generated from fkodom/python-repo-template
-
-
Notifications
You must be signed in to change notification settings - Fork 8
/
t5.py
340 lines (293 loc) · 13.5 KB
/
t5.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
from __future__ import annotations
from copy import deepcopy
from typing import TypeVar, overload
import torch
from einops import einsum, rearrange, repeat
from torch import nn
from transformers.models.t5.modeling_t5 import T5Attention
class T5GQA(nn.Module):
def __init__(
self,
is_decoder: bool,
d_model: int,
key_value_proj_dim: int,
n_heads: int,
kv_heads: int,
dropout: float,
has_relative_attention_bias: bool,
relative_attention_num_buckets: int,
relative_attention_max_distance: int,
):
super().__init__()
if n_heads % kv_heads != 0:
raise ValueError(
f"n_heads ({n_heads}) must be divisible by kv_heads ({kv_heads})"
)
self.is_decoder = is_decoder
self.d_model = d_model
self.key_value_proj_dim = key_value_proj_dim
self.n_heads = n_heads
# TODO: Check if we need to store 'kv_heads' and 'inner_dim' as a properties
self.kv_heads = kv_heads
self.dropout = dropout
# NOTE: Relative attention bias typically only used in the first layer
# of a `T5Stack` module.
self.has_relative_attention_bias = has_relative_attention_bias
self.relative_attention_num_buckets = relative_attention_num_buckets
self.relative_attention_max_distance = relative_attention_max_distance
self.inner_dim = self.n_heads * self.key_value_proj_dim
self.kv_dim = self.kv_heads * self.key_value_proj_dim
# Mesh TensorFlow initialization to avoid scaling before softmax
# self.q = nn.Linear(self.d_model, self.inner_dim, bias=False)
# self.k = nn.Linear(self.d_model, self.kv_dim, bias=False)
# self.v = nn.Linear(self.d_model, self.kv_dim, bias=False)
# self.o = nn.Linear(self.kv_dim, self.d_model, bias=False)
self.q = nn.Linear(self.d_model, self.inner_dim, bias=False)
self.k = nn.Linear(self.d_model, self.inner_dim, bias=False)
self.v = nn.Linear(self.d_model, self.inner_dim, bias=False)
self.o = nn.Linear(self.inner_dim, self.d_model, bias=False)
if self.has_relative_attention_bias:
self.relative_attention_bias = nn.Embedding(
self.relative_attention_num_buckets, self.n_heads
)
self.pruned_heads = set() # type: ignore
self.gradient_checkpointing = False
self._relative_position_bucket = T5Attention._relative_position_bucket
@classmethod
def from_t5_attention(cls, t5: T5Attention, kv_heads: int) -> T5GQA:
t5_gqa = T5GQA(
is_decoder=t5.is_decoder,
d_model=t5.d_model,
key_value_proj_dim=t5.key_value_proj_dim,
n_heads=t5.n_heads,
kv_heads=kv_heads,
dropout=t5.dropout,
has_relative_attention_bias=t5.has_relative_attention_bias,
relative_attention_num_buckets=t5.relative_attention_num_buckets,
relative_attention_max_distance=t5.relative_attention_max_distance,
)
# Copy all of the weights verbatim from the original T5Attention module.
# NOTE: In the T5 GQA implementation, all of the attention head aggregations
# happen in the 'forward' method. The weights themselves are not modified.
t5_gqa.q.weight.data = t5.q.weight.data
t5_gqa.k.weight.data = t5.k.weight.data
t5_gqa.v.weight.data = t5.v.weight.data
t5_gqa.o.weight.data = t5.o.weight.data
if t5.has_relative_attention_bias:
t5_gqa.relative_attention_bias.weight.data = (
t5.relative_attention_bias.weight.data
)
return t5_gqa
def forward( # noqa: C901
self,
hidden_states,
mask=None,
key_value_states=None,
position_bias=None,
past_key_value=None,
layer_head_mask=None,
query_length=None,
use_cache=False,
output_attentions=False,
):
"""
Self-attention (if key_value_states is None) or attention over source sentence (provided by key_value_states).
"""
# Input is (batch_size, seq_length, dim)
# Mask is (batch_size, key_length) (non-causal) or (batch_size, key_length, key_length)
# past_key_value[0] is (batch_size, n_heads, q_len - 1, dim_per_head)
batch_size, seq_length = hidden_states.shape[:2]
real_seq_length = seq_length
if past_key_value is not None:
if len(past_key_value) != 2:
raise ValueError(
f"past_key_value should have 2 past states: keys and values. Got { len(past_key_value)} past states"
)
real_seq_length += (
past_key_value[0].shape[2] if query_length is None else query_length
)
key_length = (
real_seq_length if key_value_states is None else key_value_states.shape[1]
)
def shape(states):
"""projection"""
# NOTE: Changed from the original definition in T5Attention.
sequence_length = states.shape[1]
return states.view(
batch_size, sequence_length, -1, self.key_value_proj_dim
).transpose(1, 2)
def unshape(states):
"""reshape"""
# NOTE: Changed from the original definition in T5Attention.
sequence_length = states.shape[2]
return (
states.transpose(1, 2)
.contiguous()
.view(batch_size, sequence_length, -1)
)
def project(hidden_states, proj_layer, key_value_states, past_key_value):
"""projects hidden states correctly to key/query states"""
if key_value_states is None:
# self-attn
# (batch_size, n_heads, seq_length, dim_per_head)
hidden_states = shape(proj_layer(hidden_states))
elif past_key_value is None:
# cross-attn
# (batch_size, n_heads, seq_length, dim_per_head)
hidden_states = shape(proj_layer(key_value_states))
if past_key_value is not None:
if key_value_states is None:
# self-attn
# (batch_size, n_heads, key_length, dim_per_head)
hidden_states = torch.cat([past_key_value, hidden_states], dim=2)
elif past_key_value.shape[2] != key_value_states.shape[1]:
# checking that the `sequence_length` of the `past_key_value` is the same as
# the provided `key_value_states` to support prefix tuning
# cross-attn
# (batch_size, n_heads, seq_length, dim_per_head)
hidden_states = shape(proj_layer(key_value_states))
else:
# cross-attn
hidden_states = past_key_value
return hidden_states
# get query states: (batch_size, n_heads, seq_length, dim_per_head)
grouped_queries = shape(self.q(hidden_states))
# get key/value states
key_states = project(
hidden_states,
self.k,
key_value_states,
past_key_value[0] if past_key_value is not None else None,
)
value_states = project(
hidden_states,
self.v,
key_value_states,
past_key_value[1] if past_key_value is not None else None,
)
# # compute scores
# scores = torch.matmul(
# query_states, key_states.transpose(3, 2)
# ) # equivalent of torch.einsum("bnqd,bnkd->bnqk", query_states, key_states), compatible with onnx op>9
grouped_queries = rearrange(
grouped_queries, "b (g h) n d -> b g h n d", h=self.kv_heads
)
grouped_keys = rearrange(
key_states, "b (g h) s d -> b g h s d", h=self.kv_heads
).mean(dim=1)
scores = einsum(grouped_queries, grouped_keys, "b g h n d, b h s d -> b h n s")
if position_bias is None:
if not self.has_relative_attention_bias:
position_bias = torch.zeros(
# NOTE: This is different from the original in T5Attention!
# (1, self.n_heads, real_seq_length, key_length),
(1, self.kv_heads, real_seq_length, key_length),
device=scores.device,
dtype=scores.dtype,
)
if self.gradient_checkpointing and self.training:
position_bias.requires_grad = True
else:
position_bias = T5Attention.compute_bias(
self, real_seq_length, key_length, device=scores.device
)
# if key and values are already calculated
# we want only the last query position bias
if past_key_value is not None:
position_bias = position_bias[:, :, -hidden_states.size(1) :, :]
if mask is not None:
# (batch_size, n_heads, seq_length, key_length)
position_bias = position_bias + mask
if self.pruned_heads:
mask = torch.ones(position_bias.shape[1])
mask[list(self.pruned_heads)] = 0
position_bias_masked = position_bias[:, mask.bool()]
else:
position_bias_masked = position_bias
# NOTE: This is different from the original in T5Attention!
grouped_position_bias = rearrange(
position_bias_masked, "b (g h) n s -> b g h n s", h=self.kv_heads
).mean(dim=1)
scores += grouped_position_bias
# attn_weights: (batch_size, kv_heads, seq_length, key_length)
attn_weights = nn.functional.softmax(scores.float(), dim=-1).type_as(scores)
attn_weights = nn.functional.dropout(
attn_weights, p=self.dropout, training=self.training
)
# Mask heads if we want to
if layer_head_mask is not None:
attn_weights = attn_weights * layer_head_mask
# NOTE: This is different from the original in T5Attention!
# attn_output = unshape(torch.matmul(attn_weights, value_states))
grouped_values = rearrange(
value_states, "b (g h) s d -> b g h s d", h=self.kv_heads
).mean(dim=1)
attn_output = unshape(torch.matmul(attn_weights, grouped_values))
attn_output = repeat(
attn_output, "b s d -> b s (g d)", g=(self.n_heads // self.kv_heads)
)
attn_output = self.o(attn_output)
present_key_value_state = (
(key_states, value_states) if (self.is_decoder and use_cache) else None
)
outputs = (attn_output,) + (present_key_value_state,) + (position_bias,)
if output_attentions:
outputs = outputs + (attn_weights,) # type: ignore
return outputs
ModuleType = TypeVar("ModuleType", bound=nn.Module)
@overload
def convert_t5_to_gqa(
module: ModuleType, kv_heads: int, inplace: bool = False
) -> ModuleType:
...
@overload
def convert_t5_to_gqa(
module: T5Attention, kv_heads: int, inplace: bool = False
) -> T5GQA:
...
def convert_t5_to_gqa(module, kv_heads: int, inplace: bool = False):
if isinstance(module, T5Attention):
return T5GQA.from_t5_attention(module, kv_heads=kv_heads)
out = module if inplace else deepcopy(module)
for name, child in out.named_children():
out._modules[name] = convert_t5_to_gqa(child, kv_heads=kv_heads, inplace=True)
return out
if __name__ == "__main__":
from transformers import T5ForConditionalGeneration, T5Tokenizer
# NOTE: The original paper uses T5 v1.1 XL and XXL models. When I load those
# models through 'transformers' without applying GQA, I get nonsense outputs.
# TODO: Figure out why this is happening.
# tokenizer = T5Tokenizer.from_pretrained("google/t5-v1_1-large", legacy=False)
# model = T5ForConditionalGeneration.from_pretrained("google/t5-v1_1-large")
#
# In the meantime, we can use the non-Google T5 models, which seem to work fine.
# NOTE: Since the the original number of heads (n_heads) must be divisible by
# 'kv_heads', there are only certain values of 'kv_heads' that we can use.
# To the best of my knowledge, the following values of 'kv_heads' are valid:
# - t5-small: 1, 2, 4, 8
# - t5-base: 1, 2, 3, 4, 6, 12
# - t5-large: 1, 2, 4, 8, 16
# - t5-3b: 1, 2, 4, 8, 16, 32
# - t5-11b: 1, 2, 4, 8, 16, 32, 64 TODO: Check 11b values specifically
tokenizer = T5Tokenizer.from_pretrained(
"t5-base", legacy=False, model_max_length=512
)
t5: T5ForConditionalGeneration = T5ForConditionalGeneration.from_pretrained(
"t5-base"
)
gqa = convert_t5_to_gqa(t5, kv_heads=6)
input_ids = tokenizer(
"translate English to German: The house is wonderful.", return_tensors="pt"
).input_ids
y2 = gqa.generate(input_ids, max_new_tokens=25)
text = tokenizer.batch_decode(y2[0], skip_special_tokens=True)
print(text)
# The correct answer is: ['<pad>', 'Das', 'Haus', 'ist', 'wunderbar', '.', '</s>']
# NOTE: The original T5 model produces this answer, and so does GQA when we use
# the maximum number of heads -- effectively equivalent to the original T5 model
# with MHA. The text quickly degrades as we reduce the number of heads.
labels = tokenizer("Das Haus ist wunderbar.", return_tensors="pt").input_ids
loss = gqa(input_ids=input_ids, labels=labels).loss
print(f"Loss: {loss}")
# NOTE: As above, the loss quickly degrades (increases) as we reduce the number
# of GQA heads.