplit(b'\r\n', 1)[0]
file_data_base64 = base64.b64encode(file_data).decode('utf-8',"ignore")
base64_string = f"data:audio/wav;base64,{file_data_base64}"
return base64_string
print("Uploaded file not found.")
return None
except Exception as e:
print(f"File Upload Process Error: {e}")
return None
async def generate_text(self, genparams, api_format, stream_flag):
from datetime import datetime
global friendlymodelname, chatcompl_adapter, currfinishreason
is_quiet = args.quiet
currfinishreason = "null"
def run_blocking(): #api format 1=basic,2=kai,3=oai,4=oai-chat
#flag instance as non-idle for a while
washordereq = genparams.get('genkey', '').startswith('HORDEREQ_')
if not washordereq:
global last_non_horde_req_time
last_non_horde_req_time = time.time()
return generate(
prompt=genparams.get('prompt', ""),
memory=genparams.get('memory', ""),
images=genparams.get('images', []),
max_context_length=genparams.get('max_context_length', maxctx),
max_length=genparams.get('max_length', 150),
temperature=genparams.get('temperature', 0.7),
top_k=genparams.get('top_k', 100),
top_a=genparams.get('top_a', 0.0),
top_p=genparams.get('top_p', 0.92),
min_p=genparams.get('min_p', 0.0),
typical_p=genparams.get('typical', 1.0),
tfs=genparams.get('tfs', 1.0),
rep_pen=genparams.get('rep_pen', 1.0),
rep_pen_range=genparams.get('rep_pen_range', 256),
rep_pen_slope=genparams.get('rep_pen_slope', 1.0),
presence_penalty=genparams.get('presence_penalty', 0.0),
mirostat=genparams.get('mirostat', 0),
mirostat_tau=genparams.get('mirostat_tau', 5.0),
mirostat_eta=genparams.get('mirostat_eta', 0.1),
sampler_order=genparams.get('sampler_order', [6,0,1,3,4,2,5]),
seed=tryparseint(genparams.get('sampler_seed', -1)),
stop_sequence=genparams.get('stop_sequence', []),
use_default_badwordsids=genparams.get('use_default_badwordsids', False),
stream_sse=stream_flag,
grammar=genparams.get('grammar', ''),
grammar_retain_state = genparams.get('grammar_retain_state', False),
genkey=genparams.get('genkey', ''),
trimstop=genparams.get('trim_stop', False),
quiet=is_quiet,
dynatemp_range=genparams.get('dynatemp_range', 0.0),
dynatemp_exponent=genparams.get('dynatemp_exponent', 1.0),
smoothing_factor=genparams.get('smoothing_factor', 0.0),
logit_biases=genparams.get('logit_bias', {}),
render_special=genparams.get('render_special', False),
banned_tokens=genparams.get('banned_tokens', []),
bypass_eos_token=genparams.get('bypass_eos', False),
)
genout = {"text":"","status":-1,"stopreason":-1}
if stream_flag:
loop = asyncio.get_event_loop()
executor = ThreadPoolExecutor()
genout = await loop.run_in_executor(executor, run_blocking)
else:
genout = run_blocking()
recvtxt = genout['text']
currfinishreason = ("length" if (genout['stopreason']!=1) else "stop")
#flag instance as non-idle for a while
washordereq = genparams.get('genkey', '').startswith('HORDEREQ_')
if not washordereq:
global last_non_horde_req_time
last_non_horde_req_time = time.time()
if (args.debugmode != -1 and not is_quiet) or args.debugmode >= 1:
utfprint("\nOutput: " + recvtxt)
if api_format==1:
res = {"data": {"seqs":[recvtxt]}}
elif api_format==3:
res = {"id": "cmpl-1", "object": "text_completion", "created": 1, "model": friendlymodelname,
"usage": {"prompt_tokens": 100,"completion_tokens": 100,"total_tokens": 200},
"choices": [{"text": recvtxt, "index": 0, "finish_reason": currfinishreason}]}
elif api_format==4:
res = {"id": "chatcmpl-1", "object": "chat.completion", "created": 1, "model": friendlymodelname,
"usage": {"prompt_tokens": 100,"completion_tokens": 100,"total_tokens": 200},
"choices": [{"index": 0, "message":{"role": "assistant", "content": recvtxt,}, "finish_reason": currfinishreason}]}
elif api_format==5:
res = {"caption": end_trim_to_sentence(recvtxt)}
else:
res = {"results": [{"text": recvtxt, "finish_reason":currfinishreason}]}
try:
return res
except Exception as e:
print(f"Generate: Error while generating: {e}")
async def send_oai_sse_event(self, data):
if data=="[DONE]":
self.wfile.write(f'data: {data}'.encode())
else:
self.wfile.write(f'data: {data}\n\n'.encode())
self.wfile.flush()
async def send_kai_sse_event(self, data):
self.wfile.write(f'event: message\n'.encode())
self.wfile.write(f'data: {data}\n\n'.encode())
self.wfile.flush()
async def handle_sse_stream(self, genparams, api_format):