From c6a88f12937754798bd006f696ea9684731fdce0 Mon Sep 17 00:00:00 2001 From: FilipeFcp Date: Fri, 9 Aug 2024 18:01:12 -0300 Subject: [PATCH] adjusting fourier transform frequencies (#156) adjusting Fourier transform frequencies --- Bandstructure.ipynb | 1999 ++++++------------------------------------- 1 file changed, 258 insertions(+), 1741 deletions(-) diff --git a/Bandstructure.ipynb b/Bandstructure.ipynb index 8f0b811e..1a45fe82 100644 --- a/Bandstructure.ipynb +++ b/Bandstructure.ipynb @@ -261,50 +261,7 @@ }, "tags": [] }, - "outputs": [ - { - "data": { - "text/html": [ - "
[10:06:14] WARNING: Default value for the field monitor           monitor.py:261\n",
-       "           'colocate' setting has changed to 'True' in Tidy3D                   \n",
-       "           2.4.0. All field components will be colocated to the                 \n",
-       "           grid boundaries. Set to 'False' to get the raw fields                \n",
-       "           on the Yee grid instead.                                             \n",
-       "
\n" - ], - "text/plain": [ - "\u001b[2;36m[10:06:14]\u001b[0m\u001b[2;36m \u001b[0m\u001b[31mWARNING: Default value for the field monitor \u001b[0m \u001b]8;id=232594;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/components/monitor.py\u001b\\\u001b[2mmonitor.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=392555;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/components/monitor.py#261\u001b\\\u001b[2m261\u001b[0m\u001b]8;;\u001b\\\n", - "\u001b[2;36m \u001b[0m\u001b[32m'colocate'\u001b[0m\u001b[31m setting has changed to \u001b[0m\u001b[32m'True'\u001b[0m\u001b[31m in Tidy3D \u001b[0m \u001b[2m \u001b[0m\n", - "\u001b[2;36m \u001b[0m\u001b[1;36m2.4\u001b[0m\u001b[31m.\u001b[0m\u001b[1;36m0\u001b[0m\u001b[31m. All field components will be colocated to the \u001b[0m \u001b[2m \u001b[0m\n", - "\u001b[2;36m \u001b[0m\u001b[31mgrid boundaries. Set to \u001b[0m\u001b[32m'False'\u001b[0m\u001b[31m to get the raw fields \u001b[0m \u001b[2m \u001b[0m\n", - "\u001b[2;36m \u001b[0m\u001b[31mon the Yee grid instead. \u001b[0m \u001b[2m \u001b[0m\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "
           WARNING: Default value for the field monitor           monitor.py:261\n",
-       "           'colocate' setting has changed to 'True' in Tidy3D                   \n",
-       "           2.4.0. All field components will be colocated to the                 \n",
-       "           grid boundaries. Set to 'False' to get the raw fields                \n",
-       "           on the Yee grid instead.                                             \n",
-       "
\n" - ], - "text/plain": [ - "\u001b[2;36m \u001b[0m\u001b[2;36m \u001b[0m\u001b[31mWARNING: Default value for the field monitor \u001b[0m \u001b]8;id=131510;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/components/monitor.py\u001b\\\u001b[2mmonitor.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=106016;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/components/monitor.py#261\u001b\\\u001b[2m261\u001b[0m\u001b]8;;\u001b\\\n", - "\u001b[2;36m \u001b[0m\u001b[32m'colocate'\u001b[0m\u001b[31m setting has changed to \u001b[0m\u001b[32m'True'\u001b[0m\u001b[31m in Tidy3D \u001b[0m \u001b[2m \u001b[0m\n", - "\u001b[2;36m \u001b[0m\u001b[1;36m2.4\u001b[0m\u001b[31m.\u001b[0m\u001b[1;36m0\u001b[0m\u001b[31m. All field components will be colocated to the \u001b[0m \u001b[2m \u001b[0m\n", - "\u001b[2;36m \u001b[0m\u001b[31mgrid boundaries. Set to \u001b[0m\u001b[32m'False'\u001b[0m\u001b[31m to get the raw fields \u001b[0m \u001b[2m \u001b[0m\n", - "\u001b[2;36m \u001b[0m\u001b[31mon the Yee grid instead. \u001b[0m \u001b[2m \u001b[0m\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "monitor_positions = rng.uniform(\n", " [-Lx / 2, -Ly / 2, 0], [Lx / 2, Ly / 2, 0], [num_monitors, 3]\n", @@ -440,7 +397,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAuoAAAGGCAYAAAAtuaQaAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABUcUlEQVR4nO3deXgUVb4+8Ld6T9KdTkI2EhLCJksIiywRRi6iURBGwREUhkFkGBgXdBR1hCvD5mVAB4FREYTRYURU1BkZrjooqxsIiuAPURQwbIEkhJDurL3V+f0R0pdOZ+lA0lXdeT/PUw/U6VOdb6Wh6+3qU6ckIYQAERERERGpikbpAoiIiIiIyB+DOhERERGRCjGoExERERGpEIM6EREREZEKMagTEREREakQgzoRERERkQoxqBMRERERqRCDOhERERGRCjGoExERERGpEIM6URDt2rULkiRh165dSpdCREQhjseU8MegTtQCXnrpJaxbt07pMq7IG2+8gRUrVihdBgBAlmU8++yz6NChA0wmE3r16oU333wz4O1LSkowffp0JCQkICoqCsOGDcM333xTZ9/Nmzfj2muvhclkQnp6OubNmwe3291cu0JEdMV4TGler7zyCrp37w6TyYQuXbrghRdeCHhbh8OBJ598EikpKYiIiEB2dja2bt1aZ9/du3fj+uuvR2RkJJKTk/Hwww+jrKysacUKImp2mZmZYujQoX7tHo9HVFZWCo/HE/yiAjRq1CjRvn17pcsQQggxa9YsAUBMmzZNrFmzRowaNUoAEG+++Waj23o8HjF48GARFRUl5s+fL1588UXRo0cPYbFYxE8//eTT98MPPxSSJIlhw4aJNWvWiIceekhoNBpx3333tdSuEREFjMeU5rN69WoBQNx5551izZo1YtKkSQKAWLJkSUDbjx8/Xuh0OvH444+Ll19+WQwaNEjodDrx2Wef+fQ7cOCAMJlMom/fvmLVqlXiqaeeEkajUYwYMaJJ9TKoU4spKytTugTF1PemGgrU8qZ65swZodfrxYMPPuhtk2VZDBkyRLRr10643e4Gt9+4caMAIN555x1vW2FhoYiJiRETJkzw6dujRw/Ru3dv4XK5vG1PPfWUkCRJ/PDDD820R0R0NXhMGap0GVdELccUIYSoqKgQbdq0EaNGjfJpnzhxooiKihLFxcUNbr93714BQPzlL3/xtlVWVopOnTqJQYMG+fS99dZbRdu2bYXNZvO2rV27VgAQH330UcA1M6hTQM6cOSN++9vfirZt2wqDwSAyMjLEfffdJxwOhxBCiL///e8CgNi1a5e4//77RUJCgoiJifFuv3LlStGjRw9hMBhE27ZtxQMPPCAuXrzo8zN++ukn8atf/UokJSUJo9EoUlNTxd133y1KSkq8fT7++GPxi1/8QlitVhEVFSWuueYaMXv27EbrD2S7qqoqMXfuXNGpUydhMBhEu3btxBNPPCGqqqr8nm/9+vViwIABIiIiQsTExIghQ4Z4/+O1b99eAPBZat5gd+7cKQCInTt3+jzf22+/La699lphMplEmzZtxMSJE8WZM2d8+kyePFlERUWJM2fOiNGjR4uoqCgRHx8vHnvssUZDqxBCbNq0SYwcOdL7Gnbs2FEsXLjQZ9uhQ4f61d7QG+zkyZP9+tcs8+bNa7SmhqxcuVIAEIcPH/Zpf+ONNwQAv7MXtY0bN04kJSX5nWmaPn26iIyM9L6uhw8fFgDEypUrffrl5eUJAOLpp5++qv0gIn88pvjiMaXaq6++KgCIV155xad90aJFAoD44IMPGq2rIR988EGdz7N7924BQKxfv77B7Z944gmh1Wp9wrcQQvz5z38WAMSpU6eEEELYbDah0+nEE0884dPP4XAIs9kspk6dGnDNuqYNlKHW6OzZsxg4cKB3vG+3bt2Ql5eHd999FxUVFTAYDN6+DzzwABISEjB37lyUl5cDAObPn48FCxYgJycH999/P3788UesWrUKX331Fb744gvo9Xo4nU4MHz4cDocDDz30EJKTk5GXl4f3338fJSUlsFqtOHz4MH75y1+iV69eWLhwIYxGI44dO4YvvviiwfoD2U6WZdx+++34/PPPMX36dHTv3h2HDh3C8uXL8dNPP2HTpk3evgsWLMD8+fMxePBgLFy4EAaDAXv37sWOHTtwyy23YMWKFXjooYdgNpvx1FNPAQCSkpLqrW/dunWYMmUKBgwYgMWLF6OgoAB//etf8cUXX+DAgQOIiYnx9vV4PBg+fDiys7OxdOlSbNu2Dc899xw6deqE+++/v8Hfw7p162A2mzFz5kyYzWbs2LEDc+fOhd1ux1/+8hcAwFNPPQWbzYYzZ85g+fLlAACz2Vzvc/7+979HTk6OT9uWLVuwYcMGJCYmetuKiooarK2GxWKB0WgEABw4cABRUVHo3r27T5+BAwd6H7/++uvrfa4DBw7g2muvhUbjeynOwIEDsWbNGvz000/IysrCgQMHAAD9+/f36ZeSkoJ27dp5Hyei5sFjCo8p9ZkyZQr+9a9/YebMmbj55puRlpaGQ4cOYcGCBZg6dSpGjhzp7Xvx4kV4PJ4GawSAyMhIREZGAkC97/f9+vWDRqPBgQMH8Jvf/Kbe5zpw4ACuueYaREdH+7TXHJcOHjzordntdvv9HIPBgD59+jTtuBJwpKdW65577hEajUZ89dVXfo/JsiyE+L+zH9dff73Pp+nCwkJhMBjELbfc4nNm88UXXxQAxKuvviqEqB7LhVrDFGpbvny5ACDOnz/fpPoD2W79+vVCo9H4naWtGcv2xRdfCCGEOHr0qNBoNOKOO+7wO1Nb87sQov6vKWuf/XA6nSIxMVH07NlTVFZWevu9//77AoCYO3eut63m7PXChQt9nrNv376iX79+Df8SRPVXfrX9/ve/9zm7LMTVfU159OhRYbVaxc033+zz7wD1nHWvvfz973/3qaNjx45+P6O8vFwAELNmzWqwlqioKPHb3/7Wr73mjMqWLVuEEEL85S9/8TkTcrkBAwaI6667LtDdJ6IA8JjCY0pDzp07J+Li4sTNN98sHA6H6Nu3r0hPT/c7i13XNw11LZd/u/vggw8KrVZb589NSEgQ48ePb7C2zMxMceONN/q113wzu3r1aiGEEO+8844AID799FO/vuPGjRPJycmN/Rq8OOsLNUiWZWzatAm33Xab3ydDAJAkyWd92rRp0Gq13vVt27bB6XTikUce8TmzOW3aNERHR+ODDz4AAFitVgDARx99hIqKijprqTkL8O9//xuyLAe8D4Fs984776B79+7o1q0bioqKvMuNN94IANi5cycAYNOmTZBlGXPnzvU7U1v7dxGIr7/+GoWFhXjggQdgMpm87aNGjUK3bt28v5/L3XfffT7rQ4YMwc8//9zoz4qIiPD+vbS0FEVFRRgyZAgqKipw5MiRJtdeW3l5Oe644w7ExsbizTff9Pl3sHXr1oCW4cOHe7eprKz0nl2/XM3vqbKyssF6At2+5s/6+jb2c4gocDym8JjSmOTkZKxcuRJbt27FkCFDcPDgQbz66qt+Z7E3bNgQ0HHlnnvu8W5TWVnp843N5QJ5v1fiuMKhL9Sg8+fPw263o2fPngH179Chg8/6yZMnAQBdu3b1aTcYDOjYsaP38Q4dOmDmzJlYtmwZNmzYgCFDhuD222/Hb37zG+8b7t13342//e1v+N3vfodZs2bhpptuwq9+9SuMHTvW7w3ucoFsd/ToUfzwww9ISEio8zkKCwsBAMePH4dGo0GPHj0C+n00pr7fDwB069YNn3/+uU+byWTyqzE2NhYXL15s9GcdPnwYc+bMwY4dO2C3230es9lsTS3dz7Rp03D8+HHs3r0bbdq08Xms9vCYQERERMDhcPi1V1VVeR9vju1r/qyvb2M/h4gCx2NKNR5TGjZ+/Hi8/vrr+OCDDzB9+nTcdNNNfn1+8YtfNPl5IyIi4HQ663wskPd7JY4rDOrUrK4m1Dz33HO499578e9//xsff/wxHn74YSxevBhffvkl2rVrh4iICHz66afYuXMnPvjgA2zZsgUbN27EjTfeiI8//tjnrEvtmhrbTpZlZGVlYdmyZXU+R1pa2hXvV3Oqbx8bU1JSgqFDhyI6OhoLFy5Ep06dYDKZ8M033+DJJ59s0tmkuvz1r3/Fm2++iddffx19+vTxezw/Pz+g57Fard5/Q23btsXOnTshhPA5s3Tu3DkA1WPIG9K2bVtv38vV3r5t27be9tqv87lz57xjD4ko+HhMaVlqPaZcuHABX3/9NQDg+++/hyzLfh+ezp8/H9AYdbPZ7B0X37ZtW3g8HhQWFvpcR+V0OnHhwoWAjit5eXl+7Q0dV+rq29jP8RHwIBlqlTwej4iOjhajR49usF/NeMLaYw5rZuj48MMPfdodDoewWq3izjvvrPc5v/jiCwFAPPXUU/X2qbkSfOvWrY3vTAPbjRw5UqSmpvqMCaxLzXjmAwcONNivZ8+eAY0nrLnS/KWXXvLr2717d59xgjVX6Nc2b9480dh/5ffee08AEJ988olP+5o1a/xmDPjlL3/ZpPGEn376qdDpdOKRRx6ptw+uYIx6zZjT2rO+bNiwod6xf5cbO3ZsnbO+TJs2zWcM5XfffdfgrC+1x28S0ZXjMcUXjyl1u/vuu0VkZKRYvHixACCee+45vz5XMka9Zqx+7Vlfav5tvPbaaw3W9fjjj9c560vN619zrVNJSUmDs77Udf1UfThGnRqk0WgwZswY/O///q/30+3lhBANbp+TkwODwYDnn3/ep+8rr7wCm82GUaNGAQDsdrvfXSCzsrKg0Wi8Xx0VFxf7PX/N2du6vl6qEch2d911F/Ly8rB27Vq/vpWVld7ZBsaMGQONRoOFCxf6nTG4fP+ioqJQUlJSb001+vfvj8TERKxevdpnH/7zn//ghx9+8P5+rlbNWZPLa3Q6nXjppZf8+kZFRQX8teW5c+dw11134frrr/de5V+XKxmjPnr0aOj1ep8ahRBYvXo1UlNTMXjwYJ86jhw5ApfL5W0bO3YsCgoK8K9//cvbVlRUhHfeeQe33Xabd+xgZmYmunXrhjVr1vicnVm1ahUkScLYsWMD+l0QUeN4TOExpTHvvvsuNm7ciCVLlmDWrFkYP3485syZg59++smn35WMUb/xxhsRFxeHVatW+TzXqlWrEBkZ6fP7KSoqwpEjR3yucRg7diw8Hg/WrFnjbXM4HPj73/+O7Oxs7zclVqsVOTk5eP3111FaWurtu379epSVlWHcuHEB/z54Rp0adebMGZGcnCwiIyPFI488Il5++WUxf/58kZmZ6Z23tr6zH0L836fzW265Rbz44ovioYceElqtVgwYMEA4nU4hRPWn89TUVPHII4+Il156STz//PNiwIABQq/Xiz179gghhPjDH/4g+vbtK+bMmSPWrl0rFi1aJFJTU0W7du185sWtLZDtPB6PGDlypJAkSYwfP1688MILYsWKFeK+++4TcXFxPvv1pz/9SQAQgwcPFkuXLhUvvPCCuOeee3xmIXnggQeEJEni6aefFm+++abYvn27EKLuOW9rfnfZ2dlixYoVYvbs2SIyMlJkZGT4zAt8NWc/ioqKRGxsrGjfvr147rnnxLJly0Tfvn1F7969/ep59tlnBQDx6KOPijfeeENs3ry53ucdO3as0Gq1YtmyZWL9+vU+y7fffttgTYF44oknBAAxffp0sXbtWu+dSTds2ODTr2b2gtzcXG+b2+0W1113nTCbzWLBggVi5cqVIjMzU1gsFnHkyBGf7f/3f/9XSJIkbrzxRrFmzRrx8MMPC41GI6ZNm3bV+0BEvnhM4TGlPgUFBSI+Pl4MGzbM+21EUVGRSEpKEoMGDWqWO7DW3KNj7NixYu3ateKee+4RAMSiRYt8+tX8HmrPUT9u3Djv2fKXX35ZDB48WOh0Or9vF/bv3y+MRqPPnUlNJpO45ZZbmlQvgzoF5OTJk+Kee+4RCQkJwmg0io4dO4oHH3zQ7+YUdb2pClE9jKFbt25Cr9eLpKQkcf/99/u8Yfz888/it7/9rejUqZMwmUwiLi5ODBs2TGzbts3bZ/v27WL06NEiJSVFGAwGkZKSIiZMmOB3O/jaAt3O6XSKZ555RmRmZgqj0ShiY2NFv379xIIFC/y+5nr11VdF3759vf2GDh3q81Vpfn6+GDVqlLBYLAJo/OYUGzdu9D5fXFxcgzenqC2QN1Uhqr/au+6660RERIRISUkRf/zjH8VHH33kV09ZWZn49a9/LWJiYgTQ8M0p6rqZRc1ytTc8EqL6YPfnP/9ZtG/fXhgMBpGZmSlef/11v351BXUhhCguLhZTp04Vbdq0EZGRkWLo0KH1/ht97733RJ8+fYTRaBTt2rUTc+bM8R70iah58ZjCY0pdfvWrXwmLxSJOnDjh0/7vf/9bABDPPPNMo3UFYs2aNaJr167CYDCITp06ieXLl/sNU6ovqFdWVorHH39cJCcnC6PRKAYMGOCd7re2zz77TAwePFiYTCaRkJAgHnzwQWG325tUqyREI98zERERERFR0HGMOhERERGRCjGoExERERGpEIM6EREREZEKMagTEREREakQgzoRERERkQoxqBMRERERqZBO6QLUTpZlnD17FhaLBZIkKV0OEVHQCSFQWlqKlJQUaDQ8v0MUCpqSX/h/XL0Y1Btx9uxZtE9vD1nI9fbRSJoGHyciUrNA38NOnz6Ndu3aBaEiIrpaZ8+e9d7SPlD8P64+DOqNsFgskIWMpSOeQae4Tn6PHy8+jse3PInbn1yG+DT/x4mI1Kzo9HFsfmZmve9xwP+9z1ksliBXR0RXqub/69y5c9G2bdsG+5aWluKPf/wj/4+rEIN6I2q+LuoU1wmZiT3q7ac3RsAQERWssoiImoXeGAGg8fc4ABz+RxRCav6/arVaaDSagEI4/4+rDwciEREREYWpqKgo2O12lJaWKl0KXQGeUSciIiIKU1FRUdBoNLDb7QDA4S0hhkGdiIiIKIzVhHOG9dDDoE5EREQU5hjWQxODOhEREVErwLAeehjUiYiIiFoJhvXQwqBORERE1IrUDuukXgzqRERERK3M5WGd86erF4M6ERERUStUE9bz8/MVroTqwxseEREREbVSFosFUVG8s7paMagTERERtWIM6urFoE5EREREpEIM6kREREREKsSLSYmoThI86Kw5BCuKYUMcjslZENAqXRYREVGrwaBORH76aD7DXfqViJWKvG0XRTzedj2Ig/IQBSsjIiJqPTj0hYh89NF8hun6BYhBkU97DIowXb8AfTSfKVQZERFR68KgTkReEjy4S7+y+u+17n9Rsz5O/xIkeIJcGRERUevDoE5EXp01hxArFfmF9BqSBMRJ59FZcyi4hREREbVCDOpE5GVFcbP2IyIioivHoE5EXjbENWs/IiIiunIM6kTkdUzOwkURDyHqflwIoFgk4JicFdzCiIioxZSXlytdAtWDQZ2IvAS0eNv1YPXfa4X1mvV3XA9wPnUiojBRWlrKoK5iDOpE5OOgPARrXPNQgnif9otIwBrXPM6jTkQUJkpLS2G32xEVFaV0KVSPkAvqK1euREZGBkwmE7Kzs7Fv376AtnvrrbcgSRLGjBnTsgUShYGD8hA85diAZc6leMX531jmXIo5jtcZ0omIwkRNSI+OjmZQV7GQCuobN27EzJkzMW/ePHzzzTfo3bs3hg8fjsLCwga3O3HiBB5//HEMGcKQQRQoAS2Oyn3wtXwjjsp9ONyFiChMXB7SLRaL0uVQA0IqqC9btgzTpk3DlClT0KNHD6xevRqRkZF49dVX693G4/Fg4sSJWLBgATp27BjEaomIiIjUhSE9tIRMUHc6ndi/fz9ycnK8bRqNBjk5OdizZ0+92y1cuBCJiYmYOnVqMMokIiIiUiWG9NCjU7qAQBUVFcHj8SApKcmnPSkpCUeOHKlzm88//xyvvPIKDh48GPDPcTgccDgc3nW73X5F9RIRERGpBUN6aAqZM+pNVVpaikmTJmHt2rWIj49vfINLFi9eDKvV6l3S0tJasEoiIiKilsWQHrpC5ox6fHw8tFotCgoKfNoLCgqQnJzs1//48eM4ceIEbrvtNm+bLMsAAJ1Ohx9//BGdOnXy22727NmYOXOmd91utzOsExERUUgqLy+HEIIhPUSFzBl1g8GAfv36Yfv27d42WZaxfft2DBo0yK9/t27dcOjQIRw8eNC73H777Rg2bBgOHjxYb/g2Go2Ijo72WYiIiIhCUXl5OUN6CAuZM+oAMHPmTEyePBn9+/fHwIEDsWLFCpSXl2PKlCkAgHvuuQepqalYvHgxTCYTevbs6bN9TEwMAPi1ExEREYUjo9HIkB7CQiqo33333Th//jzmzp2L/Px89OnTB1u2bPFeYHrq1CloNCHzJQERERFRi3I6nXA6nTAYDEqXQlcgpII6AMyYMQMzZsyo87Fdu3Y1uO26deuavyAiIiIildLpdCgqKkJ8fDzDegji6WciIiKiMBUTEwO9Xo+ioiI4nU6ly6EmYlAnIiIiClOSJKFNmzYM6yGKQZ2IiIgojGk0Gob1EMWgTkRERBTmGNZDE4M6ERERUSvAsB56GNSJiIiIWgmG9dDCoE5ERETUitQO6y6XS+mSqB4M6kREREStzOVhvaSkROlyqB4M6kRERERB9umnn+K2225DSkoKJEnCpk2bfB4XQmDu3Llo27YtIiIikJOTg6NHjzZrDTVhXacLuftfthoM6kRERERBVl5ejt69e2PlypV1Pv7ss8/i+eefx+rVq7F3715ERUVh+PDhqKqqatLPcbvdcDqd9S5utxtRUVHNsUvUAvgRioiIiCjIbr31Vtx66611PiaEwIoVKzBnzhyMHj0aAPDaa68hKSkJmzZtwvjx4wP+OW63u9FwL8ty4IVTUDGoExEREalIbm4u8vPzkZOT422zWq3Izs7Gnj17mhTUx4wZg+jo6Ab72O12PProo1dcL7UcBnUiIiIiFcnPzwcAJCUl+bQnJSV5H6vN4XDA4XB41+12OwAgLi6u0aDOMerqxTHqRERERCFu8eLFsFqt3iUtLU3pkqgZMKgTERERqUhycjIAoKCgwKe9oKDA+1hts2fPhs1m8y6nT59u8Tqp5TGoExEREalIhw4dkJycjO3bt3vb7HY79u7di0GDBtW5jdFoRHR0tM9CoY+DkoiIiIiCrKysDMeOHfOu5+bm4uDBg4iLi0N6ejoeeeQR/M///A+6dOmCDh064E9/+hNSUlIwZswY5YqmoGNQJyIiIgqyr7/+GsOGDfOuz5w5EwAwefJkrFu3Dn/84x9RXl6O6dOno6SkBNdffz22bNkCk8mkVMmkAAZ1IiIioiC74YYbIISo93FJkrBw4UIsXLgwiFWR2nCMOhERERGRCjGoExERERGpEIM6EREREZEKMagTEREREakQgzoRERERkQoxqBMRERERqRCDOhERERGRCjGoExERERGpEIM6EREREZEKMagTEREREakQgzoRERERkQoxqBMRERERqRCDOhERERGRCjGoExERERGpEIM6EREREZEKMagTEREREakQgzoRERERkQoxqBMRERERqRCDOhERERGRCjGoExERERGpEIM6EREREZEKMagTEREREakQgzoRERERkQoxqBMRERERqRCDOhERERGRCjGoExERERGpEIM6EREREZEKMagTEREREakQgzoRERERkQoxqBMRERERqRCDOhERERGRCoVcUF+5ciUyMjJgMpmQnZ2Nffv21dt37dq1GDJkCGJjYxEbG4ucnJwG+xMRtTQBGXbzcVyIOQC7+TgEZKVLIiIildIpXUBTbNy4ETNnzsTq1auRnZ2NFStWYPjw4fjxxx+RmJjo13/Xrl2YMGECBg8eDJPJhGeeeQa33HILDh8+jNTUVAX2gIhas2LrIZxK3QynweZtMzitSM+7HXG2LAUrIyIiNQqpM+rLli3DtGnTMGXKFPTo0QOrV69GZGQkXn311Tr7b9iwAQ888AD69OmDbt264W9/+xtkWcb27duDXDkRtXbF1kM4lrEeTr3Np92pt+FYxnoUWw8pVBkREalVyAR1p9OJ/fv3Iycnx9um0WiQk5ODPXv2BPQcFRUVcLlciIuLa6kyiYj8CMg4lbq5ekWq9eCl9VOpmzkMhoiIfITM0JeioiJ4PB4kJSX5tCclJeHIkSMBPceTTz6JlJQUn7Bfm8PhgMPh8K7b7fYrK5ioiXQeGRFuFyJcHhg8HuhkGVohIAkBAPBoNHBrJLg0WlTptKjU6+DQagGpdvIjtSk15/oMd/EjAU6DDaXmXESXdQpeYUREpGohE9Sv1pIlS/DWW29h165dMJlM9fZbvHgxFixYEMTKqFURAmanCwkVlYirrEJsZRWsDicsDidMHk+Tn84tSSgz6GEzGVFiMqI4woSiyAhcNJkgaxjg1cKlC+wDf6D9iIiodQiZoB4fHw+tVouCggKf9oKCAiQnJze47dKlS7FkyRJs27YNvXr1arDv7NmzMXPmTO+63W5HWlralRdOrZsQiK1yINVehpTSMiSXVSDS7W62p9cJgRiHEzEOJ9rbSr3tbklCYVQkzlmikGcxI98cCVkTMiPdwo7eHd2s/YiIqHUImaBuMBjQr18/bN++HWPGjAEA74WhM2bMqHe7Z599FosWLcJHH32E/v37N/pzjEYjjEZjc5VNrZAkBNqWlqPjRRva2+ywOF1Br0EnBFLKypFSVo5+5wrh0mhwJtqM3BgrTsREw6nTBr2m1sxS1gEGp7X6QtK6vugQgMFlhaWsQ9BrIyIi9QqZoA4AM2fOxOTJk9G/f38MHDgQK1asQHl5OaZMmQIAuOeee5CamorFixcDAJ555hnMnTsXb7zxBjIyMpCfnw8AMJvNMJvNiu0HhafYyip0KypG5+ISRLma76x5c9DLMjqU2NGhxA6PJOGk1YIf4+NwymqB4Bj3FidBg/S823EsYz0g4BvWqy9BQHre7ZBC5/p+IiIKgpAK6nfffTfOnz+PuXPnIj8/H3369MGWLVu8F5ieOnUKmsu+3l+1ahWcTifGjh3r8zzz5s3D/Pnzg1k6hSmNLNDxYgl6Fl5AcnmF0uUERCsEOpbY0bHEjnK9Dt8ntMH3CXGo1OuVLi2sxdmy0PnEJP951F2cR52IiOoWUkEdAGbMmFHvUJddu3b5rJ84caLlC6JWSeeR0b3oAnrnF8HsCv7QluYS5XJjwNkC9D1XiJ/axOJgcgLsJg79ailxtizE2jJRas6FS2eH3h0NS1kHnkknIj/z58/3m9yia9euAc90R+Eh5II6kZK0sozMwgvom1+ICHfTZ2lRK50Q6FFUjG5FxfipTSy+TklCmdGgdFlhSYKGUzASUUAyMzOxbds277pOx9jW2vAVJwqEEOhcXILsvHxFLg4NFg2AbhcuoktxCQ4lxuObtom88JSISCE6na7Rme0ovDGoEzUirqISQ07loW1ZaIxBbw5aIdCn4DyuuXARX7Zri5/axPDGSkREQXb06FGkpKTAZDJh0KBBWLx4MdLT0+vsyxs2hicOjCSqh1aWMfDMOdz5w9FWFdIvF+l248YTp/HLn3JhuewAQERELSs7Oxvr1q3Dli1bsGrVKuTm5mLIkCEoLS2ts//ixYthtVq9C+8BEx4Y1Inq0KaiEnd+fxTX5p+HVihdjfLalZbhrsNH0f38BUDwF0JE1NJuvfVWjBs3Dr169cLw4cPx4YcfoqSkBG+//Xad/WfPng2bzeZdTp8+HeSKqSVw6AvR5YRAr4IiZOflQ8tA6kMvyxh6Mg/ptlLsymgHBy9qIiIKmpiYGFxzzTU4duxYnY/zho3hiWfUiS4xuD0YfvwkBp85x5DegA4ldoz9/igSQmTeeCKicFBWVobjx4+jbdu2SpdCQcSgTgTAWuXAHUeOoUMJL74JhMXpwugjx9HlwkWlSyEiCkuPP/44PvnkE5w4cQK7d+/GHXfcAa1WiwkTJihdGgURv7umVq9taRmGHzsJkyd85kUPBp0QuCn3NGKqHPgqJYmzwhARNaMzZ85gwoQJuHDhAhISEnD99dfjyy+/REJCgtKlURAxqFOr1rG4BDflnuZQl6vQ71whzE4XdmW0g2BYJyJqFm+99ZbSJZAKMKhTq9XtfDGGnjwDRsur1/XCRRg8HmztmA5ZwxF1REREzYFHVGqVup+/gBsY0ptVhxI7hh8/CY0sK10KERFRWGBQp1ana1Exhp7MU7qMsNTeVoqbfz4FjcyhRERERFeLQZ1alQ4XbRh64ozSZYS1DiV23HDiNG+MREREdJUY1KnVSC4tx00/n+I/+iC4prgE2Xn5SpdBREQU0phZqFWwOBwYfvwEdDzLGzR988+j2/kLSpdBREQUshjUKezpPB7cevQEItycJz3Yhpw6i+TScqXLICIiCkkM6hTehMANJ84grsqhdCWtklYI3PzzSUS4XEqXQkREFHIY1Cms9ThfjM4XbUqX0apFudy46WdeXEpERNRUDOoUtmIqqzD49FmlyyAA7UrL0Cf/vNJlEBERhRTemTSESPCgs+YQrCiGDXE4JmdBQKt0WaqkkQVuzD3Ni0dVZMDZApyyWlAcGaF0KURERCGBQT1E9NF8hrv0KxErFXnbLop4vO16EAflIQpWpk69C84jsaJS6TLoMtpL1wu8170zhMR7whIRETWGQ19CQB/NZ5iuX4AYFPm0x6AI0/UL0EfzmUKVqVN0lQP9zhYoXQbVIbGiElkFRY13JCIiIgZ1tZPgwV36ldV/r3USsmZ9nP4lSODUgwAAIfCL02c55EXF+p8tQKSTs8AQERE1hkFd5TprDiFWKvIL6TUkCYiTzqOz5lBwC1OpdFsp2ttKlS6DGmCQZd61lIiIKAAM6ipnRXGz9gtnkhC47sw5pcugAFxz4SLa8BoCIiKiBjGoq5wNcc3aL5xdc+Eib2wUIiQA2Wd4Vp2IiKghDOoqd0zOwkURX++9YoQAikUCjslZwS1MZTSywLXnCpUug5og3V6KxLJypcsgIiJSLQZ1lRPQ4m3Xg9V/rxXWa9bfcT3Q6udT71xcAqvDqXQZ1ET9+OGKiIioXgzqIeCgPARrXPNQgnif9otIwBrXPM6jLgR6F/Cul6Gova0UsZVVSpdBRESkSrzhUYg4KA/Bt47BvDNpHdrZy9CGYS9kZRUU4dOMdkqXQUREpDoM6iFEQIujch+ly1CdzPMXlC6BrkKX4ov4sl0ynDq+HREREV2OQ18opEU6XWhfYle6DLoKelmgS3GJ0mUQERGpDoM6hbRrLlzkP+Iw0K3ootIlEBERqQ4zDoU0nokNDwkVlYjhdQZEREQ+GNQpZMVUVvEi0jDS6aJN6RKIiIhUhUGdQlZHBruw0oGvJxERkQ8GdQpZ7W2lSpdAzSi+sgpm3rSKiIjIi0GdQpLR7UZieYXSZVAzS7PzwxcREVENBnUKSan2MkhKF0HNLtVepnQJREREqsGgTiGpbVm50iVQC0gpLQeEULoMIiIiVWBQp5CUXMZhL+Eo0u1GNMepExERAWBQpxCklWXEVVYqXQa1EF57QEREVI1BnUJOXGUVtBwdEbbiKzg3PhEREcCgTiEojjc5Cmt8fYmIiKoxqFPIialyKF0CtaDYKgZ1IiIigEGdQpCVQT2smZ0uaGRZ6TKIiIgUx6BOIcfidCldArUgCdVhnYiIqLVjUKeQE8UQF/YY1ImIiBjUKcRIQiDC7Va6DGphfI2JiIhCMKivXLkSGRkZMJlMyM7Oxr59+xrs/84776Bbt24wmUzIysrChx9+GKRKqSUY3R5IShdBLc7EoE5EBKDpuYfCS0gF9Y0bN2LmzJmYN28evvnmG/Tu3RvDhw9HYWFhnf13796NCRMmYOrUqThw4ADGjBmDMWPG4Lvvvgty5dRc9LJH6RIoCAweXkxKRNTU3EPhR9fUDSZPnoypU6fiv/7rv1qingYtW7YM06ZNw5QpUwAAq1evxgcffIBXX30Vs2bN8uv/17/+FSNGjMATTzwBAHj66aexdetWvPjii1i9enVQa6fmoWeAaxV0nPWFiILkxhtvxNChQzFv3jyf9osXL+LOO+/Ejh07FKqs6bmnLo+u3wVDRBQA4L6v/5/PY6v79wIAOCvLm69oalZNPqNus9mQk5ODLl264M9//jPy8vJaoi4/TqcT+/fvR05OjrdNo9EgJycHe/bsqXObPXv2+PQHgOHDh9fbn9RPK3hL0tZAK/N1JqLg2LVrF1588UWMGTMG5eX/F1idTic++eQTxeq6ktxD4afJQX3Tpk3Iy8vD/fffj40bNyIjIwO33nor3n33XbhcLTdTQ1FRETweD5KSknzak5KSkJ+fX+c2+fn5TeoPAA6HA3a73WchomBjUCei4Nm2bRvy8/Nx3XXX4cSJE0qXA6Dpuae+/GLUaWG6tLgjI3yWmnajThuUfaKmu6Ix6gkJCZg5cya+/fZb7N27F507d8akSZOQkpKCRx99FEePHm3uOoNm8eLFsFqt3iUtLU3pkohaIV4yTETB07ZtW3zyySfIysrCgAEDsGvXLqVLarL68kv3hHhkJiWgZ3ICCv9rIIqu64ui7D4oyu6DzKQEZCYloHtCvMLVU32u6mLSc+fOYevWrdi6dSu0Wi1GjhyJQ4cOoUePHli+fHlz1QgAiI+Ph1arRUFBgU97QUEBkpOT69wmOTm5Sf0BYPbs2bDZbN7l9OnTV188NRuPxADXGng0fJ2JKDikS8cVo9GIN954A3/4wx8wYsQIvPTSS4rW1dTcU39+EZBlGUIAHr0OQgjA7QbcbsiyDFmWwW8x1avJQd3lcuGf//wnfvnLX6J9+/Z455138Mgjj+Ds2bP4xz/+gW3btuHtt9/GwoULm7VQg8GAfv36Yfv27d42WZaxfft2DBo0qM5tBg0a5NMfALZu3Vpvf6D6P2p0dLTPQurh1oTUREV0hfg6E1GwiFrXPs2ZMwcbNmzAc889p1BF1Zqae+rLL2lx0eiUFIsOCVZEJMVB36kddF0zoOuagU5JseiUFIu0OGYdtWryrC9t27aFLMuYMGEC9u3bhz59+vj1GTZsGGJiYpqhPF8zZ87E5MmT0b9/fwwcOBArVqxAeXm592roe+65B6mpqVi8eDEA4A9/+AOGDh2K5557DqNGjcJbb72Fr7/+GmvWrGn22ig4nFqOo2sNnFoGdSIKjtzcXCQkJPi03XnnnejWrRu+/vprhaqq1ljuCYQlUg9rlAFuj4zyKjeiTDroar/HuvXNXDk1lyYH9eXLl2PcuHEwmUz19omJiUFubu5VFVaXu+++G+fPn8fcuXORn5+PPn36YMuWLd4LLU6dOgXNZWfiBg8ejDfeeANz5szBf//3f6NLly7YtGkTevbs2ey1UXA4dFoIcARzuKvSNfmtiYjoirRv377O9szMTGRmZga5Gl+N5Z5AaLUan2Cuq7Ve04fUqclHw0mTJrVEHQGbMWMGZsyYUedjdV38MW7cOIwbN66Fq6JgEZKEKp0WEW7e+CicVTKoExEBaDj3UPjjRygKOeV6fkUX7soNfI2JiIgY1CnklBoNSpdALUgAKGNQJyIiYlCn0GNjUA9rZQY9PJz1hYiIiEGdQk9JAxcyU+grMRmVLoGIiEgVeMUWhZziCAb1cMbXl4io+djLnRBaB2S5er54W7kTmlo3lSstdypRGgWAQZ1CTnGECTL4dVC4KoqMULoEIqKwYdBpYNRp4JYFXG4Zep0GulpB3aHjEVWtGNQp5Li1GhRHmBBfWaV0KdQCCqMilS6BiChsmIw6RJr0cHtk2NxORBr9b3jkdDAOqhU/QlFIKjBHKV0CtYBKnZYXCxMREV3CoE4h6ayFQT0cnTNHARLvO0tERAQwqFOIyrOYlS6BWkBeNF9XIiKiGgzqFJKq9DoU8qLDsHPKalG6BCIiItVgUKeQdTImWukSqBkVm4woNXIOdSIiohoM6hSychnUw0purFXpEoiIwk6Vw42KKhcqHG4AQEXN+mVL1aXHSH04Hw+FrOIIEy6ajIitcihdCjWD4wzqRETNzumW4XDL3hseudwyPLXmUXe6ZSVKowAwqFPokiQcjYvBwLMFSldCV+lChAnFvOaAiKjZRUcZEGM2Vs+jXu6ENcrgN4+65OG0uGrFoS8U0n5qEwuhdBF01X5sE6t0CURERKrDoE4hrcxowOlozhQSyjyShJ8Y1ImIiPwwqFPI+y6xjdIl0FU4FheDKj1H4REREdXGoE4h75TVghLedj5k/b+keKVLICIiUiUGdQp9koSDyQlKV0FX4IzFjAu8iJSIiKhODOoUFn5qE4tSg17pMqiJ9qckKl0CEVFY83hkuC8tALx/v3zxeDg9o1pxYCiFBVmjwTdtEzH0ZJ7SpVCAzljMOGcxK10GEVFYK61wATqnd728yv/mRqUVrmCWRE3AoE5h48c2ceiTfx5Wh7PxzqQYWZLxU3IhtnayolInYCnrAIlf7hERtQhLpB7WKAPcHhnlVW5EmXR+86jDzW+k1YpBncKGrJHwZbu2GH78pNKlUD32Z5zCG9d9jYvmCm+bwWlFet7tiLNlKVgZEVF40mo1PsFcV2u9pg+pE18ZCiu5MdE4w+EUqrQ/4xRW3vQpLkZV+LQ79TYcy1iPYushhSojIiJSJwZ1Ci+ShC/SU+CRJKUrocvIkow3rvu6eqX2S3Np/VTqZgjwgiYiIqIaDOoUdi5GmHCA0zWqyk/JhdXDXer7/CQBToMNpebcoNZFRESkZgzqFJa+aZuICxEmpcugS0oiKgPq59LZW7gSIiKi0MGgTmFJ1miwo0Mah8CoRExlYDc10rujW7gSIiKi0MFZXyhsXYiMwN7UZAw+c07pUlo9S1kGDE4rnHpb3cNfBGBwWWEp6xD02oiIwpm93AmhdUCWBQDAVu6ERuP7RlxazmmN1Ypn1Cms/b+keOTG8Cytkip1WuzokIH0vNurG0StDpfW0/Nu53zqRETNzKDTwKjTQK+rfn/VX1q/fDHo+N6rVnxlKLxJEnZmpMFmNChdSaskA9jWMR3lBgPibFnofGISDC6rTx+Dy4rOJyZxHnUiohZgMuoQadIj0lg9iCKyZv2yxWTkAAu14itDYc+p0+I/nTNwx5FjMHo4/V8w7Ulri7xoi3c9zpaFWFsmSs25cOns0LujeWdSIiKiejCoU6tQEmHC1o7tceuxXGhrD72gFnE4oQ0OJcb7tUvQILqskwIVERERhRaexqJW44zVgl0ZaUqX0SrkxkTj8/QUgLPuEBERXTEGdWpVjraJxedpKUqXEdbOWMzY1jEdgiGdiIjoqjCoU6vzXVI89rRrq3QZYemsOQpbOmfAo+FbCxER0dXiGHVqlb5NToAsAb84zTnWm8sZixlbOmfArWVIJyJSiyqHGxVVLrgvzaNe4XBDV2se9SqHW4nSKAAM6tRqHUpKgFOrxdATZ/jV0lU6HmvF9g5pkHkmnYhIVZxuGQ637L3hkcstw1MrqDvdnBFNrRjUqVX7MT4OlTodbv75FPQy36iuxKHENtidlsIx6UREKhQdZUCM2Qi3R4at3AlrlAG6Wt98Sh7ea0StePqLWr1TMdHY1K0TSg16pUsJKR4J+Cw9BV+kpzKkExERtQAGdSIAFyIj8M/uXXDGYla6lJBQodPh/Ws64nAd86QTEdHVy8jIgCRJPsuSJUuULouCjENfiC6p0uvwwTUdcO25QvQ7W8BPsfU4YzFjR4c0VPAbCCKiFrVw4UJMmzbNu26xWBroTeGIQZ3oMkKSsD8lCXkWM27MPY1op1PpklTDI0nYl5qEb5MSeCMjIqIgsFgsSE5OVroMUhBPGlKzE5BhNx/HhZgDsJuPQyD0LtLMt0Th7cwu+C6hDYTSxahAQVQE3u3RBd8mJzKkExEFyZIlS9CmTRv07dsXf/nLX+B21z+NosPhgN1u91ko9PGMOjWrYushnErdDKfB5m0zOK1Iz7sdcbYsBStrOrdWi8/bp+JomxgMOZmH+MoqpUsKOodWg32pyfg+oQ0vGCUiCqKHH34Y1157LeLi4rB7927Mnj0b586dw7Jly+rsv3jxYixYsMCv3eOR4b60APD+WbsPqRPPqFOzKbYewrGM9XDqbT7tTr0NxzLWo9h6SKHKrk6BOQr/7NEFn7RPRaVOq3Q5QSEDOJwQhzd7dsPhxHiGdCKiZjBr1iy/C0RrL0eOHAEAzJw5EzfccAN69eqF++67D8899xxeeOEFOByOOp979uzZsNls3uX06dMAgNIKF2zlTpRXVZ+NL69yw1bu9FlKK1zB+QVQk/GMOjULARmnUjdXr9TOdBIAAZxK3YxYWyakEPx8KCQJPyS0wbG4GPQqKEKvgvMwhukZiOOxVnyVkoSSCJPSpRARhZXHHnsM9957b4N9OnbsWGd7dnY23G43Tpw4ga5du/o9bjQaYTQa/dotkXpYowxwe2SUV7kRZdL5zaMONycHUCsGdWoWpeZcn+EufiTAabCh1JyL6LJOwSusmbm0WuxPScKhxDbIKryAnoVFiHB7lC7rqskAjsdZcSA5EcWREUqXQ0QUlhISEpCQkHBF2x48eBAajQaJiYlN2k6r1fgEc12t9Zo+pE4M6tQsXLrALloJtJ/aOXU67E+pngGlS/FF9Cy8gDYhOIa9SqvFkfhYHE6MR6mRd6YjIlKDPXv2YO/evRg2bBgsFgv27NmDRx99FL/5zW8QGxurdHkURCHzEaq4uBgTJ05EdHQ0YmJiMHXqVJSVlTXY/6GHHkLXrl0RERGB9PR0PPzww7DZGjjrS1dM745u1n6hwq3V4IeENninRxe8160TfoiPhUPlZyZkVM+Fvr1DGtb37o4v01IY0omIVMRoNOKtt97C0KFDkZmZiUWLFuHRRx/FmjVrlC6NgixkzqhPnDgR586dw9atW+FyuTBlyhRMnz4db7zxRp39z549i7Nnz2Lp0qXo0aMHTp48ifvuuw9nz57Fu+++G+Tqw5+lrAMMTmv1haR1XXcoAIPLCktZh6DXFhSShAJzFArMUfg8PRVptlJ0KLEj3WZXxdAYjwScM5uRGxuN3Bgrb1ZERKRi1157Lb788kulyyAVCImg/sMPP2DLli346quv0L9/fwDACy+8gJEjR2Lp0qVISUnx26Znz5745z//6V3v1KkTFi1ahN/85jdwu93Q6UJi10OGBA3S827HsYz1gIBvWL80EXl63u0heSFpU3k0GpyIteJErBWSEEgor0A7exlSSsuRVF4BvdzyF6HKAIojTDhniUKexYy8aDNc2tYxYw0REVG4CIm0umfPHsTExHhDOgDk5ORAo9Fg7969uOOOOwJ6HpvNhujo6AZDusPh8Jn6iDcMCFycLQudT0zyn0fdFZrzqDcHIUkoNEeh0ByFbwBIQiC2sgrxFZVoU1mF2EoHrA4HzE4XtOLKbq1UrtfBbjSgxGRCcYQJRZEmFEVGMJgTERGFuJAI6vn5+X5XOet0OsTFxSE/Pz+g5ygqKsLTTz+N6dOnN9ivvhsGUGDibFmItWWi1JwLl84OvTsalrIOreJMeiCEJKE4MsJ/ZhUhEOF2I9LlhsnthsEjQ++RoRUyJAEICZAlCW6NBk6tBg6tDpV6Hcr1Osga/m6JiKhu9nInhNYBWa4+GWQrd0Kj8R2jWlruVKI0CoCiQX3WrFl45plnGuzzww8/XPXPsdvtGDVqFHr06IH58+c32Hf27NmYOXOmz7ZpaWlXXUNrIkET0lMwKkKSUKnXo1LPseNERNR8DDoNjDoN3LKAyy1Dr9NAVyuoO3Q84aNWigb1QCf+T05ORmFhoU+72+1GcXExkpOTG9y+tLQUI0aMgMViwXvvvQd9I0GovhsGEBEREYUak1GHSJMebo8Mm9uJSKP/DY+cjpAYYNEqKfrKBDrx/6BBg1BSUoL9+/ejX79+AIAdO3ZAlmVkZ2fXu53dbsfw4cNhNBqxefNmmEy80yIRERERhYaQ+K6je/fuGDFiBKZNm4Z9+/bhiy++wIwZMzB+/HjvjC95eXno1q0b9u3bB6A6pN9yyy0oLy/HK6+8Arvdjvz8fOTn58PjUX66PCIiIiKihoTMdx0bNmzAjBkzcNNNN0Gj0eDOO+/E888/733c5XLhxx9/REVFBQDgm2++wd69ewEAnTt39nmu3NxcZGRkBK12IiIiIqKmCpmgHhcXV+/NjQAgIyMD4rLp7W644QafdSIiIiKiUBISQ1+IiIiIiFqbkDmjTkRERERNU+Vwo6LKBfeledQrHG6/6RmrHG4lSqMAMKgTERERhSmnW4bDLXtveORyy/DUCupOt6xEaRQABnUiIiKiMBUdZUCM2Vg9j3q5E9Yog9886pLHoFB11BgGdSKiECMgo9ScC5fODr07GpayDpB4yRERUdhhUCciCiHF1kM4lboZToPN22ZwWpGedzvibFkKVkZERM2Np2CIiEJEsfUQjmWsh1Nv82l36m04lrEexdZDClVGREQtgUGdiCgECMg4lbq5ekWq9eCl9VOpmyHAi8KIiMIFgzoRUQgoNedWD3epHdJrSIDTYEOpOTeodRERUcvhGHUiohDg0tmbtR8RtQ4ejwz3pQWA98/afUidGNSJiEKA3h3drP2IqHUorXABOqd3vbzK/+ZGpRWuYJZETcCgTkQUAixlHWBwWqsvJK1r+IsADC4rLGUdgl4bEamXJVIPa5QBbo+M8io3okw6v3nU4dYrUxw1imPUiYhCgAQN0vNur14RtR68tJ6edzvnUyciH1qtBrpLCwDv3y9ftLWDO6kGXxkiCkkCMuzm47gQcwB28/FWMdtJnC0LnU9MgsFl9Wk3uKzofGIS51EnIgozHPpCRCGnNd/0J86WhVhbJu9MSkTUCjCoE1FIqbnpT201N/1pDWeWJWgQXdZJ6TKIiKiF8RQMEYUM3vSHiIhaEwZ1IgoZvOkPERG1Jhz6QkQhgzf9ISJqGnu5E0LrgCxXTw9lK3dCo/E921Fa7qxrU1IBBnUiChm86Q8RUdMYdBoYdRq4ZQGXW4Zep4GuVlB36DjAQq0Y1IkoZPCmP0RETWMy6hBp0sPtkWFzOxFp9L/hkdPBOKhW/AhFRCGDN/0hIqLWhEczIgopvOkPERG1Fvyug4j8CMiqvqEOb/pDREStAYM6EfkIlbt+8qY/REQU7nj6iYi8au766dTbfNpr7vpZbD2kUGVEREStD8+oExGAAO76Karv+hlry+QQEyKiEFHlcKOiygX3pXnUKxxuv+kZqxxuJUqjAPBoS0QAeNdPIqJw5HTLcLhluNwyAMB1af3yxXnpMVIfnlEnIgC86ycRUTiKjjIgxmysnke93AlrlMFvHnXJY1CoOmoMz6gTEQDe9ZOIiEhtGNSJCMD/3fXT70ZCNUT17C+86ycREVFwMKgTEQDe9ZOIKFgWLVqEwYMHIzIyEjExMXX2OXXqFEaNGoXIyEgkJibiiSeegNvNiz5bGx5xiciLd/0kImp5TqcT48aNw/3331/n4x6PB6NGjYLT6cTu3bvxj3/8A+vWrcPcuXODXCkpjReTEpEP3vWTiKhlLViwAACwbt26Oh//+OOP8f3332Pbtm1ISkpCnz598PTTT+PJJ5/E/PnzYTDw4s/WgkdeIvJTc9fPNiV9EV3WiSGdiCiI9uzZg6ysLCQlJXnbhg8fDrvdjsOHDzfpuTweGe5LCwDv3y9fPB5Oz6hWPKNOREREpCL5+fk+IR2Adz0/P7/ObRwOBxwOh3fdbq+eSre0wgXonN728ir/ce6lFa6rrplaBk+TEREREV2lWbNmQZKkBpcjR4602M9fvHgxrFard0lLSwMAWCL1sEYZEGWqPjcbZdLBGmXwWSyR+hari64Oz6gTERERXaXHHnsM9957b4N9OnbsGNBzJScnY9++fT5tBQUF3sfqMnv2bMycOdO7brfbkZaWBkdFGRx6DdweGZWVLuhkPTy1bnjkqCgLqC4KPgZ1IiIioquUkJCAhISEZnmuQYMGYdGiRSgsLERiYiIAYOvWrYiOjkaPHj3q3MZoNMJoNPq1f7t3OyIiIiAE4JEFtBoJklT9mJBluN0uVFU5/LYjdWBQJyIiIgqiU6dOobi4GKdOnYLH48HBgwcBAJ07d4bZbMYtt9yCHj16YNKkSXj22WeRn5+POXPm4MEHH6wzjDdEo9FCZzBCCAF4BHTa6mE4HpcblVVl0Gh10HMWGdViUCciIiIKorlz5+If//iHd71v374AgJ07d+KGG26AVqvF+++/j/vvvx+DBg1CVFQUJk+ejIULFzb5Z0laLXQ6PYQQEJIMnVYDj9uNyspS6PQGmKNjUFpa2mz7Rs2LQZ2IiIgoiNatW1fvHOo12rdvjw8//LDZf7bb7UJ5aQm0Wh3M0TGQJM4romYM6kREREStgMftgqPcDq2OIT1UMKgTERERhSmPR8Dl9sDtdqGyzAaNVgdjpAVujwDg8fYhdWJQJyIiIgpTGgkQHjeqyu3QaHWIslihqXUmXSMpVBw1ikGdiIiIKEwJ2YOKcht0Wh0MURbotFpIkm8yl5jUVYuDk4iIiIjCVGV5KbRaHaKirRyTHoJ4Rp2IiIgoTElaLczRMQAkALLC1VBT8aMVEREREZEKMagTERERhSnh8aDMXgIheDY9FIVMUC8uLsbEiRMRHR2NmJgYTJ06FWVlZQFtK4TArbfeCkmSsGnTppYtlIiIiEglIqIs8HjcKLfbGNZDUMgE9YkTJ+Lw4cPYunUr3n//fXz66aeYPn16QNuuWLHC7wpnIgouARl283FciDkAu/k4BMdKEhG1OEmjRWSUFW6PG5Vldrg9Hng8ss8iZM6jrlYhcTHpDz/8gC1btuCrr75C//79AQAvvPACRo4ciaVLlyIlJaXebQ8ePIjnnnsOX3/9Ndq2bRuskonoMsXWQziVuhlOg83bZnBakZ53O+JsWQpWRkQU3mQBSFodTFHRqCyzobzUhkhztM8MMMzp6hUSZ9T37NmDmJgYb0gHgJycHGg0Guzdu7fe7SoqKvDrX/8aK1euRHJyckA/y+FwwG63+yxEdOWKrYdwLGM9nHqbT7tTb8OxjPUoth5SqDIiovCn1UrQ67QwGY2IMFsB2QNHRSl0l9r1Oi20Wo46UKuQCOr5+flITEz0adPpdIiLi0N+fn692z366KMYPHgwRo8eHfDPWrx4MaxWq3dJS0u74rqJWjsBGadSN1ev1D4OXFo/lbqZw2CIiIJAq9MjKjoGHo+bF5iGCEWD+qxZsyBJUoPLkSNHrui5N2/ejB07dmDFihVN2m727Nmw2Wze5fTp01f084kIKDXnVg93qe9kjQQ4DTaUmnODWhcRUWul0+lhtsQyrIcIRceoP/bYY7j33nsb7NOxY0ckJyejsLDQp93tdqO4uLjeIS07duzA8ePHERMT49N+5513YsiQIdi1a1ed2xmNRhiNxkB3gYga4NIFNnQs0H5ERHT1dPrqsF5WehFl9hKEyACLVknRoJ6QkICEhIRG+w0aNAglJSXYv38/+vXrB6A6iMuyjOzs7Dq3mTVrFn73u9/5tGVlZWH58uW47bbbrr54ImqU3h3drP2IiKh5XB7WHVVOpcuheoTErC/du3fHiBEjMG3aNKxevRoulwszZszA+PHjvTO+5OXl4aabbsJrr72GgQMHIjk5uc6z7enp6ejQoUOwd4GoVbKUdYDBaa2+kLSu4S8CMLissJTx/yQRUbDVhPXK8jylS6F6hMx3HRs2bEC3bt1w0003YeTIkbj++uuxZs0a7+Mulws//vgjKioqFKySiC4nQYP0vNurV2pP/3VpPT3vdkih81ZERBRahIC4tFSvCp9Fq9PBFGVWuEiqT0icUQeAuLg4vPHGG/U+npGR4f1HWJ/GHiei5hdny0LnE5P851F3cR51IqKW5vEALs//XTDqlgX8z5yETBxsdfjKEFGLi7NlIdaWiVJzLlw6O/TuaFjKOvBMOhFRC9NqAb1WAyEE3LKATiP53a1dq1WoOGoUgzoRBYUEDaLLOildBhFR6yJdHsyFd/rr2n1InXg6i4iIiIhIhRjUiYiIiIhUiEGdiIiIiEiFGNSJiIiIiFSIQZ2IiIiISIU46wsRERFRmPJ4BFxuj3fmdJdH9rtRtMfD+8yoFYM6ERERUZjSSIBGkiAAyEJAI0l+QV3yuwESqQWDOhEREVGYkjQStJdueCR7BLS1bngkhAxHZbmCFVJDOEadiIiIqBUSQkaZvQSyx610KVQPBnUiIiKiVqYmpHs8bkREWZQuh+rBoE5ERETUilwe0s2WWGh0HAmtVgzqRERERK1E7ZCu0+uVLokawI9QRERERK2AEDLK7aXwyAzpoYJBnYiIiChMCVnA45EhCxmVZXYI2YMosxWSRguPR/b2IXViUCciIiIKU7IAPLIHFWV2yB43IsxWSFodZCF8+pA6MagTERERhSmtBnBUlAKyBxFmK0xGo8886gCg1da+BRKpBS8mJSIiIgpTleVl8HjciIqOgVbHMemhhkGdiIiIKEzJNbO7MKSHJAZ1IiIiojCl1es4u0sIY1AnIiIiClNulwtVFeVKl0FXiBeTEhEREYUpoykSlZVlEBDQGiKULoeaiEG9EeLS9EXHi4/X+XhNu8tRCWclP7ESUWhxOSoB1P8ed/ljQnAON6JQUfP/1elyQ6/TovhCIfSGSJiMJqDWJC/l5WU+25B6SIKvSoPOnDmDtLQ0pcsgIlLc6dOn0a5dO6XLIKIA/Pzzz+jUqVOTtjl+/Dg6duzYQhXRleAZ9UakpKTg9OnTsFgsfvOOKs1utyMtLQ2nT59GdHS00uUEBfeZ+xyO1L6/QgiUlpYiJSVF6VKIKEBxcXEAgFOnTsFqtXrb63q/sdlsSE9P925D6sGg3giNRqP6M0jR0dGqPLi3JO5z69Da9lnN+3v5gZ6I1E+jqZ4vxGq11vm+Utf7Tc02pB58RYiIiIiIVIhBnYiIiIhIhRjUQ5jRaMS8efNgNBqVLiVouM+tQ2vb59a2v0TU8up7X6mrne9B6sVZX4iIiIiIVIhn1ImIiIiIVIhBnYiIiIhIhRjUiYiIiIhUiEE9xBQXF2PixImIjo5GTEwMpk6dirKysoC2FULg1ltvhSRJ2LRpU8sW2oyaus/FxcV46KGH0LVrV0RERCA9PR0PP/wwbDZbEKtumpUrVyIjIwMmkwnZ2dnYt29fg/3feecddOvWDSaTCVlZWfjwww+DVGnzaMr+rl27FkOGDEFsbCxiY2ORk5PT6O9HjZr6Gtd46623IEkSxowZ07IFElHIqzlemkwmaDQa6HQ6DBgwAPv27av3PeiGG26AJEk+S69evfzaTCaTwnvXOjGoh5iJEyfi8OHD2Lp1K95//318+umnmD59ekDbrlixQnV3Vw1EU/f57NmzOHv2LJYuXYrvvvsO69atw5YtWzB16tQgVh24jRs3YubMmZg3bx6++eYb9O7dG8OHD0dhYWGd/Xfv3o0JEyZg6tSpOHDgAMaMGYMxY8bgu+++C3LlV6ap+7tr1y5MmDABO3fuxJ49e5CWloZbbrkFeXl5Qa78yjV1n2ucOHECjz/+OIYMGRKkSokolE2cOBGff/45ZFnGk08+idTUVFy8eBHDhg2r9z3IZrNBkiT86U9/wieffIJHHnkE33//PcxmM86dO+ddTp48qfTutU6CQsb3338vAIivvvrK2/af//xHSJIk8vLyGtz2wIEDIjU1VZw7d04AEO+9914LV9s8rmafL/f2228Lg8EgXC5XS5R5VQYOHCgefPBB77rH4xEpKSli8eLFdfa/6667xKhRo3zasrOzxe9///sWrbO5NHV/a3O73cJisYh//OMfLVVis7uSfXa73WLw4MHib3/7m5g8ebIYPXp0ECololBVc7zMzMz0vt/85z//EQCEXq8X1113nbfv5e9BCQkJIiMjw+e5OnbsKAwGQ1Drp7rxjHoI2bNnD2JiYtC/f39vW05ODjQaDfbu3VvvdhUVFfj1r3+NlStXIjk5ORilNpsr3efabDYboqOjodPpWqLMK+Z0OrF//37k5OR42zQaDXJycrBnz546t9mzZ49PfwAYPnx4vf3V5Er2t7aKigq4XC7ExcW1VJnN6kr3eeHChUhMTFTtN0FEpC579uyB1WrFkSNHvO83NcdLl8sFj8fj7Xv5e5Ddbsf58+cRHx+Pnj17Yvbs2ejevTucTifat2+PtLQ0jB49GocPH1Zq11o1BvUQkp+fj8TERJ82nU6HuLg45Ofn17vdo48+isGDB2P06NEtXWKzu9J9vlxRURGefvrpgIcIBVNRURE8Hg+SkpJ82pOSkurdv/z8/Cb1V5Mr2d/annzySaSkpPh9WFGrK9nnzz//HK+88grWrl0bjBKJKAzk5+ejTZs2Pu83Op0OMTExAOB3bVfNe5Db7caMGTOwc+dOzJ49G+vXr8ePP/4Ii8WCf//733j99dchyzIGDx6MM2fOBHu3Wj0GdRWYNWuW30UbtZcjR45c0XNv3rwZO3bswIoVK5q36KvUkvt8ObvdjlGjRqFHjx6YP3/+1RdOilqyZAneeustvPfee2F7YVNpaSkmTZqEtWvXIj4+XulyiEhhLX281Gg06N27N7KysjBx4kS89tprOHbsGAwGA/r06YOhQ4fiX//6FxISEvDyyy83455RINQ1DqCVeuyxx3Dvvfc22Kdjx45ITk72u/jM7XajuLi43iEtO3bswPHjx72fqGvceeedGDJkCHbt2nUVlV+5ltznGqWlpRgxYgQsFgvee+896PX6qy272cXHx0Or1aKgoMCnvaCgoN79S05OblJ/NbmS/a2xdOlSLFmyBNu2bUOvXr1assxm1dR9Pn78OE6cOIHbbrvN2ybLMoDqs2M//vgjOnXq1LJFE5FqNOV4eeHCBZ/3G7fbjZKSEgCA2Wz22abmPaj2MSU7OxsAEB0d7W3T6/Xo27cvjh071gx7RE3BoK4CCQkJSEhIaLTfoEGDUFJSgv3796Nfv34AqoO4LMve/1i1zZo1C7/73e982rKysrB8+XKfIBBsLbnPQPWZ9OHDh8NoNGLz5s2qPftqMBjQr18/bN++3Tv9nizL2L59O2bMmFHnNoMGDcL27dvxyCOPeNu2bt2KQYMGBaHiq3Ml+wsAzz77LBYtWoSPPvrI53qFUNDUfe7WrRsOHTrk0zZnzhyUlpbir3/9K9LS0oJRNhGpRFOOlzabDZmZmd73m5rjpV6v97lG6/L3IJPJ5HNMOXjwIAB4j7kA4PF4cOjQIYwcObJZ940CoPTVrNQ0I0aMEH379hV79+4Vn3/+uejSpYuYMGGC9/EzZ86Irl27ir1799b7HAihWV+EaPo+22w2kZ2dLbKyssSxY8fEuXPnvIvb7VZqN+r11ltvCaPRKNatWye+//57MX36dBETEyPy8/OFEEJMmjRJzJo1y9v/iy++EDqdTixdulT88MMPYt68eUKv14tDhw4ptQtN0tT9XbJkiTAYDOLdd9/1eS1LS0uV2oUma+o+18ZZX4goECNGjBAZGRnCYDCIp556SrRv31506tRJREZGCqPRKJYvXy6ioqJEly5dRExMjPjyyy/F7373OyFJkhg0aJBYuXKliImJEQDEyy+/LI4fPy72798vxo8fL0wmkzh8+LDSu9jqMKiHmAsXLogJEyYIs9ksoqOjxZQpU3wCS25urgAgdu7cWe9zhFpQb+o+79y5UwCoc8nNzVVmJxrxwgsviPT0dGEwGMTAgQPFl19+6X1s6NChYvLkyT793377bXHNNdcIg8EgMjMzxQcffBDkiq9OU/a3ffv2db6W8+bNC37hV6Gpr/HlGNSJKBA1x0uDwSAkSRIajUb0799ffPnll+KFF14QKSkpAoCwWq3iyy+/FKdOnRL/9V//JTQajfe9NT4+XowaNcr7fpWUlCRGjhwpvvnmG6V3r1WShBAiyCfxiYiIiIioEZz1hYiIiIhIhRjUiYiIiIhUiEGdiIiIiEiFGNSJiIiIiFSIQZ2IiIiISIUY1ImIiIiIVIhBnYiIiIhIhRjUiYiIiIhUiEGdiIiIiEiFGNSJiIiIiFSIQZ2IiIiISIUY1IlU6Pz580hOTsaf//xnb9vu3bthMBiwfft2BSsjIqJQ89prr6FNmzZwOBw+7WPGjMGkSZMUqooCIQkhhNJFEJG/Dz/8EGPGjMHu3bvRtWtX9OnTB6NHj8ayZcuULo2IiEJIZWUl2rZti7Vr12LcuHEAgMLCQqSmpuLjjz/GsGHDFK6Q6sOgTqRiDz74ILZt24b+/fvj0KFD+Oqrr2A0GpUui4iIQswDDzyAEydO4MMPPwQALFu2DCtXrsSxY8cgSZLC1VF9GNSJVKyyshI9e/bE6dOnsX//fmRlZSldEhERhaADBw5gwIABOHnyJFJTU9GrVy+MGzcOf/rTn5QujRrAMepEKnb8+HGcPXsWsizjxIkTSpdDREQhqm/fvujduzdee+017N+/H4cPH8a9996rdFnUCJ5RJ1Ipp9OJgQMHok+fPujatStWrFiBQ4cOITExUenSiIgoBK1atQorVqzAzTffjKNHj+Kjjz5SuiRqBIM6kUo98cQTePfdd/Htt9/CbDZj6NChsFqteP/995UujYiIQpDNZkNKSgrcbjdee+013H333UqXRI3g0BciFdq1axdWrFiB9evXIzo6GhqNBuvXr8dnn32GVatWKV0eERGFIKvVijvvvBNmsxljxoxRuhwKAM+oExEREbUSN910EzIzM/H8888rXQoFgEGdiIiIKMxdvHgRu3btwtixY/H999+ja9euSpdEAdApXQARERERtay+ffvi4sWLeOaZZxjSQwjPqBMRERERqRAvJiUiIiIiUiEGdSIiIiIiFWJQJyIiIiJSIQZ1IiIiIiIVYlAnIiIiIlIhBnUiIiIiIhViUCciIiIiUiEGdSIiIiIiFWJQJyIiIiJSof8PMnMygxdSuXMAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAuoAAAGGCAYAAAAtuaQaAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAABVg0lEQVR4nO3deXxTVd4/8M/N3jZp0tLS0tJSNllKWWSpMDK4VEEYBUdQGAaRYWBU0FHUR3hk2BwHdBBwQRBGhxFRUWdkeNRBWd1AUAR/iKKARaDQllKadM12z++P2gxpuqTQ5t6kn/frlRfk5NzkexvI/fTm3HMkIYQAERERERGpikbpAoiIiIiIKBCDOhERERGRCjGoExERERGpEIM6EREREZEKMagTEREREakQgzoRERERkQoxqBMRERERqRCDOhERERGRCjGoExERERGpEIM6UQjt2rULkiRh165dSpdCRERhjseUyMegTtQCXnjhBaxbt07pMi7Ja6+9hhUrVihdBgBAlmU89dRT6NixI0wmE3r37o3XX3896O1LSkowffp0JCYmIiYmBtdeey2++uqrOvtu3rwZV155JUwmE9LT0zF//nx4PJ7m2hUiokvGY0rzeumll9CjRw+YTCZ07doVzz33XNDbOp1OPProo0hJSUFUVBSys7OxdevWOvvu3r0bV199NaKjo5GcnIz7778fZWVlTStWEFGzy8zMFMOGDQto93q9orKyUni93tAXFaRRo0aJDh06KF2GEEKI2bNnCwBi2rRpYs2aNWLUqFECgHj99dcb3dbr9YohQ4aImJgYsWDBAvH888+Lnj17CovFIn744Qe/vu+//76QJElce+21Ys2aNeK+++4TGo1G3H333S21a0REQeMxpfmsXr1aABC33XabWLNmjZg0aZIAIJYsWRLU9uPHjxc6nU48/PDD4sUXXxSDBw8WOp1OfPLJJ379Dhw4IEwmk+jXr59YtWqVeOyxx4TRaBQjRoxoUr0M6tRiysrKlC5BMfV9qIYDtXyonj59Wuj1ejFjxgxfmyzLYujQoaJ9+/bC4/E0uP3GjRsFAPHWW2/52goLC4XNZhMTJkzw69uzZ0/Rp08f4Xa7fW2PPfaYkCRJfPfdd820R0R0OXhMGaZ0GZdELccUIYSoqKgQbdq0EaNGjfJrnzhxooiJiRHFxcUNbr93714BQPz1r3/1tVVWVorOnTuLwYMH+/W96aabRLt27YTdbve1rV27VgAQH3zwQdA1M6hTUE6fPi1+97vfiXbt2gmDwSAyMjLE3XffLZxOpxBCiL///e8CgNi1a5e45557RGJiorDZbL7tV65cKXr27CkMBoNo166duPfee8WFCxf8XuOHH34Qv/71r0VSUpIwGo0iNTVV3HHHHaKkpMTX58MPPxS/+MUvhNVqFTExMeKKK64Qc+bMabT+YLarqqoS8+bNE507dxYGg0G0b99ePPLII6Kqqirg+davXy8GDhwooqKihM1mE0OHDvX9x+vQoYMA4Her+YDduXOnACB27tzp93xvvvmmuPLKK4XJZBJt2rQREydOFKdPn/brM3nyZBETEyNOnz4tRo8eLWJiYkRCQoJ46KGHGg2tQgixadMmMXLkSN972KlTJ7Fo0SK/bYcNGxZQe0MfsJMnTw7oX3ObP39+ozU1ZOXKlQKAOHz4sF/7a6+9JgAEnL2obdy4cSIpKSngTNP06dNFdHS07309fPiwACBWrlzp1y8vL08AEI8//vhl7QcRBeIxxR+PKdVefvllAUC89NJLfu1PPPGEACDee++9RutqyHvvvVfn8+zevVsAEOvXr29w+0ceeURotVq/8C2EEH/5y18EAHHy5EkhhBB2u13odDrxyCOP+PVzOp3CbDaLqVOnBl2zrmkDZag1OnPmDAYNGuQb79u9e3fk5eXh7bffRkVFBQwGg6/vvffei8TERMybNw/l5eUAgAULFmDhwoXIycnBPffcg++//x6rVq3CF198gc8++wx6vR4ulwvDhw+H0+nEfffdh+TkZOTl5eHdd99FSUkJrFYrDh8+jF/96lfo3bs3Fi1aBKPRiGPHjuGzzz5rsP5gtpNlGbfccgs+/fRTTJ8+HT169MChQ4ewfPly/PDDD9i0aZOv78KFC7FgwQIMGTIEixYtgsFgwN69e7Fjxw7ceOONWLFiBe677z6YzWY89thjAICkpKR661u3bh2mTJmCgQMHYvHixSgoKMAzzzyDzz77DAcOHIDNZvP19Xq9GD58OLKzs7F06VJs27YNTz/9NDp37ox77rmnwZ/DunXrYDabMWvWLJjNZuzYsQPz5s2Dw+HAX//6VwDAY489BrvdjtOnT2P58uUAALPZXO9z/uEPf0BOTo5f25YtW7Bhwwa0bdvW11ZUVNRgbTUsFguMRiMA4MCBA4iJiUGPHj38+gwaNMj3+NVXX13vcx04cABXXnklNBr/S3EGDRqENWvW4IcffkBWVhYOHDgAABgwYIBfv5SUFLRv3973OBE1Dx5TeEypz5QpU/Cvf/0Ls2bNwg033IC0tDQcOnQICxcuxNSpUzFy5Ehf3wsXLsDr9TZYIwBER0cjOjoaAOr9vO/fvz80Gg0OHDiA3/72t/U+14EDB3DFFVcgNjbWr73muHTw4EFfzR6PJ+B1DAYD+vbt27TjStCRnlqtO++8U2g0GvHFF18EPCbLshDiv2c/rr76ar/fpgsLC4XBYBA33nij35nN559/XgAQL7/8shCieiwXag1TqG358uUCgDh37lyT6g9mu/Xr1wuNRhNwlrZmLNtnn30mhBDi6NGjQqPRiFtvvTXgTG3Nz0KI+r+mrH32w+VyibZt24pevXqJyspKX793331XABDz5s3ztdWcvV60aJHfc/br10/079+/4R+CqP7Kr7Y//OEPfmeXhbi8rymPHj0qrFaruOGGG/z+HaCes+61b3//+9/96ujUqVPAa5SXlwsAYvbs2Q3WEhMTI373u98FtNecUdmyZYsQQoi//vWvfmdCLjZw4EBx1VVXBbv7RBQEHlN4TGnI2bNnRXx8vLjhhhuE0+kU/fr1E+np6QFnsev6pqGu28Xf7s6YMUNotdo6XzcxMVGMHz++wdoyMzPFddddF9Be883s6tWrhRBCvPXWWwKA+PjjjwP6jhs3TiQnJzf2Y/DhrC/UIFmWsWnTJtx8880BvxkCgCRJfvenTZsGrVbru79t2za4XC488MADfmc2p02bhtjYWLz33nsAAKvVCgD44IMPUFFRUWctNWcB/v3vf0OW5aD3IZjt3nrrLfTo0QPdu3dHUVGR73bdddcBAHbu3AkA2LRpE2RZxrx58wLO1Nb+WQTjyy+/RGFhIe69916YTCZf+6hRo9C9e3ffz+did999t9/9oUOH4scff2z0taKionx/Ly0tRVFREYYOHYqKigocOXKkybXXVl5ejltvvRVxcXF4/fXX/f4dbN26Najb8OHDfdtUVlb6zq5frObnVFlZ2WA9wW5f82d9fRt7HSIKHo8pPKY0Jjk5GStXrsTWrVsxdOhQHDx4EC+//HLAWewNGzYEdVy58847fdtUVlb6fWNzsWA+75U4rnDoCzXo3LlzcDgc6NWrV1D9O3bs6Hf/p59+AgB069bNr91gMKBTp06+xzt27IhZs2Zh2bJl2LBhA4YOHYpbbrkFv/3tb30fuHfccQf+9re/4fe//z1mz56N66+/Hr/+9a8xduzYgA+4iwWz3dGjR/Hdd98hMTGxzucoLCwEABw/fhwajQY9e/YM6ufRmPp+PgDQvXt3fPrpp35tJpMpoMa4uDhcuHCh0dc6fPgw5s6dix07dsDhcPg9Zrfbm1p6gGnTpuH48ePYvXs32rRp4/dY7eExwYiKioLT6Qxor6qq8j3eHNvX/Flf38Zeh4iCx2NKNR5TGjZ+/Hi8+uqreO+99zB9+nRcf/31AX1+8YtfNPl5o6Ki4HK56nwsmM97JY4rDOrUrC4n1Dz99NO466678O9//xsffvgh7r//fixevBiff/452rdvj6ioKHz88cfYuXMn3nvvPWzZsgUbN27Eddddhw8//NDvrEvtmhrbTpZlZGVlYdmyZXU+R1pa2iXvV3Oqbx8bU1JSgmHDhiE2NhaLFi1C586dYTKZ8NVXX+HRRx9t0tmkujzzzDN4/fXX8eqrr6Jv374Bj+fn5wf1PFar1fdvqF27dti5cyeEEH5nls6ePQugegx5Q9q1a+fre7Ha27dr187XXvt9Pnv2rG/sIRGFHo8pLUutx5Tz58/jyy+/BAB8++23kGU54Jenc+fOBTVG3Ww2+8bFt2vXDl6vF4WFhX7XUblcLpw/fz6o40peXl5Ae0PHlbr6NvY6foIeJEOtktfrFbGxsWL06NEN9qsZT1h7zGHNDB3vv/++X7vT6RRWq1Xcdttt9T7nZ599JgCIxx57rN4+NVeCb926tfGdaWC7kSNHitTUVL8xgXWpGc984MCBBvv16tUrqPGENVeav/DCCwF9e/To4TdOsOYK/drmz58vGvuv/M477wgA4qOPPvJrX7NmTcCMAb/61a+aNJ7w448/FjqdTjzwwAP19sEljFGvGXNae9aXDRs21Dv272Jjx46tc9aXadOm+Y2h/Oabbxqc9aX2+E0iunQ8pvjjMaVud9xxh4iOjhaLFy8WAMTTTz8d0OdSxqjXjNWvPetLzb+NV155pcG6Hn744Tpnfal5/2uudSopKWlw1pe6rp+qD8eoU4M0Gg3GjBmD//u///P9dnsxIUSD2+fk5MBgMODZZ5/16/vSSy/Bbrdj1KhRAACHwxGwCmRWVhY0Go3vq6Pi4uKA5685e1vX10s1gtnu9ttvR15eHtauXRvQt7Ky0jfbwJgxY6DRaLBo0aKAMwYX719MTAxKSkrqranGgAED0LZtW6xevdpvH/7zn//gu+++8/18LlfNWZOLa3S5XHjhhRcC+sbExAT9teXZs2dx++234+qrr/Zd5V+XSxmjPnr0aOj1er8ahRBYvXo1UlNTMWTIEL86jhw5Arfb7WsbO3YsCgoK8K9//cvXVlRUhLfeegs333yzb+xgZmYmunfvjjVr1vidnVm1ahUkScLYsWOD+lkQUeN4TOExpTFvv/02Nm7ciCVLlmD27NkYP3485s6dix9++MGv36WMUb/uuusQHx+PVatW+T3XqlWrEB0d7ffzKSoqwpEjR/yucRg7diy8Xi/WrFnja3M6nfj73/+O7Oxs3zclVqsVOTk5ePXVV1FaWurru379epSVlWHcuHFB/zx4Rp0adfr0aZGcnCyio6PFAw88IF588UWxYMECkZmZ6Zu3tr6zH0L897fzG2+8UTz//PPivvvuE1qtVgwcOFC4XC4hRPVv56mpqeKBBx4QL7zwgnj22WfFwIEDhV6vF3v27BFCCPHHP/5R9OvXT8ydO1esXbtWPPHEEyI1NVW0b9/eb17c2oLZzuv1ipEjRwpJksT48ePFc889J1asWCHuvvtuER8f77dff/rTnwQAMWTIELF06VLx3HPPiTvvvNNvFpJ7771XSJIkHn/8cfH666+L7du3CyHqnvO25meXnZ0tVqxYIebMmSOio6NFRkaG37zAl3P2o6ioSMTFxYkOHTqIp59+Wixbtkz069dP9OnTJ6Cep556SgAQDz74oHjttdfE5s2b633esWPHCq1WK5YtWybWr1/vd/v6668brCkYjzzyiAAgpk+fLtauXetbmXTDhg1+/WpmL8jNzfW1eTwecdVVVwmz2SwWLlwoVq5cKTIzM4XFYhFHjhzx2/7//u//hCRJ4rrrrhNr1qwR999/v9BoNGLatGmXvQ9E5I/HFB5T6lNQUCASEhLEtdde6/s2oqioSCQlJYnBgwc3ywqsNWt0jB07Vqxdu1bceeedAoB44okn/PrV/Bxqz1E/btw439nyF198UQwZMkTodLqAbxf2798vjEaj38qkJpNJ3HjjjU2ql0GdgvLTTz+JO++8UyQmJgqj0Sg6deokZsyYEbA4RV0fqkJUD2Po3r270Ov1IikpSdxzzz1+Hxg//vij+N3vfic6d+4sTCaTiI+PF9dee63Ytm2br8/27dvF6NGjRUpKijAYDCIlJUVMmDAhYDn42oLdzuVyiSeffFJkZmYKo9Eo4uLiRP/+/cXChQsDvuZ6+eWXRb9+/Xz9hg0b5vdVaX5+vhg1apSwWCwCaHxxio0bN/qeLz4+vsHFKWoL5kNViOqv9q666ioRFRUlUlJSxP/8z/+IDz74IKCesrIy8Zvf/EbYbDYBNLw4RV2LWdTcLnfBIyGqD3Z/+ctfRIcOHYTBYBCZmZni1VdfDehXV1AXQoji4mIxdepU0aZNGxEdHS2GDRtW77/Rd955R/Tt21cYjUbRvn17MXfuXN9Bn4iaF48pPKbU5de//rWwWCzixIkTfu3//ve/BQDx5JNPNlpXMNasWSO6desmDAaD6Ny5s1i+fHnAMKX6gnplZaV4+OGHRXJysjAajWLgwIG+6X5r++STT8SQIUOEyWQSiYmJYsaMGcLhcDSpVkmIRr5nIiIiIiKikOMYdSIiIiIiFWJQJyIiIiJSIQZ1IiIiIiIVYlAnIiIiIlIhBnUiIiIiIhViUCciIiIiUiGd0gWonSzLOHPmDCwWCyRJUrocIqKQE0KgtLQUKSkp0Gh4focoHDQlv/D/uHoxqDfizJkz6JDeAbKQ6+2jkTQNPk5EpGbBfoadOnUK7du3D0FFRHS5zpw5gwULFsBsNsPpdKKxZXNefPFF/h9XIQb1RlgsFshCxtIRT6JzfOeAx48XH8fDWx7FLY8uQ0Ja4ONERGpWdOo4Nj85q97POOC/n3MWiyXE1RHRpbJYLDCbzUhNTUV8fHyDfZ1Op28bUhcG9UbUfF3UOb4zMtv2rLef3hgFQ1RMqMoiImoWemMUgMY/4wBw+B9RGJEkCbIsw+v1wuv1BhXC+X9cfTgQiYiIiCgCuVwuxMTEwOFwoLS0VOly6BLwjDoRERFRhIqOjobRaITD4QDA4S3hhkGdiIiIKILVhHOG9fDDoE5EREQU4RjWwxODOhEREVErwLAefhjUiYiIiFoJhvXwwqBORERE1IrUDutarVbJcqgBDOpERERErczFYd1oNCpcDdWHQZ2IiIioFaoJ68XFxQpXQvVhUCciIiJqpSwWC5xOp9JlUD24MikRERFRKxYdHa10CVQPBnUiIiIiIhViUCciIiIiUiGOUSeiOknwoovmEKwohh3xOCZnQYBTeBEREYUKgzoRBeir+QS361ciTirytV0QCXjTPQMH5aEKVkZERNR6cOgLEfnpq/kE0/ULYUORX7sNRZiuX4i+mk8UqoyIiKh1YVAnIh8JXtyuX1n9d6nWYz/fH6d/ARK8Ia6MiIio9WFQJyKfLppDiJOKAkJ6DUkC4qVz6KI5FNrCiIiIWiEGdSLysSK41emC7UdERESXjkGdiHzsiG/WfkRERHTpGNSJyOeYnIULIgFC1P24EECxSMQxOSu0hRERUYupqKhQugSqB4M6EfkIaPGme0b132uF9Zr7b7nv5XzqREQRorS0FOXl5UqXQfVgUCciPwfloVjjno8SJPi1X0Ai1rjncx51IqIIUVpaCofDgZiYGKVLoXqEXVBfuXIlMjIyYDKZkJ2djX379gW13RtvvAFJkjBmzJiWLZAoAhyUh+Ix5wYscy3FS67/xTLXUsx1vsqQTkQUIWpCemxsLKKjo5Uuh+oRVkF948aNmDVrFubPn4+vvvoKffr0wfDhw1FYWNjgdidOnMDDDz+MoUMZMoiCJaDFUbkvvpSvw1G5L4e7EBFFiItDusViUbocakBYBfVly5Zh2rRpmDJlCnr27InVq1cjOjoaL7/8cr3beL1eTJw4EQsXLkSnTp1CWC0RERGRujCkh5ewCeoulwv79+9HTk6Or02j0SAnJwd79uypd7tFixahbdu2mDp1aijKJCIiIlIlhvTwo1O6gGAVFRXB6/UiKSnJrz0pKQlHjhypc5tPP/0UL730Eg4ePBj06zidTjidTt99h8NxSfUSERERqQVDengKmzPqTVVaWopJkyZh7dq1SEhIaHyDny1evBhWq9V3S0tLa8EqiYiIiFoWQ3r4Cpsz6gkJCdBqtSgoKPBrLygoQHJyckD/48eP48SJE7j55pt9bbIsAwB0Oh2+//57dO7cOWC7OXPmYNasWb77DoeDYZ2IiIjCUkVFBZxOJ0N6mAqboG4wGNC/f39s377dN8WiLMvYvn07Zs6cGdC/e/fuOHTokF/b3LlzUVpaimeeeabe8G00GmE0Gpu9fiIiIqJQMhgMKC8vR3x8PEN6mAqboA4As2bNwuTJkzFgwAAMGjQIK1asQHl5OaZMmQIAuPPOO5GamorFixfDZDKhV69eftvbbDYACGgnIiIiijQajQYGg4EhPYyFVVC/4447cO7cOcybNw/5+fno27cvtmzZ4rvA9OTJk9BoInbYPREREVGTeDweuFwuGAwGpUuhSxBWQR0AZs6cWedQFwDYtWtXg9uuW7eu+QsiIiIiUqGqqipotVoUFRUhISGBYT0M8fQzERERUYSKjY2FXq9HUVERXC6X0uVQEzGoExEREUUojUaDNm3aMKyHKQZ1IiIiogjGsB6+GNSJiIiIIhzDenhiUCciIiJqBRjWww+DOhEREVErwbAeXhjUiYiIiFqR2mHd4/EoXRLVg0GdiIiIqJW5OKzb7Xaly6F6MKgTERERhdjHH3+Mm2++GSkpKZAkCZs2bfJ7XAiBefPmoV27doiKikJOTg6OHj3arDXUhHWtVtusz0vNh0GdiIiIKMTKy8vRp08frFy5ss7Hn3rqKTz77LNYvXo19u7di5iYGAwfPhxVVVVNeh2PxwOXy1XvzePxIDo6ujl2iVqATukCiIiIiFqbm266CTfddFOdjwkhsGLFCsydOxejR48GALzyyitISkrCpk2bMH78+KBeo6KiAl6vt9FwL4RoWvEUMgzqRERERCqSm5uL/Px85OTk+NqsViuys7OxZ8+eoIP6P//5T/z5z3+G2WxusF9ZWRlmzJhxWTVTy2BQJyIiIlKR/Px8AEBSUpJfe1JSku+x2pxOJ5xOp+++w+FARUUFbDYbYmNjG3w9nY5xUK04Rp2IiIgozC1evBhWq9V3S0tLU7okagYM6kREREQqkpycDAAoKCjway8oKPA9VtucOXNgt9t9t1OnTrV4ndTyGNSJiIiIVKRjx45ITk7G9u3bfW0OhwN79+7F4MGD69zGaDQiNjbW70bhj4OSiIiIiEKsrKwMx44d893Pzc3FwYMHER8fj/T0dDzwwAP485//jK5du6Jjx47405/+hJSUFIwZM0a5oinkGNSJiIiIQuzLL7/Etdde67s/a9YsAMDkyZOxbt06/M///A/Ky8sxffp0lJSU4Oqrr8aWLVtgMpmUKpkUwKBOREREFGLXXHNNg/OXS5KERYsWYdGiRSGsitSGY9SJiIiIiFSIQZ2IiIiISIUY1ImIiIiIVIhBnYiIiIhIhRjUiYiIiIhUiEGdiIiIiEiFGNSJiIiIiFSIQZ2IiIiISIUY1ImIiIiIVIhBnYiIiIhIhRjUiYiIiIhUiEGdiIiIiEiFGNSJiIiIiFSIQZ2IiIiISIUY1ImIiIiIVIhBnYiIiIhIhRjUiYiIiIhUiEGdiIiIiEiFGNSJiIiIiFSIQZ2IiIiISIUY1ImIiIiIVIhBnYiIiIhIhRjUiYiIiIhUiEGdiIiIiEiFGNSJiIiIiFSIQZ2IiIiISIUY1ImIiIiIVIhBnYiIiIhIhRjUiYiIiIhUiEGdiIiIiEiFGNSJiIiIiFQo7IL6ypUrkZGRAZPJhOzsbOzbt6/evmvXrsXQoUMRFxeHuLg45OTkNNifiKilCchwmI/jvO0AHObjEJCVLomIiFRKp3QBTbFx40bMmjULq1evRnZ2NlasWIHhw4fj+++/R9u2bQP679q1CxMmTMCQIUNgMpnw5JNP4sYbb8Thw4eRmpqqwB4QUWtWbD2Ek6mb4TLYfW0GlxXpebcg3p6lYGVERKRGYXVGfdmyZZg2bRqmTJmCnj17YvXq1YiOjsbLL79cZ/8NGzbg3nvvRd++fdG9e3f87W9/gyzL2L59e4grJ6LWrth6CMcy1sOlt/u1u/R2HMtYj2LrIYUqIyIitQqboO5yubB//37k5OT42jQaDXJycrBnz56gnqOiogJutxvx8fEtVSYRUQABGSdTN1ffkWo9+PP9k6mbOQyGiIj8hM3Ql6KiIni9XiQlJfm1JyUl4ciRI0E9x6OPPoqUlBS/sF+b0+mE0+n03Xc4HJdWMFET6bwyojxuRLm9MHi90MkytEJAEgIA4NVo4NFIcGu0qNJpUanXwanVAlLt5EdqU2rO9RvuEkACXAY7Ss25iC3rHLrCiIhI1cImqF+uJUuW4I033sCuXbtgMpnq7bd48WIsXLgwhJVRqyIEzC43EisqEV9ZhbjKKlidLlicLpi83iY/nUeSUGbQw24yosRkRHGUCUXRUbhgMkHWMMCrhVsX3C/8wfYjIqLWIWyCekJCArRaLQoKCvzaCwoKkJyc3OC2S5cuxZIlS7Bt2zb07t27wb5z5szBrFmzfPcdDgfS0tIuvXBq3YRAXJUTqY4ypJSWIbmsAtEeT7M9vU4I2Jwu2JwudLCX+to9koTCmGictcQgz2JGvjkasiZsRrpFHL0ntln7ERFR6xA2Qd1gMKB///7Yvn07xowZAwC+C0NnzpxZ73ZPPfUUnnjiCXzwwQcYMGBAo69jNBphNBqbq2xqhSQh0K60HJ0u2NHB7oDF5Q55DTohkFJWjpSycvQ/Wwi3RoPTsWbk2qw4YYuFS6cNeU2tmaWsIwwua/WFpHV90SEAg9sKS1nHkNdGRETqFTZBHQBmzZqFyZMnY8CAARg0aBBWrFiB8vJyTJkyBQBw5513IjU1FYsXLwYAPPnkk5g3bx5ee+01ZGRkID8/HwBgNpthNpsV2w+KTHGVVeheVIwuxSWIcTffWfPmoJdldCxxoGOJA15Jwk9WC75PiMdJqwWCY9xbnAQN0vNuwbGM9YCAf1ivvgQB6Xm3QAqf6/uJiCgEwiqo33HHHTh37hzmzZuH/Px89O3bF1u2bPFdYHry5EloLvp6f9WqVXC5XBg7dqzf88yfPx8LFiwIZekUoTSyQKcLJehVeB7J5RVKlxMUrRDoVOJApxIHyvU6fJvYBt8mxqNSr1e6tIgWb89ClxOTAudRd3MedSIiqltYBXUAmDlzZr1DXXbt2uV3/8SJEy1fELVKOq+MHkXn0Se/CGZ36Ie2NJcYtwcDzxSg39lC/NAmDgeTE+EwcehXS4m3ZyHOnolScy7cOgf0nlhYyjryTDoRBViwYEHA5BbdunULeqY7igxhF9SJlKSVZWQWnke//EJEeZo+S4ta6YRAz6JidC8qxg9t4vBlShLKjAaly4pIEjScgpGIgpKZmYlt27b57ut0jG2tDd9xomAIgS7FJcjOy1fk4tBQ0QDofv4CuhaX4FDbBHzVri0vPCUiUohOp2t0ZjuKbAzqRI2Ir6jE0JN5aFcWHmPQm4NWCPQtOIcrzl/A5+3b4Yc2Ni6sREQUYkePHkVKSgpMJhMGDx6MxYsXIz09vc6+XLAxMnFgJFE9tLKMQafP4rbvjraqkH6xaI8H1504hV/9kAvLRQcAIiJqWdnZ2Vi3bh22bNmCVatWITc3F0OHDkVpaWmd/RcvXgyr1eq7cQ2YyMCgTlSHNhWVuO3bo7gy/xy0QulqlNe+tAy3Hz6KHufOA4I/ECKilnbTTTdh3Lhx6N27N4YPH473338fJSUlePPNN+vsP2fOHNjtdt/t1KlTIa6YWgKHvhBdTAj0LihCdl4+tAykfvSyjGE/5SHdXopdGe3h5EVNREQhY7PZcMUVV+DYsWN1Ps4FGyMTz6gT/czg8WL48Z8w5PRZhvQGdCxxYOy3R5EYJvPGExFFgrKyMhw/fhzt2rVTuhQKIQZ1IgDWKiduPXIMHUt48U0wLC43Rh85jq7nLyhdChFRRHr44Yfx0Ucf4cSJE9i9ezduvfVWaLVaTJgwQenSKIT43TW1eu1KyzD82E8weSNnXvRQ0AmB63NPwVblxBcpSZwVhoioGZ0+fRoTJkzA+fPnkZiYiKuvvhqff/45EhMTlS6NQohBnVq1TsUluD73FIe6XIb+ZwthdrmxK6M9BMM6EVGzeOONN5QugVSAQZ1are7nijHsp9NgtLx83c5fgMHrxdZO6ZA1HFFHRETUHHhEpVapx7nzuIYhvVl1LHFg+PGfoJFlpUshIiKKCAzq1Op0KyrGsJ/ylC4jInWwl+KGH09CI3MoERER0eViUKdWpeMFO4adOK10GRGtY4kD15w4xYWRiIiILhODOrUayaXluP7Hk/xHHwJXFJcgOy9f6TKIiIjCGjMLtQoWpxPDj5+Ajmd5Q6Zf/jl0P3de6TKIiIjCFoM6RTyd14ubjp5AlIfzpIfa0JNnkFxarnQZREREYYlBnSKbELjmxGnEVzmVrqRV0gqBG378CVFut9KlEBERhR0GdYpoPc8Vo8sFu9JltGoxbg+u/5EXlxIRETUVgzpFLFtlFYacOqN0GQSgfWkZ+uafU7oMIiKisMKVScOIBC+6aA7BimLYEY9jchYEtEqXpUoaWeC63FO8eFRFBp4pwEmrBcXRUUqXQkREFBYY1MNEX80nuF2/EnFSka/tgkjAm+4ZOCgPVbAydepTcA5tKyqVLoMuov35eoF3enSBkLgmLBERUWM49CUM9NV8gun6hbChyK/dhiJM1y9EX80nClWmTrFVTvQ/U6B0GVSHthWVyCooarwjERERMairnQQvbtevrP57rZOQNffH6V+ABE49CAAQAr84dYZDXlRswJkCRLs4CwwREVFjGNRVrovmEOKkooCQXkOSgHjpHLpoDoW2MJVKt5eig71U6TKoAQZZ5qqlREREQWBQVzkripu1XySThMBVp88qXQYF4YrzF9CG1xAQERE1iEFd5eyIb9Z+keyK8xe4sFGYkABkn+ZZdSIiooYwqKvcMTkLF0RCvWvFCAEUi0Qck7NCW5jKaGSBK88WKl0GNUG6oxRty8qVLoOIiEi1GNRVTkCLN90zqv9eK6zX3H/LfW+rn0+9S3EJrE6X0mVQE/XnL1dERET1YlAPAwfloVjjno8SJPi1X0Ai1rjncx51IdCngKtehqMO9lLEVVYpXQYREZEqccGjMHFQHoqvnUO4Mmkd2jvK0IZhL2xlFRTh44z2SpdBRESkOgzqYURAi6NyX6XLUJ3Mc+eVLoEuQ9fiC/i8fTJcOn4cERERXYxDXyisRbvc6FDiULoMugx6WaBrcYnSZRAREakOgzqFtSvOX+A/4gjQveiC0iUQERGpDjMOhTWeiY0MiRWVsPE6AyIiIj8M6hS2bJVVvIg0gnS+YFe6BCIiIlVhUKew1YnBLqJ05PtJRETkh0GdwlYHe6nSJVAzSqisgpmLVhEREfkwqFNYMno8aFteoXQZ1MzSHPzli4iIqAaDOoWlVEcZJKWLoGaX6ihTugQiIiLVYFCnsNSurFzpEqgFpJSWA0IoXQYREZEqMKhTWEou47CXSBTt8SCW49SJiIgAMKhTGNLKMuIrK5Uug1oIrz0gIiKqxqBOYSe+sgpajo6IWAkVnBufiIgIYFCnMBTPRY4iGt9fIiKiagzqFHZsVU6lS6AWFFfFoE5ERAQwqFMYsjKoRzSzyw2NLCtdBhERkeIY1CnsWFxupUugFiShOqwTERG1dgzqFHZiGOIiHoM6ERERgzqFGUkIRHk8SpdBLYzvMRERURgG9ZUrVyIjIwMmkwnZ2dnYt29fg/3feustdO/eHSaTCVlZWXj//fdDVCm1BKPHC0npIqjFmRjUiYgAND33UGQJq6C+ceNGzJo1C/Pnz8dXX32FPn36YPjw4SgsLKyz/+7duzFhwgRMnToVBw4cwJgxYzBmzBh88803Ia6cmote9ipdAoWAwcuLSYmImpp7KPLomrrB5MmTMXXqVPzyl79siXoatGzZMkybNg1TpkwBAKxevRrvvfceXn75ZcyePTug/zPPPIMRI0bgkUceAQA8/vjj2Lp1K55//nmsXr06pLVT89AzwLUKOs76QkQhct1112HYsGGYP3++X/uFCxdw2223YceOHQpV1vTcU5cH1++CISoGAHD3l//P77HVA3oDAFyV5c1XNDWrJp9Rt9vtyMnJQdeuXfGXv/wFeXl5LVFXAJfLhf379yMnJ8fXptFokJOTgz179tS5zZ49e/z6A8Dw4cPr7U/qpxVckrQ10Mp8n4koNHbt2oXnn38eY8aMQXn5fwOry+XCRx99pFhdl5J7KPI0Oahv2rQJeXl5uOeee7Bx40ZkZGTgpptuwttvvw23u+VmaigqKoLX60VSUpJfe1JSEvLz8+vcJj8/v0n9AcDpdMLhcPjdiCjUGNSJKHS2bduG/Px8XHXVVThx4oTS5QBoeu6pK7+YLVZE6fUw6bQw6bTwREf53Wrao/T6UO0WNdEljVFPTEzErFmz8PXXX2Pv3r3o0qULJk2ahJSUFDz44IM4evRoc9cZMosXL4bVavXd0tLSlC6JqBXiJcNEFDrt2rXDRx99hKysLAwcOBC7du1SuqQmqyu//P6BeeidlorMpET0Sk5E4S8HoeiqfijK7oui7L7ITEpEZlIieqelKl0+1eOyLiY9e/Ystm7diq1bt0Kr1WLkyJE4dOgQevbsieXLlzdXjQCAhIQEaLVaFBQU+LUXFBQgOTm5zm2Sk5Ob1B8A5syZA7vd7rudOnXq8ounZuOVGOBaA6+G7zMRhYb083HFaDTitddewx//+EeMGDECL7zwgqJ1NTX31JVf4tokAkJAlmUIAXj1OgghAI8H8HggyzJkWQY4rFS1mhzU3W43/vnPf+JXv/oVOnTogLfeegsPPPAAzpw5g3/84x/Ytm0b3nzzTSxatKhZCzUYDOjfvz+2b9/ua5NlGdu3b8fgwYPr3Gbw4MF+/QFg69at9fYHqv+jxsbG+t1IPTyasJqoiC4R32ciChVRK6TOnTsXGzZswNNPP61QRdWamnvqyi9miw0dEq3onBSHjolWRCXFQ9+5PXTdMqDrloHOSXHonBSHDonWUO4aNUGTZ31p164dZFnGhAkTsG/fPvTt2zegz7XXXgubzdYM5fmbNWsWJk+ejAEDBmDQoEFYsWIFysvLfVdD33nnnUhNTcXixYsBAH/84x8xbNgwPP300xg1ahTeeOMNfPnll1izZk2z10ah4dJqlS6BQsClZVAnotDIzc1FYmKiX9ttt92G7t2748svv1SoqmqN5Z7GlJWWIMaog8logMcro7zKgxiTDrpan7FVzpaonppDk4P68uXLMW7cOJhMpnr72Gw25ObmXlZhdbnjjjtw7tw5zJs3D/n5+ejbty+2bNniu9Di5MmT0Fx0Jm7IkCF47bXXMHfuXPzv//4vunbtik2bNqFXr17NXhuFhlOnhQBHMEe6Kl2TP5qIiC5Jhw4d6mzPzMxEZmZmiKvx11juaYzX64VWI/kFc51WExDUtRxuqFpNPhpOmjSpJeoI2syZMzFz5sw6H6vr4o9x48Zh3LhxLVwVhYqQJFTptIjycOGjSFbJoE5EBKDh3EORj98vU9gp5zRSEa/cwPeYiIiIQZ3CTqnRoHQJ1IIEgDIGdSIiIgZ1Cj92BvWIVmbQw8tZX4iIiBjUKfyUNHAhM4W/EpNR6RKIiIhUgVdsUdgpjmJQj2R8f4mImocl1oayKg+qPIAsV88Xby93QVNrlhePx6NEeRQEBnUKO8VRJsjg10GRqig6SukSiIgigtvlgl4rwaDTwCMLuD0y9DoNdLWCuiQ4PaNaMahT2PFoNSiOMiGhskrpUqgFFMZEK10CEVFEqKqqgFGvRZRJD49Xht3jQrQxcMEjCbJCFVJjeFKSwlKBOUbpEqgFVOq0vFiYiIjoZwzqFJbOWBjUI9FZcwwg8StYIiIigEGdwlSexax0CdQC8mL5vhIREdVgUKewVKXXoZAXHUack1aL0iUQERGpBoM6ha2fbLFKl0DNqNhkRKmRc6gTERHV4KwvFLZybbEYeKZA6TKomeTGWZUugYgoophM0XC6vRBww/PzPOoVTk/A9Iwut1eJ8igIDOoUtoqjTLhgMiKuyql0KdQMjjOoExE1K73BALdXQEiyb8Ejt0eGt/aCR16hRHkUBAZ1Cl+ShKPxNgziWfWwdz7KhGJec0BE1KxKHSUwm3SIMhmr51Evd8EaYwiYR53LkqgXx6hTWPuhTRx4HiD8fd8mTukSiIiIVIdBncJamdGAU7GcKSSceSUJPzCoExERBWBQp7D3Tds2SpdAl+FYvA1Veo7CIyIiqo1BncLeSasFJVx2Pmz9v6QEpUsgIiJSJQZ1Cn+ShIPJiUpXQZfgtMWM87yIlIiIqE4M6hQRfmgTh1KDXukyqIn2p7RVugQiooil1WrhlQU8XhkerwwAvr9ffPPKnJZBrTgwlCKCrNHgq3ZtMeynPKVLoSCdtphx1mJWugwioohltthQ7vTA6flvW3mVJ6CfxxvYRurAoE4R4/s28eibfw5Wp0vpUqgBsiTjh+RCbO1sRaVOwFLWERK/3CMianZlpSWIMepgMhrg8coor/IgxqQLmEed6waqF4M6RQxZI+Hz9u0w/PhPSpdC9difcRKvXfUlLpgrfG0GlxXpebcg3p6lYGVERJHH6/VCq5H8grlOqwkI6tpaK5WSevA0FkWUXFssTnM4hSrtzziJldd/jAsxFX7tLr0dxzLWo9h6SKHKiIiI1IlBnSKLJOGz9BR4JZ4dUBNZkvHaVV9W36n91vx8/2TqZgjIIa2LiIhIzRjUKeJciDLhAKdrVJUfkgurh7vU9/uTBLgMdpSac0NaFxERkZoxqFNE+qpdW5yPMildBv2sJKoyqH5unaOFKyEiIgofDOoUkWSNBjs6pnEIjErYKoNb1EjviW3hSoiIiMIHZ32hiHU+Ogp7U5Mx5PRZpUtp9SxlGTC4rHDp7XUPfxGAwW2FpaxjyGsjIopUllgbyqo8qPIA8s+LGtnLXdDUmuXF4+E86mrFM+oU0f5fUgJybTxLq6RKnRY7OmYgPe+W6obaC+D9fD897xbOp05E1IzcLhf0WglGnQZ6XfXnq16ngbHWTa/lt89qxaMiRTZJws6MNNiNBqUraZVkANs6paPcYEC8PQtdTkyCwW3162NwW9HlxCTOo05E1Myqqipg1GsRbdIj2lg9iCLaqKu+f9HNqNcqXCnVh0NfKOK5dFr8p0sGbj1yDEYvp/8LpT1p7ZAXa/Hdj7dnIc6eiVJzLtw6B/SeWK5MSkREVA8GdWoVSqJM2NqpA246lgtt7aEX1CIOJ7bBobYJAe0SNIgt66xARUREROGFp7Go1ThttWBXRprSZbQKubZYfJqeAnDWHSIiokvGoE6tytE2cfg0LUXpMiLaaYsZ2zqlQzCkExERXRYGdWp1vklKwJ727ZQuIyKdMcdgS5cMeDX8aCEiIrpcHKNOrdLXyYmQJeAXpzjHenM5bTFjS5cMeLQM6UREamAyRcPp9kLADc/P86hXOD3Q1ZpH3eX2KlEeBYFBnVqtQ0mJcGm1GHbiNL9aukzH46zY3jENMs+kExGpht5ggNsrICTZt+CR2yPDW3vBIy9nWVArBnVq1b5PiEelTocbfjwJvcypGy/FobZtsDsthWPSiYhUptRRArNJhyiTER6vDHu5C9YYA3S1vvmsrFKoQGoUT39Rq3fSFotN3Tuj1KBXupSw4pWAT9JT8Fl6KkM6ERFRC2BQJwJwPjoK/+zRFactZqVLCQsVOh3evaITDtcxTzoREV2+jIwMSJLkd1uyZInSZVGIcegL0c+q9Dq8d0VHXHm2EP3PFPC32Hqctpixo2MaKvgNBBFRi1q0aBGmTZvmu2+xWBroTZGIQZ3oIkKSsD8lCXkWM67LPYVYl0vpklTDK0nYl5qEr5MSuZAREVEIWCwWJCcnK10GKYgnDanZCchwmI/jvO0AHObjEAi/izTzLTF4M7MrvklsA14LDxTEROHtnl3xdXJbhnQiohBZsmQJ2rRpg379+uGvf/0rPB5PvX2dTiccDoffjcIfz6hTsyq2HsLJ1M1wGey+NoPLivS8WxBvz1KwsqbzaLX4tEMqjraxYehPeUhohZfFO7Ua7EtNxreJbXjBKBFRCN1///248sorER8fj927d2POnDk4e/Ysli1bVmf/xYsXY+HChX5tC1e8Aq8s4PHK8HirT5rV/Hkxr8xTUmrFM+rUbIqth3AsYz1certfu0tvx7GM9Si2HlKosstTYI7BP3t2xUcdUlGp0ypdTkjIAA4nxuP1Xt1xuG0CQzoRUTOYPXt2wAWitW9HjhwBAMyaNQvXXHMNevfujbvvvhtPP/00nnvuOTidzjqfe86cObDb7b7bqVOnYLbYUO70wF7uQnlV9dn48qrq+xffyp31n6knZfGMOjULARknUzdX36md6SQAAjiZuhlx9kxIYfj7oZAkfJfYBsfibehdUITeBedgrOOsRCQ4HmfFFylJKIkyKV0KEVFEeeihh3DXXXc12KdTp051tmdnZ8Pj8eDEiRPo1q1bwONGoxFGo9Gvray0BDFGHUxGAzxeGeVVHsSYdAHzqFfVnf1JBRjUqVmUmnP9hrsEkACXwY5Scy5iyzqHrrBm5tZqsT8lCYfatkFW4Xn0KixClCf8l16WARyPt+JAclsUR0cpXQ4RUURKTExEYmLiJW178OBBaDQatG3bNuhtvF4vtBrJL5jrtJqAoK7V8FtTtWJQp2bh1gV30Uqw/dTOpdNhf0r1DChdiy+gV+F5tAnDMexVWi2OJMThcNsElBoNSpdDREQA9uzZg7179+Laa6+FxWLBnj178OCDD+K3v/0t4uLilC6PQihsxiAUFxdj4sSJiI2Nhc1mw9SpU1FWVtZg//vuuw/dunVDVFQU0tPTcf/998Nub+CsL10yvSe2WfuFC49Wg+8S2+Ctnl3xTvfO+C4hDk6tuv9byaieC317xzSs79MDn6elMKQTEamI0WjEG2+8gWHDhiEzMxNPPPEEHnzwQaxZs0bp0ijEwuaM+sSJE3H27Fls3boVbrcbU6ZMwfTp0/Haa6/V2f/MmTM4c+YMli5dip49e+Knn37C3XffjTNnzuDtt98OcfWRz1LWEQaXtfpC0rq+QROAwW2FpaxjyGsLCUlCgTkGBeYYfJqeijR7KTqWOJBud6hiaIxXAs6azciNi0WuzcrFioiIVOzKK6/E559/rnQZpAJhEdS/++47bNmyBV988QUGDBgAAHjuuecwcuRILF26FCkpKQHb9OrVC//85z999zt37ownnngCv/3tb+HxeKDThcWuhw0JGqTn3YJjGesBAf+w/vOsT+l5t4TlhaRN5dVocCLOihNxVkhCILG8Au0dZUgpLUdSeQX0cstfhCoDKI4y4awlBnkWM/JizXBrW8eMNURERJEiLNLqnj17YLPZfCEdAHJycqDRaLB3717ceuutQT2P3W5HbGxsgyHd6XT6TX3EBQOCF2/PQpcTkwLnUXeH5zzqzUFIEgrNMSg0x+ArAJIQiKusQkJFJdpUViGu0gmr0wmzyw2tuLR5bMv1OjiMBpSYTCiOMqEo2oSi6CgGcyIiojAXFkE9Pz8/4CpnnU6H+Ph45OfnB/UcRUVFePzxxzF9+vQG+9W1YAAFL96ehTh7JkrNuXDrHNB7YmEp69gqzqQHQ0gSiqOjAmdWEQJRHg+i3R6YPB4YvDL0XhlaIUMSgJAAWZLg0Wjg0mrg1OpQqdehXK+DrOHPloiIAllibSir8qDKA8g/L2pkL3dBU2uWl4ZWPCVlKRrUZ8+ejSeffLLBPt99991lv47D4cCoUaPQs2dPLFiwoMG+c+bMwaxZs/y2TUtLu+waWhMJmrCeglERkoRKvR6Veo4dJyKi5uF2uaDXSjDoNPDIAm6PDL1OA12toC4JTs+oVooG9WAn/k9OTkZhYaFfu8fjQXFxMZKTkxvcvrS0FCNGjIDFYsE777wDfSNBqK4FA4iIiIjCTVVVBYx6LaJMeni8MuweF6KNgQseSYjMBfwigaJBPdiJ/wcPHoySkhLs378f/fv3BwDs2LEDsiwjOzu73u0cDgeGDx8Oo9GIzZs3w2TiSotEREREFB7CYnBrjx49MGLECEybNg379u3DZ599hpkzZ2L8+PG+GV/y8vLQvXt37Nu3D0B1SL/xxhtRXl6Ol156CQ6HA/n5+cjPz4fXq/x0eUREREREDQmLi0kBYMOGDZg5cyauv/56aDQa3HbbbXj22Wd9j7vdbnz//feoqKgAAHz11VfYu3cvAKBLly5+z5Wbm4uMjIyQ1U5ERERE1FRhE9Tj4+PrXdwIADIyMiAumt7ummuu8btPRERERBROwmLoCxERERFRaxM2Z9SJiIiIKHgmUzScbi8E3PD8PI96hdMTMD2jy81r99SKQZ2IiIgoAukNBri9AkKSfQseuT0yvLUXPPJyqLBaMagTERERRaBSRwnMJh2iTMbqedTLXbDGGALmUa+sUqhAahSDOhFRmBGQUWrOhVvngN4TC0tZR0i85IiIKOIwqBMRhZFi6yGcTN0Ml8HuazO4rEjPuwXx9iwFKyMioubGUzBERGGi2HoIxzLWw6W3+7W79HYcy1iPYushhSojIqKWwKBORBQGBGScTN1cfUeq9eDP90+mboaAHNK6iIio5TCoExGFgVJzbvVwl9ohvYYEuAx2lJpzQ1oXERG1HI5RJyIKA26do1n7EVHk02q18MoCHq8Mj7f627aaPy/mlTk9o1oxqBMRhQG9J7ZZ+xFR5DNbbCh3euD0/LetvMoT0M/jDWwjdWBQJyIKA5ayjjC4rNUXktY1/EUABrcVlrKOIa+NiNSprLQEMUYdTEYDPF4Z5VUexJh0AfOoVzkVKpAaxTHqRERhQIIG6Xm3VN+p/S31z/fT827hfOpE5OP1eqHVSNBpNb5wXvP3i29aTX0Xv5DS+IlORGFJQIbDfBznbQfgMB9vFbOdxNuz0OXEJBjcVr92g9uKLicmcR51IqIIw6EvRBR2WvOiP/H2LMTZM7kyKRFRK8CgTkRhpWbRn9pqFv1pDWeWJWgQW9ZZ6TKIiKiF8RQMEYUNLvpDREStCYM6EYUNLvpDREStCYe+EFHY4KI/RETBs8TaUFblQZUHkH9e1Mhe7oKm1iwvHg/nUVcrBnUiChtc9IeIKHhulwt6rQSDTgOPLOD2yNDrNNDVCuqS4PSMasWgTkRhg4v+EBEFr6qqAka9FlEmPTxeGXaPC9HGwAWPJF7Xo1oco05EYYOL/hARUWvCoxkRhRUu+kNERK0Fh74QUQABWdUL6nDRHyIiag0Y1InIT7is+slFf4iIKNLx9BMR+dSs+unS2/3aa1b9LLYeUqgyIiKi1odn1IkIQBCrforqVT/j7JkcYkJEFAZMpmg43V4IuOH5eR71CqcnYHpGl9urRHkUBAZ1IgJw0aqf9blo1U8OOSEiUj+9wQC3V0BIsm/BI7dHhrf2gkfe2tNokVowqBMRAK76SUQUaUodJTCbdIgyGavnUS93wRpjCJhHvbJKoQKpUfz+mogAcNVPIiIitWFQJyIA/131M2AhoRqievYXrvpJREQUGgzqRASAq34SEYXKE088gSFDhiA6Oho2m63OPidPnsSoUaMQHR2Ntm3b4pFHHoHH4wltoaQ4HnGJyIerfhIRtTyXy4Vx48bhnnvuqfNxr9eLUaNGweVyYffu3fjHP/6BdevWYd68eSGulJTGi0mJyA9X/SQialkLFy4EAKxbt67Oxz/88EN8++232LZtG5KSktC3b188/vjjePTRR7FgwQIYDIYQVktK4pGXiALUrPrZpqQfYss6M6QTEYXQnj17kJWVhaSkJF/b8OHD4XA4cPjw4aCfR6vVwisLeLwyPF4ZAHx/v/jmlTk9o1rxjDoRERGRiuTn5/uFdAC++/n5+XVu43Q64XQ6ffcdDgfMFhvKnR44LxraXl4VOM7d4+XYd7XiaTIiIiKiyzR79mxIktTg7ciRIy32+osXL4bVavXd0tLSUFZaghijDtYYA2JM1edmY0zV9y++xRh53lat+M4QERERXaaHHnoId911V4N9OnXqFNRzJScnY9++fX5tBQUFvsfqMmfOHMyaNct33+FwYO0bH8BZUQrJa4DHK6Oy0g2drIe31oJHTqcrqLoo9BjUiYiIiC5TYmIiEhMTm+W5Bg8ejCeeeAKFhYVo27YtAGDr1q2IjY1Fz54969zGaDTCaDT6tUlVRfj68+3QaCQIAXhlAa1GgiRVPy5kGR6Pu97lM0h5DOpEREREIXTy5EkUFxfj5MmT8Hq9OHjwIACgS5cuMJvNuPHGG9GzZ09MmjQJTz31FPLz8zF37lzMmDEjIIw3SHghaTTQGQwQQgBeAZ22ehiO1+1BZVUZNFodDEZTy+woXTYGdSIiIqIQmjdvHv7xj3/47vfr1w8AsHPnTlxzzTXQarV49913cc8992Dw4MGIiYnB5MmTsWjRoia/llarg06nhxACQpKh02rg9XhQWVkKnd4Ac6wNbpe72faNmheDOhEREVEIrVu3rt451Gt06NAB77//frO/tsfjRnlpCbRaHcyxNkgS5xVRMwZ1IiIiolbA63HDWe6AVseQHi4Y1ImIiIgiUM2CR26PFx6PG5Vldmi0OhijLfB4BQAvAHDBIxVjUCciIiKKQLIsIEkShNeDqnIHNFodYixWaGqdSZdqpoEh1WFQJyIiIopAQsgQshsVVRXQaXUwxFig02oDgjkXJlUvDk4iIiIiilCV5aXQanWIibVyTHoY4jtGREREFImEDEmj5YWjYYzvGhERERGRCjGoExEREUUiSQMhe1HmKIEQstLV0CUIm6BeXFyMiRMnIjY2FjabDVOnTkVZWVlQ2wohcNNNN0GSJGzatKllCyUiIiJSiagYC7xeD8oddob1MBQ2QX3ixIk4fPgwtm7dinfffRcff/wxpk+fHtS2K1as4NRDRAoTkOEwH8d52wE4zMchwAMGEVFLkiQNJI0e0TFWeLweVJY54PF64fXKfjdOo65eYTE943fffYctW7bgiy++wIABAwAAzz33HEaOHImlS5ciJSWl3m0PHjyIp59+Gl9++SXatWsXqpKJ6CLF1kM4mboZLoPd12ZwWZGedwvi7VkKVkZEFLk0GglCCEg6PUwxsagss6O81I5oc6zfxaVCMKmrVVicUd+zZw9sNpsvpANATk4ONBoN9u7dW+92FRUV+M1vfoOVK1ciOTk5qNdyOp1wOBx+NyK6dMXWQziWsR4uvd2v3aW341jGehRbDylUGRFRZPN6vdBqJOh1WpiMRkSZrYDshbOiFDptdbtep4VWw1EHahUWQT0/Px9t27b1a9PpdIiPj0d+fn692z344IMYMmQIRo8eHfRrLV68GFar1XdLS0u75LqJWjsBGSdTN1ffqX0c+Pn+ydTNHAZDRBQCWp0eMbE2eL0eXmAaJhQN6rNnz4YkSQ3ejhw5cknPvXnzZuzYsQMrVqxo0nZz5syB3W733U6dOnVJr09EQKk5t3q4S30nayTAZbCj1Jwb0rqIiFornU4PsyWOYT1MKDpG/aGHHsJdd93VYJ9OnTohOTkZhYWFfu0ejwfFxcX1DmnZsWMHjh8/DpvN5td+2223YejQodi1a1ed2xmNRhiNxmB3gYga4NYFN3Qs2H5ERHT5dPrqsF5WegFljhIYjFFKl0T1UDSoJyYmIjExsdF+gwcPRklJCfbv34/+/fsDqA7isiwjOzu7zm1mz56N3//+935tWVlZWL58OW6++ebLL56IGqX3xDZrPyIiah4Xh/XKiuCmu6bQC4tZX3r06IERI0Zg2rRpWL16NdxuN2bOnInx48f7ZnzJy8vD9ddfj1deeQWDBg1CcnJynWfb09PT0bFjx1DvAlGrZCnrCIPLWn0haV3DXwRgcFthKeP/SSKiUKsJ646SIqVLoXqExcWkALBhwwZ0794d119/PUaOHImrr74aa9as8T3udrvx/fffo6KiQsEqiehiEjRIz7ul+k7t2b9+vp+edwuk8PkoIiIKG9LPZ0iEEL4pGGv+XnPT6nSIirEoWSY1ICzOqANAfHw8XnvttXofz8jIaHQeUM4TShR68fYsdDkxKXAedTfnUSciakkarRYeWQDe/14w6pEFap85EVLYxMFWh+8MEbW4eHsW4uyZKDXnwq1zQO+JhaWsI8+kExG1INnrhU4jQa/VQAgBjyyg00iBq7V7OY+6WjGoE1FISNAgtqyz0mUQEbUa4ucz5/8N5sI3/TWFB57OIiIiIiJSIQZ1IiIiIiIVYlAnIiIiIlIhBnUiIiIiIhViUCciIiIiUiHO+kJEREQUgbRaLbyygNvj9c2c7vbKAQtFe2WuM6NWDOpEREREEUiWq6dj1EgSBABZCGgkKSCoBy4dTWrBoE5EREQUgYSQoZEA7c8LHsleAW2tBY+EkOGsLFOwSmoIx6gTERERtUJCyChzlED2epQuherBoE5ERETUytSEdK/Xg6gYi9LlUD049IWIiIioFbk4pJstcZBlWemSqB48o05ERETUStQO6Tq9XumSqAE8o05ERETUCggho9xRCq/MkB4uGNSJiIiIIpAkaSALwOuVIQsZlWUOCNmLGLMVkkYLr7d6yAunUVcvBnUiIiKiCKTRSBBCwCt7UVHmgOz1IMpshaTVQRb/TedCMKmrFYM6ERERUQTyer3QSALOilJA9iLKbIXJaPSbRx0ABKdnVC0GdSIiIqIIVVlRBkAgJtYGIWmVLoeaiLO+EBEREUUiIUOumd1FxwtHwxGDOhEREVGE0ur0nN0ljDGoExEREUUkCR6PC1UV5UoXQpeIY9SJiIiIIpEkwWiIRmVlGQQEtIYopSuiJmJQb0TNlEXHi4/X+XhNu9tZCVclf2MlovDidlYCqP8z7uLHOIUbUfgQQkCCBI1OBz2AijIHdEY3hDEatSZ9gcft9m1D6iIJvisNOn36NNLS0pQug4hIcadOnUL79u2VLoOIgvDjjz+ic+fOTdrm+PHj6NSpUwtVRJeCZ9QbkZKSglOnTsFisQTMO6o0h8OBtLQ0nDp1CrGxsUqXExLcZ+5zJFL7/gohUFpaipSUFKVLIaIgxcfHAwBOnjwJq9Xqa6/r88ZutyM9Pd23DakHg3ojNBqN6s8gxcbGqvLg3pK4z61Da9tnNe/vxQd6IlI/jaZ6vhCr1Vrn50pdnzc125B68B0hIiIiIlIhBnUiIiIiIhViUA9jRqMR8+fPh9FoVLqUkOE+tw6tbZ9b2/4SUcur73OlrnZ+BqkXZ30hIiIiIlIhnlEnIiIiIlIhBnUiIiIiIhViUCciIiIiUiEG9TBTXFyMiRMnIjY2FjabDVOnTkVZWVlQ2wohcNNNN0GSJGzatKllC21GTd3n4uJi3HfffejWrRuioqKQnp6O+++/H3a7PYRVN83KlSuRkZEBk8mE7Oxs7Nu3r8H+b731Frp37w6TyYSsrCy8//77Iaq0eTRlf9euXYuhQ4ciLi4OcXFxyMnJafTno0ZNfY9rvPHGG5AkCWPGjGnZAoko7NUcL00mEzQaDXQ6HQYOHIh9+/bV+xl0zTXXQJIkv1vv3r0D2kwmk8J71zoxqIeZiRMn4vDhw9i6dSveffddfPzxx5g+fXpQ265YsUJ1q6sGo6n7fObMGZw5cwZLly7FN998g3Xr1mHLli2YOnVqCKsO3saNGzFr1izMnz8fX331Ffr06YPhw4ejsLCwzv67d+/GhAkTMHXqVBw4cABjxozBmDFj8M0334S48kvT1P3dtWsXJkyYgJ07d2LPnj1IS0vDjTfeiLy8vBBXfumaus81Tpw4gYcffhhDhw4NUaVEFM4mTpyITz/9FLIs49FHH0VqaiouXLiAa6+9tt7PILvdDkmS8Kc//QkfffQRHnjgAXz77bcwm804e/as7/bTTz8pvXutk6Cw8e233woA4osvvvC1/ec//xGSJIm8vLwGtz1w4IBITU0VZ8+eFQDEO++808LVNo/L2eeLvfnmm8JgMAi3290SZV6WQYMGiRkzZvjue71ekZKSIhYvXlxn/9tvv12MGjXKry07O1v84Q9/aNE6m0tT97c2j8cjLBaL+Mc//tFSJTa7S9lnj8cjhgwZIv72t7+JyZMni9GjR4egUiIKVzXHy8zMTN/nzX/+8x8BQOj1enHVVVf5+l78GZSYmCgyMjL8nqtTp07CYDCEtH6qG8+oh5E9e/bAZrNhwIABvracnBxoNBrs3bu33u0qKirwm9/8BitXrkRycnIoSm02l7rPtdntdsTGxkKn07VEmZfM5XJh//79yMnJ8bVpNBrk5ORgz549dW6zZ88ev/4AMHz48Hr7q8ml7G9tFRUVcLvdiI+Pb6kym9Wl7vOiRYvQtm1b1X4TRETqsmfPHlitVhw5csT3eVNzvHS73fB6vb6+F38GORwOnDt3DgkJCejVqxfmzJmDHj16wOVyoUOHDkhLS8Po0aNx+PBhpXatVWNQDyP5+flo27atX5tOp0N8fDzy8/Pr3e7BBx/EkCFDMHr06JYusdld6j5frKioCI8//njQQ4RCqaioCF6vF0lJSX7tSUlJ9e5ffn5+k/qryaXsb22PPvooUlJSAn5ZUatL2edPP/0UL730EtauXRuKEokoAuTn56NNmzZ+nzc6nQ42mw0AAq7tqvkM8ng8mDlzJnbu3Ik5c+Zg/fr1+P7772GxWPDvf/8br776KmRZxpAhQ3D69OlQ71arx6CuArNnzw64aKP27ciRI5f03Js3b8aOHTuwYsWK5i36MrXkPl/M4XBg1KhR6NmzJxYsWHD5hZOilixZgjfeeAPvvPNOxF7YVFpaikmTJmHt2rVISEhQuhwiUlhLHy81Gg369OmDrKwsTJw4Ea+88gqOHTsGg8GAvn37YtiwYfjXv/6FxMREvPjii824ZxQMdY0DaKUeeugh3HXXXQ326dSpE5KTkwMuPvN4PCguLq53SMuOHTtw/Phx32/UNW677TYMHToUu3btuozKL11L7nON0tJSjBgxAhaLBe+88w70ev3llt3sEhISoNVqUVBQ4NdeUFBQ7/4lJyc3qb+aXMr+1li6dCmWLFmCbdu2oXfv3i1ZZrNq6j4fP34cJ06cwM033+xrk2UZQPXZse+//x6dO3du2aKJSDWacrw8f/683+eNx+NBSUkJAMBsNvttU/MZVPuYkp2dDQCIjY31ten1evTr1w/Hjh1rhj2ipmBQV4HExEQkJiY22m/w4MEoKSnB/v370b9/fwDVQVyWZd9/rNpmz56N3//+935tWVlZWL58uV8QCLWW3Geg+kz68OHDYTQasXnzZtWefTUYDOjfvz+2b9/um35PlmVs374dM2fOrHObwYMHY/v27XjggQd8bVu3bsXgwYNDUPHluZT9BYCnnnoKTzzxBD744AO/6xXCQVP3uXv37jh06JBf29y5c1FaWopnnnkGaWlpoSibiFSiKcdLu92OzMxM3+dNzfFSr9f7XaN18WeQyWTyO6YcPHgQAHzHXADwer04dOgQRo4c2az7RkFQ+mpWapoRI0aIfv36ib1794pPP/1UdO3aVUyYMMH3+OnTp0W3bt3E3r17630OhNGsL0I0fZ/tdrvIzs4WWVlZ4tixY+Ls2bO+m8fjUWo36vXGG28Io9Eo1q1bJ7799lsxffp0YbPZRH5+vhBCiEmTJonZs2f7+n/22WdCp9OJpUuXiu+++07Mnz9f6PV6cejQIaV2oUmaur9LliwRBoNBvP32237vZWlpqVK70GRN3efaOOsLEQVjxIgRIiMjQxgMBvHYY4+JDh06iM6dO4vo6GhhNBrF8uXLRUxMjOjatauw2Wzi888/F7///e+FJEli8ODBYuXKlcJmswkA4sUXXxTHjx8X+/fvF+PHjxcmk0kcPnxY6V1sdRjUw8z58+fFhAkThNlsFrGxsWLKlCl+gSU3N1cAEDt37qz3OcItqDd1n3fu3CkA1HnLzc1VZica8dxzz4n09HRhMBjEoEGDxOeff+57bNiwYWLy5Ml+/d98801xxRVXCIPBIDIzM8V7770X4oovT1P2t0OHDnW+l/Pnzw994Zehqe/xxRjUiSgYNcdLg8EgJEkSGo1GDBgwQHz++efiueeeEykpKQKAsFqt4vPPPxcnT54Uv/zlL4VGo/F9tiYkJIhRo0b5Pq+SkpLEyJEjxVdffaX07rVKkhBChPgkPhERERERNYKzvhARERERqRCDOhERERGRCjGoExERERGpEIM6EREREZEKMagTEREREakQgzoRERERkQoxqBMRERERqRCDOhERERGRCjGoExERERGpEIM6EREREZEKMagTEREREakQgzqRCp07dw7Jycn4y1/+4mvbvXs3DAYDtm/frmBlREQUbl555RW0adMGTqfTr33MmDGYNGmSQlVRMCQhhFC6CCIK9P7772PMmDHYvXs3unXrhr59+2L06NFYtmyZ0qUREVEYqaysRLt27bB27VqMGzcOAFBYWIjU1FR8+OGHuPbaaxWukOrDoE6kYjNmzMC2bdswYMAAHDp0CF988QWMRqPSZRERUZi59957ceLECbz//vsAgGXLlmHlypU4duwYJElSuDqqD4M6kYpVVlaiV69eOHXqFPbv34+srCylSyIiojB04MABDBw4ED/99BNSU1PRu3dvjBs3Dn/605+ULo0awDHqRCp2/PhxnDlzBrIs48SJE0qXQ0REYapfv37o06cPXnnlFezfvx+HDx/GXXfdpXRZ1AieUSdSKZfLhUGDBqFv377o1q0bVqxYgUOHDqFt27ZKl0ZERGFo1apVWLFiBW644QYcPXoUH3zwgdIlUSMY1IlU6pFHHsHbb7+Nr7/+GmazGcOGDYPVasW7776rdGlERBSG7HY7UlJS4PF48Morr+COO+5QuiRqBIe+EKnQrl27sGLFCqxfvx6xsbHQaDRYv349PvnkE6xatUrp8oiIKAxZrVbcdtttMJvNGDNmjNLlUBB4Rp2IiIiolbj++uuRmZmJZ599VulSKAgM6kREREQR7sKFC9i1axfGjh2Lb7/9Ft26dVO6JAqCTukCiIiIiKhl9evXDxcuXMCTTz7JkB5GeEadiIiIiEiFeDEpEREREZEKMagTEREREakQgzoRERERkQoxqBMRERERqRCDOhERERGRCjGoExERERGpEIM6EREREZEKMagTEREREakQgzoRERERkQr9fwMTpeKseAavAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -450,7 +407,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxUAAAGGCAYAAAANcKzOAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACRn0lEQVR4nOzdd3wT9f8H8Fe60j2gG0pbKJRdStl7FApCBVRAUBkCKlIV+aqAgyUylOVAUBSKEwRkCZTZskUZZc9SKEIHo7ulK5/fH/xyNraFpk1ySft6Ph73gFw+d/e+C9zlnc9SCCEEiIiIiIiIKshM7gCIiIiIiMi0MakgIiIiIqJKYVJBRERERESVwqSCiIiIiIgqhUkFERERERFVCpMKIiIiIiKqFCYVRERERERUKUwqiIiIiIioUphUEBERERFRpTCpIDJxCoUCM2bMkF5HRkZCoVDgxo0bBjm+n58fRo0aZZBjERERkXFiUkFUDXz99deIjIyUOwwiIpLRhQsXMGPGDIP96ETVC5MKoirmpZdeQm5uLnx9faV1TCqIiOjChQuYOXMmkwrSCyYVZPIKCwuRn58vdxhGw9zcHNbW1lAoFHKHQkRkNPis0I4QArm5uXKHQSaESQVVWGZmJiZOnAg/Pz8olUq4u7ujV69eOHnypEa5devWISQkBDY2NnB1dcWLL76I27dva5Tp1q0bunXrVuIYo0aNgp+fn/T6xo0bUCgUWLBgAZYsWYJ69epBqVTiwoULAIBLly5hyJAhcHNzg42NDQIDA/HBBx9o7PP27dt4+eWX4eHhAaVSiSZNmmDlypXlOudVq1ahR48ecHd3h1KpROPGjbFs2bIS5fz8/NC/f3/ExMSgVatWsLGxQbNmzRATEwMA+P3339GsWTNYW1sjJCQEp06dKnHe9vb2uH79OsLCwmBnZwdvb2/MmjULQojHxvjfPhV+fn44f/489u/fD4VCAYVCIV3rGTNmlJp8lNYvQwiB2bNno3bt2rC1tUX37t1x/vz5UmNIS0vDxIkT4ePjA6VSiYCAAMyfPx8qleqxsRNR1VMdnxW7d+9Gp06d4OzsDHt7ewQGBuL999+X3o+JiYFCocDatWvx/vvvw9PTE3Z2dnj66adx69atEvs7duwY+vTpAycnJ9ja2qJr1644fPhwiXK3b9/GmDFj4O3tDaVSCX9/f4wfPx75+fmIjIzE4MGDAQDdu3eXngfq55L6ubVz507pufXNN99I17K02u7/9ulTP1OuXLmCF198EU5OTnBzc8NHH30EIQRu3bqFAQMGwNHREZ6enli4cGG5rieZBgu5AyDT9dprr2H9+vWIiIhA48aNcf/+fRw6dAgXL15Ey5YtATz6cjp69Gi0bt0ac+fORXJyMj7//HMcPnwYp06dgrOzc4WOvWrVKjx8+BCvvPIKlEolatSogTNnzqBz586wtLTEK6+8Aj8/P8TFxWHr1q345JNPAADJyclo164dFAoFIiIi4Obmhh07dmDMmDHIyMjAxIkTH3vcZcuWoUmTJnj66adhYWGBrVu34vXXX4dKpcKECRM0yl67dg3Dhw/Hq6++ihdffBELFixAeHg4li9fjvfffx+vv/46AGDu3LkYMmQILl++DDOzf/P8oqIi9OnTB+3atcOnn36KqKgoTJ8+HYWFhZg1a1a5r9WSJUvwxhtvwN7eXnpoenh4lHt7tWnTpmH27Nl46qmn8NRTT+HkyZPo3bt3iV/+cnJy0LVrV9y+fRuvvvoq6tSpgyNHjmDq1KlITEzEkiVLtD42EZmu6vasOH/+PPr374/mzZtj1qxZUCqVuHbtWqlJwCeffAKFQoHJkycjJSUFS5YsQWhoKGJjY2FjYwMA2LdvH/r27YuQkBBMnz4dZmZm0g9cBw8eRJs2bQAAd+7cQZs2bZCWloZXXnkFDRs2xO3bt7F+/Xrk5OSgS5cuePPNN/HFF1/g/fffR6NGjQBA+hMALl++jGHDhuHVV1/FuHHjEBgYWKHrPnToUDRq1Ajz5s3Dtm3bMHv2bNSoUQPffPMNevTogfnz5+Pnn3/GO++8g9atW6NLly4VOg4ZGUFUQU5OTmLChAllvp+fny/c3d1F06ZNRW5urrT+jz/+EADEtGnTpHVdu3YVXbt2LbGPkSNHCl9fX+l1fHy8ACAcHR1FSkqKRtkuXboIBwcHcfPmTY31KpVK+vuYMWOEl5eXuHfvnkaZ559/Xjg5OYmcnJzHnnNp74eFhYm6detqrPP19RUAxJEjR6R1O3fuFACEjY2NRozffPONACCio6M1zhuAeOONNzTOo1+/fsLKykrcvXtXWg9ATJ8+XXq9atUqAUDEx8dL65o0aVLq9Z0+fboo7Tbw332kpKQIKysr0a9fP43r+f777wsAYuTIkdK6jz/+WNjZ2YkrV65o7HPKlCnC3NxcJCQklDgeEVVd1e1ZsXjxYgFA4z79X9HR0QKAqFWrlsjIyJDW//bbbwKA+Pzzz6WY6tevL8LCwjTiy8nJEf7+/qJXr17SuhEjRggzMzPx999/lzieett169aVeN6oqZ9bUVFRGuvV13LVqlUltvnv80f9THnllVekdYWFhaJ27dpCoVCIefPmSetTU1OFjY2NxvODTBubP1GFOTs749ixY7hz506p7x8/fhwpKSl4/fXXYW1tLa3v168fGjZsiG3btlX42M8++yzc3Nyk13fv3sWBAwfw8ssvo06dOhpl1c17hBDYsGEDwsPDIYTAvXv3pCUsLAzp6eklquP/S/3LEQCkp6fj3r176Nq1K65fv4709HSNso0bN0b79u2l123btgUA9OjRQyNG9frr16+XOF5ERITGeURERCA/Px979ux5bJy6tmfPHuTn5+ONN97QaC5V2q9169atQ+fOneHi4qJxjUNDQ1FUVIQDBw4YMHIiklt1e1aoa1U2b978xCafI0aMgIODg/T6ueeeg5eXF7Zv3w4AiI2NxdWrVzF8+HDcv39fiiM7Oxs9e/bEgQMHoFKpoFKpsGnTJoSHh6NVq1YljlPePnb+/v4ICwsrV9nHGTt2rPR3c3NztGrVCkIIjBkzRlrv7OyMwMDAUp99ZJqYVFCFffrppzh37hx8fHzQpk0bzJgxQ+PmcPPmTQAotfq0YcOG0vsV4e/vr/FafdymTZuWuc3du3eRlpaGb7/9Fm5ubhrL6NGjAQApKSmPPe7hw4cRGhoKOzs7ODs7w83NTWon+9+k4r8PLCcnJwCAj49PqetTU1M11puZmaFu3boa6xo0aAAABh+5Q/1Z1a9fX2O9m5sbXFxcNNZdvXoVUVFRJa5xaGgogCdfY6KKOnDgAMLDw+Ht7Q2FQoFNmzbJfrxRo0ZJbdfVS58+ffQal7Gpbs+KoUOHomPHjhg7diw8PDzw/PPP47fffis1wfjvPVWhUCAgIEC6x1+9ehUAMHLkyBKxfPfdd8jLy0N6ejru3r2LjIyMx55Xefz3elVUac8/a2truLq6llj/32cfmS72qaAKGzJkCDp37oyNGzdi165d+OyzzzB//nz8/vvv6Nu3r1b7UigUpXZALioqKrV88RqD8lLf0F988UWMHDmy1DLNmzcvc/u4uDj07NkTDRs2xKJFi+Dj4wMrKyts374dixcvLvHAMDc3L3U/Za0v7fz1raxfr8q67uWhUqnQq1cvvPfee6W+r06MiHQtOzsbQUFBePnll/HMM88YzfH69OmDVatWSa+VSqXeYzMm1e1ZYWNjgwMHDiA6Ohrbtm1DVFQU1q5dix49emDXrl1lPgMeF8tnn32GFi1alFrG3t4eDx48KPc+H6e061WR50Rp52hMzz7SDyYVVCleXl54/fXX8frrryMlJQUtW7bEJ598gr59+0rzJFy+fBk9evTQ2O7y5csa8yi4uLiUWgVa3l+o1L/onzt3rswybm5ucHBwQFFRkfSruTa2bt2KvLw8bNmyReNXmOjoaK33VR4qlQrXr1/X+BJ+5coVANAY5aQ8ynooqGsZ0tLSNDpC/ve6qz+rq1evatSe3L17t8SvTPXq1UNWVlaFrjFRZfTt2/exX1Lz8vLwwQcf4Ndff0VaWhqaNm2K+fPnlzqakC6Op6ZUKuHp6VmhY1QV1elZATyqae7Zsyd69uyJRYsWYc6cOfjggw8QHR2tsU91TYSaEALXrl2TkpZ69eoBABwdHR8bi5ubGxwdHR97XkD5m0EVV/w5UVxlapCoamLzJ6qQoqKiEs193N3d4e3tjby8PABAq1at4O7ujuXLl0vrAGDHjh24ePEi+vXrJ62rV68eLl26hLt370rrTp8+XepoGaVxc3NDly5dsHLlSiQkJGi8p/4VxNzcHM8++yw2bNhQ6o23+LFLo/6VpfivKunp6Rq/QOraV199Jf1dCIGvvvoKlpaW6Nmzp1b7sbOzK/FAAP59YBXv55CdnY3Vq1drlAsNDYWlpSW+/PJLjfMvbSSnIUOG4OjRo9i5c2eJ99LS0lBYWKhV7ES6EhERgaNHj2LNmjU4c+YMBg8ejD59+pT4YqdrMTExcHd3R2BgIMaPH4/79+/r9XjGpDo+K0qrNVDXMhQ/PwD44YcfkJmZKb1ev349EhMTpWQ1JCQE9erVw4IFC5CVlVVmLGZmZhg4cCC2bt2K48ePlyinPjc7OzsAJROEx3F0dISrq2uJ/nBff/11ufdB1QNrKqhCMjMzUbt2bTz33HMICgqCvb099uzZg7///lsad9rS0hLz58/H6NGj0bVrVwwbNkwaJtDPzw9vv/22tL+XX34ZixYtQlhYGMaMGYOUlBQsX74cTZo0QUZGRrli+uKLL9CpUye0bNkSr7zyCvz9/XHjxg1s27YNsbGxAIB58+YhOjoabdu2xbhx49C4cWM8ePAAJ0+exJ49ex5bhdy7d29YWVkhPDwcr776KrKysrBixQq4u7sjMTGx4hezDNbW1oiKisLIkSPRtm1b7NixA9u2bcP777+v0fGwPEJCQrBs2TLMnj0bAQEBcHd3R48ePdC7d2/UqVMHY8aMwbvvvgtzc3OsXLkSbm5uGg9cNzc3vPPOO5g7dy769++Pp556CqdOncKOHTtKtJF99913sWXLFvTv3x+jRo1CSEgIsrOzcfbsWaxfvx43btwosQ2RviUkJGDVqlVISEiAt7c3AOCdd95BVFQUVq1ahTlz5ujluH369MEzzzwDf39/xMXF4f3330ffvn1x9OhRrZrBmKrq+KyYNWsWDhw4gH79+sHX1xcpKSn4+uuvUbt2bXTq1EmjbI0aNdCpUyeMHj0aycnJWLJkCQICAjBu3DgAj5KF7777Dn379kWTJk0wevRo1KpVC7dv30Z0dDQcHR2xdetWAMCcOXOwa9cudO3aFa+88goaNWqExMRErFu3DocOHYKzszNatGgBc3NzzJ8/H+np6VAqldLcS48zduxYzJs3D2PHjkWrVq1w4MABqeacSGL4AaeoKsjLyxPvvvuuCAoKEg4ODsLOzk4EBQWJr7/+ukTZtWvXiuDgYKFUKkWNGjXECy+8IP75558S5X766SdRt25dYWVlJVq0aCF27txZ5jCBn332WalxnTt3TgwaNEg4OzsLa2trERgYKD766CONMsnJyWLChAnCx8dHWFpaCk9PT9GzZ0/x7bffPvG8t2zZIpo3by6sra2Fn5+fmD9/vli5cmWJIVx9fX1Fv379SmwPoMTQiqWd08iRI4WdnZ2Ii4sTvXv3Fra2tsLDw0NMnz5dFBUVldjnk4aUTUpKEv369RMODg4CgMaQjCdOnBBt27YVVlZWok6dOmLRokWl7qOoqEjMnDlTeHl5CRsbG9GtWzdx7tw54evrW2JIwMzMTDF16lQREBAgrKyshKurq+jQoYNYsGCByM/Pf+J1JqosAGLjxo3Sa/XwpHZ2dhqLhYWFGDJkiBBCiIsXLwoAj10mT55cruOVJS4uTgAQe/bs0cVpGr3q+KzYu3evGDBggPD29hZWVlbC29tbDBs2TGOYbfWQsr/++quYOnWqcHd3FzY2NqJfv34lhroVQohTp06JZ555RtSsWVMolUrh6+srhgwZIvbu3atR7ubNm2LEiBHCzc1NKJVKUbduXTFhwgSRl5cnlVmxYoWoW7euMDc31xhetqznlhCPhrAdM2aMcHJyEg4ODmLIkCEiJSWlzCFl/zucrvqZ9l9du3YVTZo0eez1JNOhEII9ZIiMzahRo7B+/fpSq7uJ6MkUCgU2btyIgQMHAgDWrl2LF154AefPny9RQ2Bvbw9PT0/k5+c/cXjLmjVrllpT+N/jPY6bmxtmz56NV199tdznQ1VLTEwMunfvjnXr1uG5556TOxwinWDzJyIiqvKCg4NRVFSElJQUdO7cudQyVlZWaNiwoV7j+Oeff3D//n14eXnp9ThERIbGpIKIiKqErKwsXLt2TXodHx+P2NhY1KhRAw0aNMALL7yAESNGYOHChQgODsbdu3exd+9eNG/eXKMzsC6OV6dOHWRlZWHmzJl49tln4enpibi4OLz33nsICAjQyQRjRETGhEkFERFVCcePH0f37t2l15MmTQLwaOKwyMhIrFq1CrNnz8b//vc/3L59G66urmjXrh369++vl+OZm5vjzJkzWL16NdLS0uDt7Y3evXvj448/rnZzVRBR1cc+FUREREREVCmcp4KIiIiIiCqFSQUREREREVWKSfSpUKlUuHPnDhwcHCo0xTwREZVNCIHMzEx4e3vDzMy0fmvi84GISH+0eT6YRFJx584d+Pj4yB0GEVGVduvWLdSuXVvuMLTC5wMRkf6V5/lgEkmFg4MDgEcn5OjoKHM0RERVS0ZGBnx8fKR7rSnh84GISH+0eT6YRFKhrtJ2dHTkQ4OISE9MsfkQnw9ERPpXnueDaTWeJSIiIiIio8OkgoiIiIiIKoVJBRERERERVYpJ9KkgInoSlUqF/Px8ucMwWlZWViY3XCxRVcZ7FhkLS0tLmJubV3o/TCqIyOTl5+cjPj4eKpVK7lCMlpmZGfz9/WFlZSV3KETVHu9ZZGycnZ3h6elZqQE7mFQQkUkTQiAxMRHm5ubw8fHhr/GlUE8Ql5iYiDp16pjkKE9EVQXvWWRMhBDIyclBSkoKAMDLy6vC+2JSQUQmrbCwEDk5OfD29oatra3c4RgtNzc33LlzB4WFhbC0tJQ7HKJqi/csMjY2NjYAgJSUFLi7u1e4KZTW6fGBAwcQHh4Ob29vKBQKbNq06YnbxMTEoGXLllAqlQgICEBkZGQFQiUiKqmoqAgA2KznCdTXR329iEgevGeRMVInuAUFBRXeh9ZJRXZ2NoKCgrB06dJylY+Pj0e/fv3QvXt3xMbGYuLEiRg7dix27typdbBERGVhk57H4/UhMi78P0nGRBf/HrVu/tS3b1/07du33OWXL18Of39/LFy4EADQqFEjHDp0CIsXL0ZYWJi2hyciIiIiIiOj995BR48eRWhoqMa6sLAwHD16tMxt8vLykJGRobFURZs2bUKrVq0wduxYPHz4UO5wiMiI3LhxAwqFArGxsXKHQlTtZWVlISoqClOnTkWHDh0QEhKCl19+GV988QVOnTold3hERkHvHbWTkpLg4eGhsc7DwwMZGRnIzc2VOocUN3fuXMycOVPfocnq+vXrGDp0KPLz83HixAm4u7tjzpw5codFRERE/08IgR9++AFvvfUW0tPTNd47efKk9Pfhw4dj0aJFJb7vEP1XTEwMunfvjtTUVDg7O8sdjk4Z5ThmU6dORXp6urTcunVL7pB0btmyZRqT3ixfvpy1FUREREYiOTkZgwYNwqhRo5Ceno46depg1KhRiIyMxIYNGzBt2jT069cPZmZm+OWXXxAYGIjly5dDCCF36FVCUVFRtZ7HwxQnRtR7UuHp6Ynk5GSNdcnJyXB0dCy1lgIAlEolHB0dNZaqRKVS4ddffwUArF+/Hj4+PkhNTcWWLVtkjoyIDCkqKgqdOnWCs7Mzatasif79+yMuLk6jzKVLl9ChQwdYW1ujadOm2L9/v/ReamoqXnjhBbi5ucHGxgb169fHqlWrDH0aRFVObGwsmjVrhs2bN8PS0hJz5sxBXFwcVq1ahZEjR+KZZ57BzJkz8ccff+DYsWMICQlBeno6xo8fj7fffrtKJhbr169Hs2bNYGNjg5o1ayI0NBTZ2dkAHn2vmTVrFmrXrg2lUokWLVogKipK2jYmJgYKhQJpaWnSutjYWCgUCty4cQMAEBkZCWdnZ2zZsgWNGzeGUqlEQkIC8vLyMHnyZPj4+EijiH7//ffSfs6dO4e+ffvC3t4eHh4eeOmll3Dv3r0yz+PmzZsIDw+Hi4sL7Ozs0KRJE2zfvl0jzm3btqF58+awtrZGu3btcO7cOY19HDp0CJ07d4aNjQ18fHzw5ptvStcCQJkx37hxA927dwcAuLi4QKFQYNSoUQCAbt26ISIiAhMnToSrqyvCwsJKbQablpYGhUKBmJgYjZh37tyJ4OBg2NjYoEePHkhJScGOHTvQqFEjODo6Yvjw4cjJySnfh11Bem/+1L59e+nDUtu9ezfat2+v70MbrdjYWNy+fRsODg7o378//vzzTyxYsAA7d+7EkCFD5A6PyKSpJ/KRg62trVYjaGRnZ2PSpElo3rw5srKyMG3aNAwaNEjjAfLuu+9iyZIlaNy4MRYtWoTw8HDEx8ejZs2a+Oijj3DhwgXs2LEDrq6uuHbtGnJzc/VwZkTVR3x8PPr27Yu7d++iefPm+PHHH9G8efMyy7dq1QrHjh3D4sWL8e677+Lzzz+HjY0N5syZU677gSncsxITEzFs2DB8+umnGDRoEDIzM3Hw4EEpefr888+xcOFCfPPNNwgODsbKlSvx9NNP4/z586hfv36548nJycH8+fPx3XffoWbNmnB3d8eIESNw9OhRfPHFFwgKCkJ8fLyUNKSlpaFHjx4YO3YsFi9ejNzcXEyePBlDhgzBvn37Sj3GhAkTkJ+fjwMHDsDOzg4XLlyAvb29Rhn15+jp6Yn3338f4eHhuHLlCiwtLREXF4c+ffpg9uzZWLlyJe7evYuIiAhERERIP+qUFbOPjw82bNiAZ599FpcvXy7xA/vq1asxfvx4HD58uNzXTG3GjBn46quvYGtriyFDhmDIkCFQKpX45ZdfkJWVhUGDBuHLL7/E5MmTtd53uQktZWZmilOnTolTp04JAGLRokXi1KlT4ubNm0IIIaZMmSJeeuklqfz169eFra2tePfdd8XFixfF0qVLhbm5uYiKiir3MdPT0wUAkZ6erm24Rmnx4sUCgHjqqaeEEEJs375dABD+/v4yR0ZkenJzc8WFCxdEbm6uEEKIrKwsAUCWJSsrq1LncvfuXQFAnD17VsTHxwsAYt68edL7BQUFonbt2mL+/PlCCCHCw8PF6NGjK3SdijPle6wpx07GJyUlRdSvX18AEM2bNxdpaWlabf/1119L94OPP/641DKmeM86ceKEACBu3LhR6vve3t7ik08+0VjXunVr8frrrwshhIiOjhYARGpqqvS++ntkfHy8EEKIVatWCQAiNjZWKnP58mUBQOzevbvU43788ceid+/eGutu3bolAIjLly+Xuk2zZs3EjBkzSn1PHeeaNWukdffv3xc2NjZi7dq1QgghxowZI1555RWN7Q4ePCjMzMxEbm7uE2Mu7VoIIUTXrl1FcHCwxjr1c+DUqVPSutTUVAFAREdHa+xvz549Upm5c+cKACIuLk5a9+qrr4qwsLBSYxKi7GeENvdYrZs/HT9+HMHBwQgODgYATJo0CcHBwZg2bRqAR9lsQkKCVN7f3x/btm3D7t27ERQUhIULF+K7776r1sPJHjhwAADQpUsXAECnTp1gbm6O+Pj4Ktl/hIhKd/XqVQwbNgx169aFo6Mj/Pz8AEDjHlq8VtfCwgKtWrXCxYsXAQDjx4/HmjVr0KJFC7z33ns4cuSIQeMnqkqysrLQr18/XL16Fb6+vtixYwecnJy02sf48eOlIfQ/+ugjrFy5Uh+hGlxQUBB69uyJZs2aYfDgwVixYgVSU1MBABkZGbhz5w46duyosU3Hjh2le1V5WVlZadQKxcbGwtzcHF27di21/OnTpxEdHQ17e3tpadiwIQCUaEqq9uabb2L27Nno2LEjpk+fjjNnzpQoU/y+W6NGDQQGBkrncvr0aURGRmocMywsDCqVCvHx8U+M+XFCQkK03kat+HXz8PCAra0t6tatq7EuJSWlwvsvD62bP3Xr1u2xbQVLmy27W7duHHKtmL/++gsApP+ADg4OaNKkCc6cOYOTJ0/Cx8dHzvCITJqtrS2ysrJkO7Y2wsPD4evrixUrVsDb2xsqlQpNmzYtdwe9vn374ubNm9i+fTt2796Nnj17YsKECViwYEFFwieq1iZNmoS///4brq6u2LVrF7y9vSu8n4yMDMycORNvvvkmunbtinr16pVZ3hTuWebm5ti9ezeOHDmCXbt24csvv8QHH3yAY8eOoWbNmk/c3szs0W/Yxb8/ljZzs42NjUZzrLL63qplZWUhPDwc8+fPL/Gel5dXqduMHTsWYWFh2LZtG3bt2oW5c+di4cKFeOONN554Hupjvvrqq3jzzTdLvFenTh1cu3atXPspjZ2dncbr8l43ALC0tJT+rlAoNF6r1+m747tRjv5Uld27dw+3b98G8CjzV1PX/DD5IqochUIBOzs7WRZt+lPcv38fly9fxocffoiePXuiUaNG0i9/xf3555/S3wsLC3HixAk0atRIWufm5oaRI0fip59+wpIlS/Dtt99W7gISVUN79uzBihUrAADr1q1DgwYNKrW/adOmoVu3bsjOzsaIESNQVFRUZllTuWcpFAp07NgRM2fOxKlTp2BlZYWNGzfC0dER3t7eJfoBHD58GI0bNwbw6D4FPGrNolaeOXiaNWsGlUqlMUBFcS1btsT58+fh5+eHgIAAjeW/X9CL8/HxwWuvvYbff/8d//vf/6TPXq34fTc1NRVXrlyR7rstW7bEhQsXShwvICAAVlZWT4zZysoKAB77b0KtotdNLkwqDOz06dMAgHr16sHBwUFaz6SCqHpxcXFBzZo18e233+LatWvYt28fJk2aVKLc0qVLsXHjRly6dAkTJkxAamoqXn75ZQCPvrhs3rwZ165dw/nz5/HHH39oJBxE9GRZWVkYN24cgEedeLt161bpfZqZmSEyMhKOjo44cuQIPv3000rvU07Hjh3DnDlzcPz4cSQkJOD333/H3bt3pfvNu+++i/nz52Pt2rW4fPkypkyZgtjYWLz11lsAgICAAPj4+GDGjBm4evUqtm3bJjUTexw/Pz+MHDkSL7/8MjZt2oT4+HjExMTgt99+A/Do83rw4AGGDRuGv//+G3Fxcdi5cydGjx5d5pf2iRMnYufOnYiPj8fJkycRHR1d4r45a9Ys7N27F+fOncOoUaPg6uqKgQMHAgAmT56MI0eOICIiArGxsbh69So2b96MiIiIcsXs6+sLhUKBP/74A3fv3n1sLZWNjQ3atWuHefPm4eLFi9i/fz8+/PDDJ1432Tyx14URqEod8RYuXCgAiGeffVZjfUxMDDtrE1XA4zogG7vdu3eLRo0aCaVSKZo3by7dBzZu3Ch10Pvll19EmzZthJWVlWjcuLHYt2+ftP3HH38sGjVqJGxsbESNGjXEgAEDxPXr10s9FjtqE5UuIiJCABC+vr4iMzNTp/tevXq1ACAsLCzEyZMnhRCmec+6cOGCCAsLE25ubkKpVIoGDRqIL7/8Unq/qKhIzJgxQ9SqVUtYWlqKoKAgsWPHDo19HDp0SDRr1kxYW1uLzp07i3Xr1pXoqO3k5FTi2Lm5ueLtt98WXl5ewsrKSgQEBIiVK1dK71+5ckUMGjRIODs7CxsbG9GwYUMxceJEoVKpSj2XiIgIUa9ePaFUKoWbm5t46aWXxL1794QQ/3Z63rp1q2jSpImwsrISbdq0EadPn9bYx19//SV69eol7O3thZ2dnWjevLlGR/UnxTxr1izh6ekpFAqFGDlypBDiUUftt956q9Rr3759e2FjYyNatGghdu3aVWpH7eIdv0u7ltOnTxdBQUGlXhN1zJXtqK0QwvgHU87IyICTkxPS09NNfs6KV199Fd9++y0++ugjzJo1S1qflJQELy8vmJmZIScnB0qlUsYoiUzHw4cPER8fD39/f1hbW8sdjtF63HUy5XusKcdO8jt48KA0aMru3bsRGhqq0/0LIfDcc8/h999/R9u2bXH06FHk5eXxnmWkqvJs109S1jNCm3ssmz8Z2NWrVwGgxLjNHh4ecHBwgEqlwvXr1+UIjYiIqNoQQuDtt98GAIwZM0bnCQXwqB/C0qVLYWdnh2PHjmHDhg06PwaRsWBSYWBlJRUKhULqGHblyhWDx0VERFSdbNy4ESdOnIC9vT3mzp2rt+N4enrinXfeAQBMnTq13KO7EZkaJhUGlJOTg3/++QdAyaQCAJMKIiIiAygqKpI6vL799tvSKDv68s4778DDwwPXrl2TOuyS8VFPm1Ddmj7pCpMKA1KPXawe9eW/mFQQERHp388//4yLFy/CxcUF//vf//R+PHt7e8ycORPAoxHd9D1fAJEcmFQYUFlNn9SYVBAREelXfn4+pk+fDgCYMmWK1rNmV9SYMWPQsGFDpKamIiMjwyDHJDIkJhUG9KSkIiAgAAAqNRsjUXVlAgPZyYrXh+iR7777Djdu3ICnp6c0t4AhWFhYYN68eQAejahTWFhosGMTGYKF3AFUJzdu3AAA1K1bt9T3fX19ATyaObGgoKDEFOtEVJKlpSUUCgXu3r0LNzc3rWaIrS6EELh79y4UCgXvK1StFRYWShPRffjhh7C1tTXo8Z9++mksXboUQgikpqbC3t7eoMcn0icmFQak7qTt4+NT6vtubm5QKpXIy8vDP//8A39/f0OGR2SSzM3NUbt2bfzzzz9S4k4lKRQK1K5dG+bm5nKHQiSbzZs34+bNm3B1dZVmpjckhUKB0aNHAwDu37+PWrVqwcyMjUaoamBSYUC3bt0CUHZSYWZmhjp16uDq1atISEhgUkFUTvb29qhfvz4KCgrkDsVoWVpaMqGgam/JkiUAgNdeew02NjayxNCvXz8cO3YMhYWFePDgAVxdXQEAq06tMmgco4NHG/R4VPUxqTCgJyUVADSSCiIqP3Nzc35pJqIyHT9+HIcOHYKlpSVef/112eKwsrKSZiZOSkpCzZo1oVAoUKDijyJk2ljnZiDZ2dlITU0F8OSkAgBu3rxpkLiIiIiqA3UtxfPPPw8vLy9ZY7G3t4eZmRkePnyI9PR0WWMh4zJjxgy0aNFC7jAqhEmFgahrKRwcHKRfKEqj7qzNmgoiIiLduHPnDtauXQsAeOutt2SO5lFz5xo1agB4VFtBhiGE4KhbesSkwkDK0/QJ+LemgkkFERGRbixduhSFhYXo3LkzQkJC5A4HAFCjRg0oFApkZWUhNzdX7nCeqFu3bnjjjTcwceJEuLi4wMPDAytWrEB2djZGjx4NBwcHBAQEYMeOHdI2586dQ9++fWFvbw8PDw+89NJLuHfvnvR+VFQUOnXqBGdnZ9SsWRP9+/dHXFyc9H5+fj4iIiLg5eUFa2tr+Pr6Yu7cuQAejaipUCgQGxsrlU9LS4NCoUBMTAwAICYmBgqFAjt27EBISAiUSiUOHToElUqFuXPnwt/fHzY2NggKCsL69eul/ai327lzJ4KDg2FjY4MePXogJSUFO3bsQKNGjeDo6Ijhw4cjJydH2q68+927dy9atWoFW1tbdOjQAZcvXwYAREZGYubMmTh9+jQUCgUUCgUiIyN18vkZApMKA3nSyE9qbP5ERESkO/n5+VixYgUAYOLEifIGU4yVlZU08d7du3dljqZ8Vq9eDVdXV/z111944403MH78eAwePBgdOnTAyZMn0bt3b7z00kvIyclBWloaevTogeDgYBw/fhxRUVFITk7GkCFDpP1lZ2dj0qRJOH78OPbu3QszMzMMGjRImnH8iy++wJYtW/Dbb7/h8uXL+Pnnn+Hn56d13FOmTMG8efNw8eJFNG/eHHPnzsUPP/yA5cuX4/z583j77bfx4osvYv/+/RrbzZgxA1999RWOHDmCW7duYciQIViyZAl++eUXbNu2Dbt27cKXX34plS/vfj/44AMsXLgQx48fh4WFhTQS2dChQ/G///0PTZo0QWJiIhITEzF06FCtz1cu7KhtIOWtqahduzYA4Pbt23qPiYiIqKrbtm0b7t69Cy8vLzz99NNyh6PBzc0NaWlpuH//PlRCBTOFcf/WGxQUhA8//BAAMHXqVMybNw+urq4YN24cAGDatGlYtmwZzpw5gz179iA4OBhz5syRtl+5ciV8fHxw5coVNGjQAM8++6zG/leuXAk3NzdcuHABTZs2RUJCAurXr49OnTpBoVBITcS1NWvWLPTq1QsAkJeXhzlz5mDPnj1o3749gEfzhx06dAjffPMNunbtKm03e/ZsdOzYEcCjGdGnTp2KuLg4ab6x5557DtHR0Zg8ebJW+/3kk0+k11OmTEG/fv3w8OFD2NjYwN7eHhYWFvD09KzQucqJSYWBlDepUHcey8zMRHZ2Nuzs7PQeGxERUVW1cuVKAMDIkSNhYWFcX3scHR1hZWWF/Px85GTnGP1keM2bN5f+bm5ujpo1a6JZs2bSOg8PDwBASkoKTp8+jejo6FLPKS4uDg0aNMDVq1cxbdo0HDt2DPfu3ZNqKBISEtC0aVOMGjUKvXr1QmBgIPr06YP+/fujd+/eWsfdqlUr6e/Xrl1DTk6OlGSo5efnIzg4uMzz9fDwgK2trcYExh4eHvjrr78qtV/1976UlBSptYqpMq7/XVVYeZMKBwcH2NraIicnB4mJiQgICDBEeERERFXOnTt3sH37dgCQJp0zJgqFAm5ubrh9+zaysrKMPqmwtLTUeK1QKDTWKRQKAI/6FmRlZSE8PBzz588vsR/1F+nw8HD4+vpixYoV8Pb2hkqlQtOmTZGfnw8AaNmyJeLj47Fjxw7s2bMHQ4YMQWhoKNavXy9NGiiEkPZb1lxFxX+gzcrKAvCoBqtWrVoa5ZRKZZnn+99zVa9TJ0KV2S8AaT+mjEmFgZQ3qVAoFPDy8kJcXByTCiIiokr48ccfoVKp0KlTJzRo0EDucEpVs2ZN3L59Gw/zHiI/Px9WVlZyh6QTLVu2xIYNG+Dn51dqDdH9+/dx+fJlrFixAp07dwYAHDp0qEQ5R0dHDB06FEOHDsVzzz2HPn364MGDB3BzcwMAJCYmSjUBxTttl6Vx48ZQKpVISEjQaJJUWbrar5WVFYqKinQWlyExqTAQdR+J/2avpfH29paSCiIiItKeEEJq+qTuCGuMrKys4OzsDCQ8+rVbPdSsqZswYQJWrFiBYcOG4b333kONGjVw7do1rFmzBt999x1cXFxQs2ZNfPvtt/Dy8kJCQgKmTJmisY9FixbBy8sLwcHBMDMzw7p16+Dp6QlnZ2eYmZmhXbt2mDdvHvz9/ZGSkiL193gcBwcHvPPOO3j77belhDM9PR2HDx+Go6MjRo4cWaHz1dV+/fz8EB8fj9jYWNSuXRsODg4lajqMlXH3CKoiik9uU54Jd9RlmFQQkamYO3cuWrduDQcHB7i7u2PgwIHSMIlliYyMlIZNVC/W1tYGipiquiNHjuDKlSuws7PD4MGD5Q7nsdS/umdlZUElTL8ZDPDoB9LDhw+jqKgIvXv3RrNmzTBx4kQpITAzM8OaNWtw4sQJNG3aFG+//TY+++wzjX04ODjg008/RatWrdC6dWvcuHED27dvl5o+rVy5EoWFhQgJCcHEiRMxe/bscsX28ccf46OPPsLcuXPRqFEj9OnTB9u2bYO/v3+lzlkX+3322WfRp08fdO/eHW5ubvj1118rFZMhKUTxxmhGKiMjA05OTkhPT3/sxHHG6ubNm/Dz84NSqURubq7Ufq4sEydOxOeff47Jkydj3rx5BoqSiKorXdxj+/Tpg+effx6tW7dGYWEh3n//fZw7dw4XLlwoc8CJyMhIvPXWWxrJh0KhkDp7Gip2qprGjBmDlStXYvTo0VKNhTF4+PAh4uPj4e/vLyXRQghM3zIdhUWFcHN1M8ggLa+EvKL3Y5DpKO3fJaDdPZbNnwxAPVumh4fHExMKgDUVRGR6oqKiNF5HRkbC3d0dJ06cQJcuXcrcTqFQmOTQiWTccnJy8NtvvwEw7qZPagqFAk4Oj7645eXmwdnBWe6QiLTGpMIA1ElFeR+cTCqIyNSpm3w+qX14VlYWfH19oVKp0LJlS8yZMwdNmjQps3xeXh7y8vKk1xkZGboJmKqUbdu2ISsrC/7+/tI8A8bu9fav4/z581AoFAhqFmR0w98SPQn7VBhAcnIyACYVRFQ9qFQqTJw4ER07dkTTpk3LLBcYGIiVK1di8+bN+Omnn6BSqdChQwf8888/ZW4zd+5cODk5ScuTRtSj6mnNmjUAgOeff75cLQSMgY2NDWxsbCCEQGpqqtzhEGmNSYUBFG/+VB7qpOLOnTt6i4mISF8mTJiAc+fOSV/sytK+fXuMGDECLVq0QNeuXfH777/Dzc0N33zzTZnbTJ06Fenp6dKiHq6bSC0jIwPbtm0DAAwdOlTmaLRTs2ZNAI+GWyUyNaxbM4CKNn968OAB8vLyTGYoMSKiiIgI/PHHHzhw4ABq166t1baWlpYIDg7GtWvXyiyjVCp5T6TH2rx5M/Ly8tCwYUONmYtNQY0aNfDPP/8gKyuLz38yOaypMABtk4oaNWpIk9+otyUiMmZCCERERGDjxo3Yt29fhYZmLCoqwtmzZ8s19DZRWUyl6VNpg29aWVnBwcEBwKMfFokMRRczerOmwgC0TSrUo6EkJCQgMTERvr6++gyPiKjSJkyYgF9++QWbN2+Gg4ODdN9zcnKCjY0NAGDEiBGoVasW5s6dCwCYNWsW2rVrh4CAAKSlpeGzzz7DzZs3MXbsWNnOg0zb/fv3sWvXLgDG2/TJ0tISCoUCd+/ehZubW4nEx9HREZmZmbh79y6cnZ2NOjEi0yeEQH5+Pu7evQszM7NKzejOpMIA1B21tRl7XZ1UqLclIjJmy5YtAwB069ZNY/2qVaswatQoAEBCQoI0aRUApKamYty4cUhKSoKLiwtCQkJw5MgRNG7c2FBhUxWzceNGFBYWIigoCA0bNpQ7nFKZm5ujdu3a+Oeff3Djxo0S76tUKty/fx9CCAghKvUlj6i8bG1tUadOHY17tLaYVOiZEELrmgoAcHd3BwDcvXtXL3EREelSeeZRjYmJ0Xi9ePFiLF68WE8RUXVUvOmTMbO3t0f9+vVRUFBQ6vuff/45du3ahVdffRVvv/22gaOj6sbc3BwWFhaVrhVjUqFnWVlZyMnJAaBdTYWbmxsAICUlRS9xERERVSXJycmIjo4GYLxNn4ozNzeHubl5qe91794dK1aswKpVqzBlyhQ2gSKTwI7aeqaupbCzs4O9vX25t2NNBRERUflt2bIFKpUKrVq1qtBAAcakf//+UCqVuHr1Ks6ePSt3OETlwqRCz7Sd+E5NnVSwpoKIiOjJNm7cCAAYNGiQzJFUnoODA/r06QMAWL9+vczREJUPkwo9UycV6iShvNj8iYiIqHwyMjKwd+9eAMDAgQPlDUZHnnvuOQBMKsh0MKnQM3XzJXWSUF5s/kRERFQ+O3bsQH5+Pho0aIBGjRrJHY5OhIeHw9LSEhcvXsSFCxfkDofoiZhU6Nm9e/cAaJ9UsKaCiIiofDZt2gTgUdOnqtKp2cnJCb179wYArFu3TuZoiJ6MSYWeqWsaXF1dtdqueE1FeYZqJCIiqo7y8vKwbds2AFWn6ZMam0CRKWFSoWeVrakoLCxEWlqarsMiIiKqEvbt24fMzEx4eXmhTZs2coejUwMGDICFhQXOnTuHS5cuyR0O0WMxqdCzitZUKJVKODo6auyDiIiINKmbPg0YMKBSswEbIxcXF/Ts2RPAv+dJZKyq1v8+I1TRmgqAw8oSERE9TlFRETZv3gygagwlWxp1ky71eRIZqwolFUuXLoWfnx+sra3Rtm1b/PXXX48tv2TJEgQGBsLGxgY+Pj54++238fDhwwoFbGoqWlMB/JuIsKaCiIiopGPHjiE5ORlOTk7o1q2b3OHoRXh4OIBH56qeUJfIGGmdVKxduxaTJk3C9OnTcfLkSQQFBSEsLKzMX9N/+eUXTJkyBdOnT8fFixfx/fffY+3atXj//fcrHbyxE0KwpoKIiEhP/vjjDwBA3759YWVlJXM0+lGrVi20atUKQghs3bpV7nCIyqR1UrFo0SKMGzcOo0ePRuPGjbF8+XLY2tpi5cqVpZY/cuQIOnbsiOHDh8PPzw+9e/fGsGHDnli7URXk5ORINTIVqalgUkFERFQ29ahP/fv3lzkS/RowYAAAYMuWLTJHQlQ2rZKK/Px8nDhxAqGhof/uwMwMoaGhOHr0aKnbdOjQASdOnJCSiOvXr2P79u146qmnKhG2aVA3W1IqlbC3t9d6ezZ/IiIiKt2tW7dw5swZmJmZoU+fPnKHo1fqpGLPnj3Izs6WORqi0lloU/jevXsoKiqCh4eHxnoPD48yhzobPnw47t27h06dOkEIgcLCQrz22muPbf6Ul5eHvLw86XVGRoY2YRoNddMnV1fXCk3Gw5oKIiKi0qlrKdq1a4eaNWvKHI1+NW3aFP7+/oiPj8euXbuqbKd0Mm16H/0pJiYGc+bMwddff42TJ0/i999/x7Zt2/Dxxx+Xuc3cuXPh5OQkLT4+PvoOUy/UNQwV6U8BQLpJ3r9/X2cxERERVQXVpekTACgUCjz99NMA2ASKjJdWSYWrqyvMzc2RnJyssT45ORmenp6lbvPRRx/hpZdewtixY9GsWTMMGjQIc+bMwdy5c6FSqUrdZurUqUhPT5eWW7duaROm0ahMJ22ASQUREVFpcnNzsXfvXgBAv379ZI7GMNRNoP744w8UFRXJHA1RSVolFVZWVggJCZH+IwOASqXC3r170b59+1K3ycnJKTEZjbm5OYBHoyOVRj3xW/HFFFVmOFmASQUREVFpYmJikJubi9q1a6NZs2Zyh2MQnTt3houLC+7du4cjR47IHQ5RCVo3f5o0aRJWrFiB1atX4+LFixg/fjyys7MxevRoAMCIESMwdepUqXx4eDiWLVuGNWvWID4+Hrt378ZHH32E8PBwKbmoqlhTQUREpHvqoWT79etXoT6LpsjCwkKqleHQsmSMtOqoDQBDhw7F3bt3MW3aNCQlJaFFixaIioqSOm8nJCRo1Ex8+OGHUCgU+PDDD3H79m24ubkhPDwcn3zyie7OwkjpqqYiOzsbDx8+hLW1tc5iIyIiMkVCiGrVn6K4/v3746effsK2bdvw6aefyh0OkQaFKKsNkhHJyMiAk5MT0tPTTaop1KBBg7Bp0yYsW7YMr732mtbbCyFgaWmJoqIi/PPPP6hVq5YeoiSi6s5U77GAacdOFXP+/Hk0bdoU1tbWuH//PmxtbeUOyWBSU1Ph5uaGoqIixMfHw8/PT+6QqIrT5h6r99GfqrPK1lQoFAo2gSIiIipm+/btAIDu3btXq4QCAFxcXNChQwcA/45+RWQsmFToUWX7VADsV0FERFRcVFQUAKBv374yRyIPdb8KJhVkbJhU6FFlayoAJhVERERqWVlZOHToEABU+Vm0y6JOKqKjo5GTkyNzNET/YlKhJ0VFRUhNTQXApIKIiEgXYmJikJ+fD39/fwQEBMgdjiyaNGmCOnXq4OHDh4iOjpY7HCIJkwo9SU1NlebhUCcGFaHeVt2UioiIqLrauXMnACAsLKzaDCX7XwqFgk2gyCgxqdCTBw8eAAAcHR1hYaH1yL0S1lQQERE9ou5PUV2bPqk99dRTAB4lFSYwiCdVE0wq9ESdBNSoUaNS+1E3nWJSQURE1VlcXByuXbsGCwsLdO/eXe5wZNWjRw9YW1sjISEB58+flzscIgBMKvRGXVNRmaZPxbdnUkFERNWZuulTx44dq/2cJLa2tlJixSZQZCyYVOiJOqmobE0FkwoiIiLN/hT07yhQO3bskDkSokeYVOiJrpMKdtQmIqLqKj8/H/v27QPA/hRq6utw+PBhZGRkyBwNEZMKvVHXLLD5ExERUeUcOXIEWVlZcHd3R1BQkNzhGIV69eohICAAhYWFUsJFJCcmFXqi65qKtLQ0FBUVVTouIiIiU1O86ZOZGb+6qKlnFVePikUkJ/7P1BNdJRXq7YUQ0mR6RERE1cmuXbsAAL1795Y5EuOibgIVFRXFoWVJdkwq9ERXQ8paWlrCyclJY59ERETVxb1793Dq1CkAQGhoqMzRGJeuXbtCqVTi5s2buHz5stzhUDXHpEJPdDWkbPF9MKkgIqLqZt++fRBCoGnTpvD09JQ7HKNiZ2eHLl26AGATKJIfkwo90VXzJ4AjQBERUfW1e/duAECvXr1kjsQ4qZtAcWhZkhuTCj3RVfMngDUVRGT85s6di9atW8PBwQHu7u4YOHBguZpjrFu3Dg0bNoS1tTWaNWuG7du3GyBaMhVCCCYVT6BOKvbv34+cnByZo6HqjEmFHhQWFiI9PR0Amz8RUfWwf/9+TJgwAX/++Sd2796NgoIC9O7dG9nZ2WVuc+TIEQwbNgxjxozBqVOnMHDgQAwcOBDnzp0zYORkzK5du4abN2/CyspKauZDmho1agQfHx/k5eVh//79codD1RiTCj1IS0uT/u7i4lLp/TGpICJjFxUVhVGjRqFJkyYICgpCZGQkEhIScOLEiTK3+fzzz9GnTx+8++67aNSoET7++GO0bNkSX331lQEjJ2OmrqXo0KED7OzsZI7GOCkUCg4tS0aBSYUeqPtTODo6wsLCotL7c3V1BcCkgohMh7q29nFNQI8ePVpiNJ+wsDAcPXpUr7GR6dizZw8ANn16krCwMABMKkhelf/GSyXoajZtNdZUEJEpUalUmDhxIjp27IimTZuWWS4pKQkeHh4a6zw8PJCUlFTmNnl5ecjLy5NeZ2RkVD5gMkrFZ4pmUvF4PXv2hLm5Oa5cuYKbN2/C19dX7pCoGmJNhR7ocuQngKM/EZFpmTBhAs6dO4c1a9bofN9z586Fk5OTtPj4+Oj8GGQcjh8/jvT0dLi4uKBly5Zyh2PUnJyc0K5dOwD/ThRIZGhMKvRA10mFej/q/RIRGauIiAj88ccfiI6ORu3atR9b1tPTE8nJyRrrkpOTHzsXwdSpU5Geni4tt27d0kncZHzU/SnUv8LT46lnG2dSQXJhUqEHuhxOFvi3poJJBREZKyEEIiIisHHjRuzbtw/+/v5P3KZ9+/bYu3evxrrdu3ejffv2ZW6jVCrh6OiosVDVpO5PwVm0y0edVOzZsweFhYUyR0PVEZMKPdDlbNrAv8nJ/fv3IYTQyT6JiHRpwoQJ+Omnn/DLL7/AwcEBSUlJSEpKQm5urlRmxIgRmDp1qvT6rbfeQlRUFBYuXIhLly5hxowZOH78OCIiIuQ4BTIi2dnZUod9JhXl07p1azg7OyMtLQ3Hjx+XOxyqhphU6IG++lTk5eVpPKCJiIzFsmXLkJ6ejm7dusHLy0ta1q5dK5VJSEhAYmKi9LpDhw745Zdf8O233yIoKAjr16/Hpk2bHtu5m6qHgwcPoqCgAL6+vqhbt67c4ZgEc3NzKQHbuXOnzNFQdcTRn/RA10mFvb09LC0tUVBQgPv378PW1lYn+yUi0pXy1KLGxMSUWDd48GAMHjxYDxGRKVM3i+vZsycUCoXM0ZiOsLAwrF+/Hrt27cL06dPlDoeqGdZU6IGuh5RVKBTsrE1ERNVG8aSCyk899O6xY8c0JuIlMgQmFXqg65oKgHNVEBFR9XDv3j3ExsYCAHr06CFvMCbG19cXgYGBKCoqkub4IDIUJhV6oI+kgjUVRERUHURHR0MIgSZNmjx2eGEqnXp2bQ4tS4bGpEIPdN38qfi+WFNBRERVGZs+VY56aNmdO3dyxEgyKCYVOlZYWIj09HQArKkgIiLSFpOKyunWrRssLS1x48YNxMXFyR0OVSNMKnSseMcoFxcXne2XNRVERFTVJSQk4Nq1azAzM0PXrl3lDsck2dnZoUOHDgD+nZWcyBCYVOiY+ku/o6MjLCx0N2Jv8QnwiIiIqiJ1LUWbNm3g5OQkczSmS90Eiv0qyJCYVOiYrmfTVlPvj82fiIioqmLTJ91QDy27b98+FBYWyhwNVRdMKnRMHyM/Fd8fayqIiKgqEkJISQWHkq2cli1bokaNGsjIyMBff/0ldzhUTTCp0DF9JRWsqSAioqrs0qVLSEpKgrW1tdQngCrG3Nxcqu1hvwoyFCYVOqaP4WQB1lQQEVHVpq6l6NixI6ytrWWOxvSxXwUZGpMKHTNETQXHnSYioqpGPQM0mz7phrpfxbFjx6Sh7on0iUmFjum7T0VhYSEyMzN1um8iIiI5FRUVISYmBgCTCl3x9fVF/fr1UVRUhOjoaLnDoWqASYWO6av5k62trVQdzH4VRERUlZw+fRqpqalwcHBAq1at5A6nylA3gWK/CjIEJhU6pq+aCoAT4BERUdWkbvrUtWtXnc7xVN2pm0CxXwUZApMKHdNnUqHeJ2sqiIioKuFQsvrRvXt3mJub49q1a7hx44bc4VAVx6RCx/TV/Kn4PllTQUREVUV+fj4OHjwIgEmFrjk6OqJdu3YA2ASK9K9CScXSpUvh5+cHa2trtG3b9okTq6SlpWHChAnw8vKCUqlEgwYNsH379goFbOxYU0FERFR+f//9N7Kzs+Hq6opmzZrJHU6VwyZQZChaJxVr167FpEmTMH36dJw8eRJBQUEICwtDSkpKqeXz8/PRq1cv3LhxA+vXr8fly5exYsUK1KpVq9LBG5vCwkJp2Db2qSAiInoydX+K7t27w8yMDSh0TZ1U7N27F0VFRTJHQ1WZ1v97Fy1ahHHjxmH06NFo3Lgxli9fDltbW6xcubLU8itXrsSDBw+wadMmdOzYEX5+fujatSuCgoIqHbyxSUtLk/7u4uKi8/2zpoKIiKoa9qfQrzZt2sDR0RGpqak4efKk3OFQFaZVUpGfn48TJ04gNDT03x2YmSE0NBRHjx4tdZstW7agffv2mDBhAjw8PNC0aVPMmTOnSmbL6hoER0dHvYxewZoKIiKqSnJycqTvD927d5c5mqrJwsJCStjYr4L0Sauk4t69eygqKoKHh4fGeg8PDyQlJZW6zfXr17F+/XoUFRVh+/bt+Oijj7Bw4ULMnj27zOPk5eUhIyNDYzEF6hoEfXTSBlhTQUREVcuRI0eQn5+PWrVqoUGDBnKHU2Wpm0AxqSB90nvjRZVKBXd3d3z77bcICQnB0KFD8cEHH2D58uVlbjN37lw4OTlJi4+Pj77D1Al9dtIGWFNBRERVi7o/RY8ePaBQKGSOpupSJxWHDx9GVlaWzNFQVaVVUuHq6gpzc3MkJydrrE9OToanp2ep23h5eaFBgwYwNzeX1jVq1AhJSUnIz88vdZupU6ciPT1dWm7duqVNmLLRd1LBmgoiIqpK1ElFz549ZY6kagsICICvry8KCgpw4MABucOhKkqrpMLKygohISFSpyrgUU3E3r170b59+1K36dixI65duwaVSiWtu3LlCry8vGBlZVXqNkqlEo6OjhqLKWBNBRERUfmkp6fj77//BsD+FPqmUCjYBIr0TuvmT5MmTcKKFSuwevVqXLx4EePHj0d2djZGjx4NABgxYgSmTp0qlR8/fjwePHiAt956C1euXMG2bdswZ84cTJgwQXdnYSQMVVORmpqqkaQRERGZmoMHD0KlUiEgIAB16tSRO5wqr3fv3gCYVJD+aD1E0dChQ3H37l1MmzYNSUlJaNGiBaKioqTO2wkJCRrjTPv4+GDnzp14++230bx5c9SqVQtvvfUWJk+erLuzMBKG6qitUqmQnp6ul2FriYiIDKF4fwrSP3W/lfPnz+POnTvw9vaWOySqYio07mlERAQiIiJKfS8mJqbEuvbt2+PPP/+syKFMir5rKpRKJezs7JCdnY379+8zqSAiIpPFpMKwatasiZCQEBw/fhy7d+/GyJEj5Q6JqhhOXalD6r4O+koqgH9rQdhZm4iITNW9e/dw+vRpAEC3bt3kDaYaYRMo0icmFTqk75oKgJ21iYjI9KlbNTRt2rTE3FekP8WTCvbNJF1jUqFDhkgqOKwsERGZOjZ9kkf79u1hZ2eHlJQUnDlzRu5wqIphUqFDrKkgIiJ6MiYV8rCyspKam7EJFOkakwodKSoqQlpaGgDWVBAREZXl9u3buHz5MszMzNC1a1e5w6l21PNV7Nq1S+ZIqKphUqEj6enpEEIAgF5HZWJNBRERmTJ1LUXLli3h7OwsbzDVkLpfxcGDB5GbmytzNFSVMKnQEXXNgYODQ5kzhesCayqIiMiU7d27FwDQs2dPmSOpnho2bIjatWsjLy8PBw8elDscqkIqNE8FlWSI4WQB1lQQEdG/Vp1aJXcIWhEQ2HJrC9ACKGxaaHLxVxV+A/3wz6F/sGjfItx2u63VtqODR+spKjJ1TCp0xBCdtIvvnzUVRERUoCqQOwStJKckIzU9FeZW5vCr52dy8VcVDZs0xKGjh3Du4jk8o3pG7nCoimDzJx0xVFLBmgoiIjJVly9dBgDUrVtXr02F6fEaNWoE4FGn+fT0dJmjoaqCSYWOsKaCiKq7AwcOIDw8HN7e3lAoFNi0adNjy8fExEChUJRYkpKSDBMwGdylS5cAPGrXT/Kxt7dHnTp1AAAXLlyQORqqKphU6IihayrS0tJQWFio12MREWkjOzsbQUFBWLp0qVbbXb58GYmJidLi7u6upwhJTiqhwuXLj2oqmFTIr3HjxgCYVJDusE+FjhgqqSg+XG1aWhpcXV31ejwiovLq27cv+vbtq/V27u7uHFq0Grh9+zaysrJgZWUFPz8/ucOp9ho3boyoqChcuHABKqGCmYK/M1Pl8F+QjhgqqbCwsICTkxMA9qsgoqqhRYsW8PLyQq9evXD48OHHls3Ly0NGRobGQqZB3Z+ifv36sLDgb5pyq1evHpRKJbKysvDPrX/kDoeqACYVOqJOKtTNk/SJ/SqIqCrw8vLC8uXLsWHDBmzYsAE+Pj7o1q0bTp48WeY2c+fOhZOTk7T4+PgYMGKqDPanMC4WFhYIDAwEwCZQpBtMKnTEUPNUABwBioiqhsDAQLz66qsICQlBhw4dsHLlSnTo0AGLFy8uc5upU6ciPT1dWm7dumXAiKmiioqKcOXKFQBMKoyJul/F+fPnZY6EqgLWP+qIoZo/Af8mFaypIKKqpk2bNjh06FCZ7yuVSiiVSgNGRLpw4+YN5OXlwdbWFrV9assdDv2/xk0eJRVxcXF4mPcQ1kprmSMiU8aaCh0xZFKhPgZrKoioqomNjYWXl5fcYZCOXbr4qOlTYGAgOwQbEXc3d9SsWfNRTdLlK3KHQyaONRU6oFKpkJqaCoDNn4io+srKysK1a9ek1/Hx8YiNjUWNGjVQp04dTJ06Fbdv38YPP/wAAFiyZAn8/f3RpEkTPHz4EN999x327duHXbt2yXUKpCcXL14E8O+ka2QcFAoFmjRpggMHDuDChQto3ry53CGRCWNSoQMZGRlQqVQANId81Rd21CYiY3T8+HF0795dej1p0iQAwMiRIxEZGYnExEQkJCRI7+fn5+N///sfbt++DVtbWzRv3hx79uzR2AeZvry8PFy/fh0Akwpj1LhxYxw4cID9KqjSmFTogPrLva2tLayt9d8ekTUVRGSMunXrBiFEme9HRkZqvH7vvffw3nvv6Tmqqs3SzFLuEJ7oUtwlFOUXoUbNGvD29IYCCrlDomKaNm4KhVAgJTEF6Q/SOf8VVRiTCh0wZH+K4sdhTQURUfU2Oni03CE80bu/vAvEAgNfHoiXg1+WOxwqxRrbNTh06BAcrztidC/j/zdFxom9pXTAkHNUFD8OayqIiMjY7dmzBwDQs2dPmSOhsoSFhQEAoqKiZI6ETBmTCh0w5BwVxY/DmgoiIjJmd+/eRWxsLAAmFcasb9++AIC9e/ciPz9f5mjIVDGp0AFDN39iTQUREZmC6OhoAECzZs3g4eEhczRUluDgYLi5uSEzMxNHjx6VOxwyUUwqdECuPhVZWVn8RYGIiIwWmz6ZBjMzM6kJ1I4dO2SOhkwVkwodMHRS4ezsDIVCoXFsIiIiY6NOKkJDQ2WOhJ5E3QSK/SqoophU6IChkwozMzNpPgwmFUREZIyuX7+O+Ph4WFhYoEuXLnKHQ0/Qq1cvKBQKnD59Gnfu3JE7HDJBTCp0wNBJBcB+FUREZNz27t0LAGjTpg0cHBxkjoaexM3NDa1atQIA7Ny5U+ZoyBQxqdABOZIKjgBFRETGbPfu3QAe/QJOpkHdBIr9KqgimFTogLq2wFDzVBQ/FmsqiIjI2BQVFUn9KXr37i1zNFReffr0AfAoISwsLJQ5GjI1TCp0QM7mT6ypICIiY3Py5EmkpqbC0dERbdq0kTscKqc2bdrAxcUFaWlpOHbsmNzhkIlhUlFJQghZmz+xpoKIiIyNuulTjx49YGFhIXM0VF7m5uZSzRKbQJG2mFRUUmZmJoqKigCwpoKIiAgAdu3aBYD9KUwR+1VQRTGpqCT1l3pra2vY2NgY7LisqSAiImOUlZWFI0eOAGB/ClOk7ldx8uRJJCYmyhwNmRImFZUkR9MngDUVRERknPbv34+CggL4+fmhXr16codDWvLw8EDr1q0BANu3b5c5GjIlTCoqSV1TYOikgjUVRERkjNT9KXr37g2FQiFzNFQR/fr1A8CkgrTDpKKS7t27B+DRpDGGxCFliYjIGHF+CtP31FNPAXj0Webn58scDZkKJhWVpE4qDDlHBcDJ74iIyPj8888/uHDhAhQKBXr06CF3OFRBISEh8PDwQGZmJg4ePCh3OGQimFRUkjqpcHV1Nehx1UlMbm4ucnNzDXpsIiKi0qgnvGvdurXBmwWT7piZmUmjQG3btk3maMhUMKmoJHXzI0MnFQ4ODtLY36ytICIiY8ChZKsO9qsgbTGpqCS5aioUCgU7axMRkdEoKiqSkgr1sKRkunr16gULCwtcvnwZcXFxcodDJoBJRSXJlVQA7FdBRETG48SJE7h//z6cnJzQrl07ucOhSnJyckKnTp0AsAkUlQ+TikqSM6ngCFBERGQsoqKiAAChoaFS81wybeomUEwqqDyYVFSSXKM/AaypICIi46FOKtj0qero378/ACA6OhoZGRkyR0PGrkJJxdKlS+Hn5wdra2u0bdsWf/31V7m2W7NmDRQKBQYOHFiRwxodIQRrKoiIqNp78OABjh07BgAICwuTORrSlcDAQNSvXx8FBQVSfxmismidVKxduxaTJk3C9OnTcfLkSQQFBSEsLAwpKSmP3e7GjRt455130Llz5woHa2xycnKQl5cHQN6kgjUVREQkpz179kClUqFx48bw8fGROxzSEYVCgaeffhoAsGXLFpmjIWOndVKxaNEijBs3DqNHj0bjxo2xfPly2NraYuXKlWVuU1RUhBdeeAEzZ85E3bp1KxWwMVHXUiiVStjZ2Rn8+Bz9iYiIjMHOnTsBsOlTVRQeHg7g0dCyhYWFMkdDxkyrpCI/Px8nTpxAaGjovzswM0NoaCiOHj1a5nazZs2Cu7s7xowZU67j5OXlISMjQ2MxRsWbPikUCoMfnzUVREQkNyEE+1NUYR07doSLiwvu37//2O96RFolFffu3UNRURE8PDw01nt4eCApKanUbQ4dOoTvv/8eK1asKPdx5s6dCycnJ2kx1qpUOftTAKypICIi+Z07dw537tyBjY1NlWriTI9YWFhIo0CxCRQ9jl5Hf8rMzMRLL72EFStWaPXFe+rUqUhPT5eWW7du6THKipNz5Kfix2VNBRERyUVdS9G9e3dYW1vLHA3pA/tVUHloNZC0q6srzM3NkZycrLE+OTkZnp6eJcrHxcXhxo0bUns8AFCpVI8O/P+zNNarV6/EdkqlEkqlUpvQZMGaCiIiqu527NgBgKM+VWVhYWGwtLTElStXcPnyZQQGBsodEhkhrWoqrKysEBISgr1790rrVCoV9u7di/bt25co37BhQ5w9exaxsbHS8vTTT6N79+6IjY012mZN5aX+Mi9XUlG8pkIIIUsMRERUfaWnp+PgwYMAgKeeekrmaEhfHB0d0a1bNwDA1q1b5Q2GjJbWzZ8mTZqEFStWYPXq1bh48SLGjx+P7OxsjB49GgAwYsQITJ06FQBgbW2Npk2baizOzs5wcHBA06ZNYWVlpduzMTBjqanIz89Hdna2LDEQEVH1tXv3bhQWFqJBgwYICAiQOxzSI3UTqM2bN8scCRkrrZOKoUOHYsGCBZg2bRpatGiB2NhYREVFSZ23ExISkJiYqPNAjZHcSYWtra3UTIz9KoiIyNC2bdsGAFJHXqq61EnF4cOHnzg3GVVPWvWpUIuIiEBERESp78XExDx228jIyIoc0ijJ3VFboVCgRo0aSExMxP3791GnTh1Z4iAioupHpVJh+/btAJhUVAd16tRBy5YtcfLkSWzZsgVjx46VOyQyMnod/amqk7umAuAIUEREJI8TJ04gJSUFDg4OHEq2mnjmmWcAABs3bpQ5EjJGTCoqwRiSCo4ARUREclA3ferVq5fJ95Gk8hk0aBAAYM+ePUY7MTHJh0lFBQkhZB/9Cfi3poJJBRHJ7cCBAwgPD4e3tzcUCgU2bdr0xG1iYmLQsmVLKJVKBAQEVKkmslUd+1NUP40aNUJgYCDy8/Olpm9EakwqKigrKwv5+fkAjKOmgs2fiEhu2dnZCAoKwtKlS8tVPj4+Hv369ZOGGZ84cSLGjh2LnTt36jlSqqykpCQcP34cAIeSrU4UCoVUW/H777/LHA0Zmwp11KZ/mz7Z2NjA1tZWtjhYU0FExqJv377o27dvucsvX74c/v7+WLhwIYBHv4IeOnQIixcv5kRqRk494V1ISEipk99S1fXMM89g3rx52L59Ox4+fMhZ1EnCmooKknvkJzUmFURkqo4ePYrQ0FCNdWFhYTh69KhMEVF5selT9dWqVSvUrl0b2dnZ2L17t9zhkBFhUlFBxtBJGwDc3NwAAHfv3pU1DiIibSUlJUlzHKl5eHggIyMDubm5pW6Tl5eHjIwMjYUMKy8vT2qixqSi+ineBIqjQFFxTCoqSP0lXv2lXi7u7u4AwIloiKhamDt3LpycnKTFx8dH7pCqnejoaGRlZcHLywutWrWSOxySgTqp2LJlCwoLC2WOhowFk4oKSk5OBoASv7IZGpMKIjJVnp6e0r1ULTk5GY6OjrCxsSl1m6lTpyI9PV1abt26ZYhQqZjNmzcDAMLDw2Fmxq8R1VHnzp3h6uqK+/fvP3HSY6o+eDeoIPWXePWXerkUTyqEELLGQkSkjfbt22Pv3r0a63bv3o327duXuY1SqYSjo6PGQoYjhMCWLVsAAAMGDJA5GpKLhYUFnn32WQDAb7/9JnM0ZCyYVFSQsSUVeXl5yMzMlDUWIqresrKyEBsbi9jYWACPhoyNjY1FQkICgEe1DCNGjJDKv/baa7h+/Tree+89XLp0CV9//TV+++03vP3223KET+Vw4sQJ3LlzB3Z2dujRo4fc4ZCMhgwZAuDR0LIFBQUyR0PGgElFBRlL8ycbGxs4ODgAQIlmBEREhnT8+HEEBwcjODgYADBp0iQEBwdj2rRpAIDExEQpwQAAf39/bNu2Dbt370ZQUBAWLlyI7777jsPJGjF106c+ffpwKNFqrkuXLnBzc8P9+/cRHR0tdzhkBDhPRQUZS02FOobMzEykpKSgfv36codDRNVUt27dHtsMs7TZsrt164ZTp07pMSrSJXVSwaZPpG4CtXz5cvz222/o3bu33CGRzFhTUUHGllQA7KxNRET6Ex8fj7Nnz8Lc3JyzaBOAf5tAbdy4kU2giElFRQghmFQQEVG1oq6l6NSpk+wTv5Jx6NKlC9zd3fHgwQPs27dP7nBIZkwqKiAtLU3KyJlUEBFRdcCmT/Rf5ubmeO655wBwFChiUlEh6i/vjo6ORtFRjUkFERHp071793Dw4EEATCpI0+DBgwE8agKVn58vczQkJyYVFWBMTZ8AJhVERKRfmzdvRlFREVq0aIG6devKHQ4Zkc6dO8PT0xOpqanYtWuX3OGQjJhUVICxDCerxqSCiIj0acOGDQAgTXhGpGZubo6hQ4cCAH7++WeZoyE5MamoAGOtqeA8FUREpGtpaWnYs2cPAEjt54mKe/HFFwE8qtHiRLzVF5OKCjDWpII1FUREpGtbt25FQUEBmjRpgoYNG8odDhmhkJAQNGjQALm5udi4caPc4ZBMmFRUgPrLu7E0f1LHcf/+fRQWFsocDRERVSXr168HwKZPVDaFQoEXXngBAJtAVWdMKipA3czIWGoqatSoATOzRx/lvXv3ZI6GiIiqiszMTOzcuRMAmz7R4w0fPhwAsGfPHiQlJckcDcmBSUUFGFvzJ3Nzc7i6ugJgEygiItKdbdu2IS8vDw0aNEDTpk3lDoeMWEBAANq1aweVSoU1a9bIHQ7JgElFBRhb8yeA/SqIiEj3ijd9UigUMkdDxo5NoKo3JhUVYGzNnwCOAEVERLqVnZ2NHTt2AGDTJyqfIUOGwNzcHMePH8elS5fkDocMjEmFlvLy8pCeng7AuJIKLy8vAEBiYqLMkRARUVWwdetW5OTkoG7duggODpY7HDIB7u7uCAsLAwD88MMPMkdDhsakQkvqzkdWVlZwcXGROZp/MakgIiJd+vXXXwEAw4YNY9MnKrfRo0cDAFavXo2ioiKZoyFDYlKhJfWXdi8vL6O6yaqTijt37sgcCRERmboHDx5ITZ+GDRsmczRkSsLDw1GzZk3cuXMHu3btkjscMiAmFVoqnlQYE29vbwCsqSAiosr7/fffUVBQgObNm6NJkyZyh0MmRKlUSh22V65cKXM0ZEhMKrSkrgkwtqSCNRVERKQrv/zyCwDWUlDFvPzyywCAzZs3c/6saoRJhZZYU0FERFXZnTt3EBMTAwB4/vnn5Q2GTFJQUBCCg4NRUFAgJahU9TGp0JL6S7v6S7yxUCc5WVlZyMzMlDkaIiIyVWvXroUQAh06dICfn5/c4ZCJUtdWrFq1SuZIyFCYVGjJWGsq7O3t4eDgAIC1FUREVHHFR30iqqjhw4fDysoKsbGxOHXqlNzhkAEwqdCSsfapANivgoiIKufq1av4+++/YW5ujsGDB8sdDpmwGjVqYODAgQCAFStWyBsMGQSTCi0Za/MngP0qiIioctQTloWGhsLDw0PmaMjUvfrqqwCAH3/8kU2zqwEmFVooKCjA3bt3ARh3TQWTCiIi0pZKpcLq1asBAKNGjZI3GKoSunfvjsDAQGRlZeHnn3+WOxzSMyYVWkhOToYQAhYWFnB1dZU7nBLUNRVs/kRERNqKjo7GrVu34OTkJDVbIaoMhUKB1157DQCwbNkyCCFkjoj0iUmFFtQ1AB4eHjAzM75Lx5oKIiKqqMjISACPOmhbW1vLGwxVGSNHjoSNjQ3OnDmDI0eOyB0O6ZHxfTM2YsbcnwJgTQUREVVMeno6NmzYAIBNn0i3XFxcpPlOli1bJnM0pE9MKrRgrMPJqrGmgoiIKmLdunXIzc1Fo0aN0KZNG7nDoSpm/PjxAB79O1P3TaWqh0mFFm7dugUAqF27tsyRlI41FUREVBHqpk+jRo2CQqGQNxiqclq3bo2QkBDk5+dj5cqVcodDesKkQgvGnlSoayoyMzORlZUlczRERGQKrl69isOHD8PMzAwvvfSS3OFQFTVhwgQAwNKlS1FQUCBzNKQPTCq0oE4qfHx8ZI6kdA4ODtKs2rdv35Y5GiIiMgXfffcdAKBPnz5G27yXTN+wYcPg7u6OW7duSf13qGqpUFKxdOlS+Pn5wdraGm3btsVff/1VZtkVK1agc+fOcHFxgYuLC0JDQx9b3pgZe1IBAHXq1AEAJCQkyBwJEREZu7y8PKk5yiuvvCJzNFSVWVtb4/XXXwcALFy4kMPLVkFaJxVr167FpEmTMH36dJw8eRJBQUEICwtDSkpKqeVjYmIwbNgwREdH4+jRo/Dx8UHv3r1N7pd0IQT++ecfAMadVKhjUydAREREZdmwYQPu3buH2rVro1+/fnKHQ1Xc+PHjoVQqcfz4cRw+fFjucEjHtE4qFi1ahHHjxmH06NFo3Lgxli9fDltb2zI73vz88894/fXX0aJFCzRs2BDfffcdVCoV9u7dW+ngDenevXt4+PAhAKBWrVoyR1M21lQQEVF5qYf4fOWVV2BhYSFzNFTVubu7S/12Fi9eLHM0pGtaJRX5+fk4ceIEQkND/92BmRlCQ0Nx9OjRcu0jJycHBQUFqFGjhnaRykz9y7+HhweUSqXM0ZSNSQUREZXHuXPncOjQIZibm2PMmDFyh0PVxMSJEwEAGzduRFxcnLzBkE5plVTcu3cPRUVF8PDw0Fjv4eGBpKSkcu1j8uTJ8Pb21khM/isvLw8ZGRkai9xMoT8FwOZPRERUPsuXLwcADBw40GgndaWqp0mTJujTpw+EEPj888/lDod0yKCjP82bNw9r1qzBxo0bYW1tXWa5uXPnwsnJSVqM4Yu8qSQVrKkgIqInycrKwg8//AAAeO2112SOhqqb//3vfwAejTxWVp9cMj1aJRWurq4wNzdHcnKyxvrk5GR4eno+dtsFCxZg3rx52LVrF5o3b/7YslOnTkV6erq0GMOv7qaYVHBkBSIiKs2vv/6KzMxM1K9fHz169JA7HKpmevbsidatWyM3N5d9K6oQrZIKKysrhISEaHSyVne6bt++fZnbffrpp/j4448RFRWFVq1aPfE4SqUSjo6OGovcTCWpUHcif/jwIe7fvy9zNERU3Wgz5HhkZCQUCoXG8rhabNINIQSWLFkC4FEthZkZp6wiw1IoFPjwww8BAF999RUePHggc0SkC1rfSSZNmoQVK1Zg9erVuHjxIsaPH4/s7GyMHj0aADBixAhMnTpVKj9//nx89NFHWLlyJfz8/JCUlISkpCSTm/HZ2GfTVlMqlVKtEZtAEZEhaTvkOAA4OjoiMTFRWm7evGnAiKunqKgoXLhwAQ4ODuygTbLp378/mjdvjqysLHz55Zdyh0M6oHVSMXToUCxYsADTpk1DixYtEBsbi6ioKKnzdkJCAhITE6Xyy5YtQ35+Pp577jl4eXlJy4IFC3R3FgagftD5+vrKHMmTqWtTmFQQkSFpO+Q48OgXS09PT2n570AgpHuLFi0CAIwdOxZOTk4yR0PVlZmZGT744AMAwOeff24Ug/JQ5VSozjMiIgI3b95EXl4ejh07hrZt20rvxcTEIDIyUnp948YNCCFKLDNmzKhs7AaTl5cnTXxXt25dmaN5MnbWJiJDq+iQ41lZWfD19YWPjw8GDBiA8+fPP/Y4xjg6oCk5ffo09uzZAzMzM7z11ltyh0PV3LPPPovAwECkpqZKc6aQ6WJDynK4efMmhBCwtbWFu7u73OE8kZ+fHwAgPj5e3kCIqNqoyJDjgYGBWLlyJTZv3oyffvoJKpUKHTp0kH7EKY0xjg5oStSdYp977jmTqHmnqs3c3Bzvv/8+gEcD+mRmZsocEVUGk4pyUH85r1u3LhQKhczRPFm9evUAANevX5c5EiKisrVv3x4jRoxAixYt0LVrV/z+++9wc3PDN998U+Y2xjg6oKm4c+cOfvnlFwD/DulJJLfhw4ejQYMGuHfvntQ0j0wTk4pyUH85N4WmT8C/cXKmSiIylMoMOa5maWmJ4OBgXLt2rcwyxjg6oKn46quvUFBQgI4dO6JNmzZyh0MEALCwsMDs2bMBPKqtuHv3rswRUUUxqSgHdVLh7+8vcyTlU7ymgnNVEJEhVHTI8eKKiopw9uxZeHl56SvMais1NRVLly4FALzzzjsyR0Ok6dlnn0VISAiysrIwZ84cucOhCmJSUQ6mVlPh6+sLc3Nz5ObmltmWmYhI17QdcnzWrFnYtWsXrl+/jpMnT+LFF1/EzZs3MXbsWLlOocpSj67TrFkzPP3003KHQ6TBzMwMc+fOBQB8/fXXHFraRDGpKIfifSpMgaWlpTQCFJtAEZGhaDvkeGpqKsaNG4dGjRrhqaeeQkZGBo4cOYLGjRvLdQpVUnp6ujTZ3UcffcTJ7sgohYaGokePHsjPzzepEULpXwphAu1jMjIy4OTkhPT0dIO3nxVCwNnZGRkZGTh//rzJPOxCQ0Oxd+9eREZGYuTIkXKHQ0RGTM57bGWZcuyGMnv2bHz00Udo3Lgxzp49y6SCjNZff/2Ftm3bQqFQ4MSJEwgODpY7pGpPm3ss7yxPkJqaKo2Drh6q1RSo+1WwpoKIqPrKzMyURtT58MMPmVCQUWvTpg2ef/55CCHw5ptvsl+oieHd5QnUX8o9PT1ha2srczTlx2FliYho6dKlSE1NRWBgIIYMGSJ3OERP9Omnn8LW1haHDh3CmjVr5A6HtMCk4gkuXboEAGjYsKHMkWiHNRVERNVbamoqPv30UwDABx98AHNzc5kjInoyHx8faUK8d999F1lZWTJHROXFpOIJTDWpCAgIAABcvnyZ1YdERNXQvHnzkJqaiiZNmmD48OFyh0NUbv/73//g7++P27dvS6NCkfFjUvEEpppUNGjQAAqFAqmpqUhJSZE7HCIiMqCEhAR8/vnnAB41J2EtBZkSa2trLF68GMCjCfEuX74sc0RUHkwqnsBUkwobGxtpCNyLFy/KHA0RERnShx9+iLy8PHTv3h19+/aVOxwirT399NPo06cP8vPzMXbsWKhUKrlDoidgUvEYhYWFuHr1KgDTSyoAoFGjRgCACxcuyBwJEREZyqlTp/DTTz8BeFRLoVAoZI6ISHsKhQLLly+HnZ0dDh06hGXLlskdEj0Bk4rHiI+PR0FBAWxsbODj4yN3OFpTz6nBmgoioupBCIH33nsPQggMGzYMrVq1kjskogrz9fXFvHnzAABTpkzhTNtGjknFY6ibPgUGBprk2N6sqSAiql42bNiAPXv2wMrKCp988onc4RBV2uuvv46OHTsiKysLr732GgefMWKm903ZgNRJhfrLualRx82aCiKiqi8zMxNvvfUWgEe/6vr7+8scEVHlmZmZ4fvvv4dSqURUVBRWrFghd0hUBiYVj3Hu3DkAptmfAvg3qUhMTERaWpq8wRARkV5NmzYNd+7cQb169TB16lS5wyHSmcDAQMyePRsAMHHiRLbAMFJMKh7j1KlTAIAWLVrIG0gFOTo6onbt2gCA8+fPyxwNERHpS2xsLL744gsAj2bRtra2ljkiIt2aNGkSevXqhdzcXDz//PN4+PCh3CHRfzCpKMPDhw+lZkPBwcEyR1NxQUFBAP5NkIiIqGopKirC+PHjoVKpMHjwYISFhckdEpHOmZmZ4YcffoCbmxvOnj2L9957T+6Q6D+YVJTh/PnzKCwsRI0aNaRf+01Ry5YtAQAnT56UORIiItKHRYsW4c8//4S9vb00YRhRVeTp6YnVq1cDAL788kts3LhR5oioOCYVZVD/sh8cHGzSY3yHhIQAYFJBRFQVnTlzBh9++CEAYMmSJahVq5bMERHpV9++fTFp0iQAwIgRI6T+ryQ/JhVlKJ5UmDJ1TcX58+fZ/pCIqArJy8vDiy++iPz8fISHh+Pll1+WOyQig5g3bx66d++OrKwsDBgwAA8ePJA7JAKTijLFxsYCMN1O2mq1a9eGq6srCgsLcfbsWbnDISIiHZk2bRrOnj0LNzc3rFixwqRr1Ym0YWlpiXXr1sHf3x/Xr1/H0KFDUVhYKHdY1R6TilIUFhbi9OnTAEy/pkKhUEhNoE6cOCFzNEREpAt79uzBZ599BgBYsWIFPDw8ZI6IyLBq1qyJzZs3w87ODnv27MEbb7zBifFkxqSiFGfOnEF2djYcHR1Ndo6K4tRNoP7++2+ZIyEiosq6efMmnn/+eQghMHbsWAwYMEDukIhk0axZM/z4449QKBRYvnw5ZsyYIXdI1RqTilIcOXIEANC+fXuYmZn+JerQoQMA4NChQzJHQkRElZGbm4tnnnkG9+/fR6tWrfDll1/KHRKRrAYNGoSvv/4aADBr1ixpvhYyPNP/xqwHhw8fBgB07NhR5kh0o1OnTlAoFLhy5QoSExPlDoeIiCpACIHx48fj5MmTcHV1xYYNGzjJHRGA1157DbNmzQIAvPXWW/jxxx9ljqh6YlJRCnVNhfoXflPn7OwsTYJ38OBBmaMhIqKKWLRoEVavXg0zMzOsWbMGderUkTskIqPx4Ycf4s033wQAjBw5Et9//73MEVU/TCr+Iy4uDgkJCbCwsEDbtm3lDkdnunTpAgA4cOCAzJEQEZG2fvrpJ7zzzjsAgM8++ww9e/aUOSIi46JQKLB48WKMHz9e6m/01VdfyR1WtcKk4j92794N4FF/Cnt7e5mj0Z2uXbsCAPbv3y9zJEREpI2oqCiMHj0aADBp0iS8/fbbMkdEZJzMzMywdOlSaXK8N954A3PmzOGoUAbCpOI/1ElFr169ZI5Etzp37gwAOHfuHPtVEBGZiKNHj+LZZ59FYWEhXnjhBXz22Wecj4LoMRQKBRYsWCDNNP/BBx9gzJgxyM/Plzmyqo9JRTGFhYXYt28fgKqXVLi5uaFNmzYAgG3btskcDRERPUlMTAx69eqFnJwc9O7dGytXrqwSIxIS6ZtCocDHH3+ML774AmZmZli1ahV69eqFe/fuyR1alca7UzH79+9HWloaatasiVatWskdjs71798fAPDHH3/IHAkRET3O9u3b0bdvX2RnZ6NXr174/fffYWVlJXdYRCbljTfewLZt2+Do6IgDBw6gdevWOHbsmNxhVVlMKorZsGEDAGDgwIGwsLCQORrdUycVu3fvRnZ2tszREBFRadasWYOBAwfi4cOHePrpp7FlyxbY2dnJHRaRSerTpw+OHj2KunXr4saNG+jUqRM+/fRTqFQquUOrcphU/L+ioiJs3LgRAPDss8/KHI1+tGjRAv7+/sjJycGWLVvkDoeIiIpRqVT44IMPMGzYMBQUFGDo0KFYv34956IgqqTGjRvjxIkTGDJkCAoLCzF58mT06dMHN2/elDu0KoVJxf/bvXs3kpKS4OLiUmWH6lMoFHjxxRcBPBqekIiIjENGRgYGDhyIOXPmAADeffdd/Pzzz7C0tJQ5MqKqwdnZGWvWrMGKFStgY2OD3bt3o0mTJliyZAmKiorkDq9KYFLx/7777jsAwEsvvVSl262+8MILAICdO3fi9u3bMkdDRERHjx5Fy5YtsXXrViiVSvz444/49NNPYW5uLndoRFWKQqHA2LFjcfLkSXTu3BnZ2dl4++230a5dOxw+fFju8EwekwoAd+7cwebNmwEAY8aMkTka/QoMDETnzp1RVFSEr7/+Wu5wiIiqrfz8fHzwwQfo1KkT4uLi4OPjg4MHD0o1ykSkHw0bNkRMTAy++eYbODk54fjx4+jUqROeeeYZXL58We7wTBaTCgALFy5EYWEhOnfujObNm8sdjt5NnDgRAPDNN9+wwzYRkQxiYmLQqlUrzJkzByqVCi+++CLOnDmD1q1byx0aUbVgZmaGV155BZcuXcK4ceNgZmaGjRs3okmTJnjppZdw7tw5uUM0OdU+qUhKSsLy5csBAO+//77M0RjGgAEDUK9ePdy/fx9LliyROxwiomrjxo0bGDx4MLp3746zZ8+iRo0aWLduHX788Uc4OzvLHR5RtePp6Ylvv/0WZ8+eRf/+/VFUVISffvoJzZo1w9NPP409e/ZwpKhyqvZJxZQpU5CTk4M2bdogLCxM7nAMwtzcHB9//DEAYP78+Zxhm4hIz65fv45XX30VDRo0wPr162FmZobXX38dV65cwXPPPSd3eETVXuPGjbF161b8/fffeO6556BQKLB161b06tULDRo0wPz583Hnzh25wzRqCiGEkDuIJ8nIyICTkxPS09Ph6Oios/3u3r0bvXv3BgD8+eefaNu2rc72bexUKhXatWuHv//+G+Hh4di8eTMUCoXcYRGRDPR1jzUEY45dCIE///wTS5cuxZo1a6QRZnr06IHFixdXi+a2RKbqypUr+Pzzz/HTTz8hIyMDwKOO3l26dMGQIUMwaNAgeHl5yRyl/mlzj622ScXNmzfRtm1bJCcnY/z48dWy0/LZs2cREhKCgoICfPbZZ3jnnXfkDomIZGDMX8yfxBhjv3PnDtatW4cVK1bg/Pnz0vo+ffpIHbOJyDRkZ2dj7dq1+P7773HkyBGN94KDg/HUU0+hd+/eaNOmTZWcU0abe2yFmj8tXboUfn5+sLa2Rtu2bfHXX389tvy6devQsGFDWFtbo1mzZti+fXtFDqszN2/eRO/evZGcnIxmzZph4cKFssYjl+Ln/t5771XLxIqIdMvUnw8VIYTAhQsXsHjxYnTq1Am1a9fGxIkTcf78edjY2GDUqFE4fvw4duzYwYSCyMTY2dnh5ZdfxuHDh3Hz5k189tlnaNOmDQDg1KlT+OSTT9C1a1c4OzujS5cueP/99/H777/j5s2bMIHf7XVLaGnNmjXCyspKrFy5Upw/f16MGzdOODs7i+Tk5FLLHz58WJibm4tPP/1UXLhwQXz44YfC0tJSnD17ttzHTE9PFwBEenq6tuGWsHXrVuHq6ioAiDp16ohbt25Vep+mTKVSiYkTJwoAAoB47bXXREZGhtxhEZEB6eoea+rPh/LKz88XJ06cEMuWLRMvvvii8PLyku6h6qVdu3biq6++EqmpqQaLi4gMJykpSaxevVoMHTpUeHh4lLgHABA1a9YUXbp0EePHjxdffvmliIqKElevXhX5+flyh19u2txjtW7+1LZtW7Ru3RpfffUVgEdt8318fPDGG29gypQpJcoPHToU2dnZ+OOPP6R17dq1Q4sWLaRRl56kstXbWVlZ2LVrF5YuXYp9+/YBAFq2bIlNmzbBx8dH6/1VNUIIzJo1CzNmzAAAuLu7IyIiAs8//zzq168vb3BEpHe6akJkis+HxyksLMSNGzdw9epVXLx4EefOncPZs2dx7tw5PHz4UKOstbU1OnfujKeffhqDBg1CrVq1dBoLERkvIQSuXbuGAwcO4NixYzh+/DjOnj2LwsLCUsubm5vD29sbPj4+8PHxgbe3Nzw9PeHp6Qk3Nze4urqiZs2aqFGjBhwdHWFmJt+4StrcYy202XF+fj5OnDiBqVOnSuvMzMwQGhqKo0ePlrrN0aNHMWnSJI11YWFh2LRpkzaHBgCcO3cONjY2KCoqKnUpLCxERkYG7t+/j/v37yMuLg4XLlzAyZMnUVBQAACwtLTExIkTMWPGDNja2modQ1WkUCgwffp0dOrUCa+88gquX7+OadOmYdq0afDz80OLFi0QGBgIDw8PuLu7w9HREdbW1lAqlbC2toaVlZXUybv4n6WtK+1PIpJXVlZWpfch9/OhIh4+fIhbt24hISEBt27dwq1bt3Dz5k3cuHEDN27cwM2bN8v8UuDk5IQ2bdqgbdu26NGjB9q3b18l21MT0ZMpFArUr18f9evXlyZRfvjwIS5evIjz58/j3LlzuHjxIuLi4hAXFyfde27dulWufTs4OMDJyQn29vZwcHCAvb097OzsYGtrC1tbW1hbW8PGxkb6TqZUKmFlZQVLS0vpz5o1a2LAgAF6vQ5aJRX37t1DUVERPDw8NNZ7eHjg0qVLpW6TlJRUavmkpKQyj5OXl4e8vDzptbrXfceOHbUJV4Ovry+ef/55vPbaa/Dz86vwfqqynj174tKlS1i7di0iIyOxf/9+6eFKRPQ4cj8fKuL7779HRETEY8tYW1sjICAAgYGBaNq0KZo1a4ZmzZohICBA1l8Pici4WVtbIzg4GMHBwRrrVSoVkpKSNH7QSEpKkpZ79+5JS25uLoQQyMjIqNS9DgAaNWpkXEmFocydOxczZ84ssd7NzQ2WlpYwNzcvc3F0dJSqjHx9fdGwYUO0bNkS9erV4y/j5WBpaYkXX3wRL774ItLT03Hy5EmcOXMG169fR0pKCpKTk5GVlSU92B8+fIj8/HypM1LxP8v6e/E/iUh+QgikpaXJHUa5lPV8qAgfHx/Y2dlJTRB8fHzg6+sLPz8/+Pn5oW7duvD29mbyQEQ6Y2ZmBm9vb3h7ez9xKoO8vDykp6cjLS0N6enpyMzMRFZWFjIzM5Gbm4ucnBxkZ2cjLy8Pubm5ePjwIfLy8pCfn4+8vDwUFBRIS+3atfV+blolFa6urjA3N0dycrLG+uTkZHh6epa6jaenp1blAWDq1KkaVeIZGRnw8fHBtWvXjGbIwOrAyckJ3bt3R/fu3eUOhYj0SN1mtjLkfj5URP/+/ZGZmckfnIjIKCmVSri7u8Pd3V3uUMpFq59frKysEBISgr1790rrVCoV9u7di/bt25e6Tfv27TXKA48mnSurPPDoIjo6OmosRERkvEzx+WBmZsaEgohIR7Ru/jRp0iSMHDkSrVq1Qps2bbBkyRJkZ2dj9OjRAIARI0agVq1amDt3LgDgrbfeQteuXbFw4UL069cPa9aswfHjx/Htt9/q9kyIiEhWfD4QEVVfWicVQ4cOxd27dzFt2jQkJSWhRYsWiIqKkjrbJSQkaLQ/7dChA3755Rd8+OGHeP/991G/fn1s2rQJTZs21d1ZEBGR7Ph8ICKqvrSep0IO+hyHnIioujPle6wpx05EZOy0ucdySAsiIiIiIqoUJhVERERERFQpTCqIiIiIiKhSmFQQEREREVGlMKkgIiIiIqJKYVJBRERERESVwqSCiIiIiIgqRevJ7+SgnkojIyND5kiIiKoe9b3VBKYtKoHPByIi/dHm+WASScX9+/cBAD4+PjJHQkRUdWVmZsLJyUnuMLSSmZkJgM8HIiJ9Ks/zwSRm1E5LS4OLiwsSEhJM7oH3XxkZGfDx8cGtW7dMfvbXqnQuQNU6H56LcTLWcxFCIDMzE97e3jAzM61WsSqVCnfu3IGDgwMUCoXW2xvrZ2IKeO0qjteu4njtKkfb66fN88EkairUJ+Hk5FRl/gE5OjryXIxUVTofnotxMsZzMdUfbMzMzFC7du1K78cYPxNTwWtXcbx2FcdrVznaXL/yPh9M6ycpIiIiIiIyOkwqiIiIiIioUkwiqVAqlZg+fTqUSqXcoVQaz8V4VaXz4bkYp6p0LlUFP5OK47WrOF67iuO1qxx9Xj+T6KhNRERERETGyyRqKoiIiIiIyHgxqSAiIiIiokphUkFERERERJUiS1KxdOlS+Pn5wdraGm3btsVff/312PLr1q1Dw4YNYW1tjWbNmmH79u0a7wshMG3aNHh5ecHGxgahoaG4evWqPk9Bgzbns2LFCnTu3BkuLi5wcXFBaGhoifKjRo2CQqHQWPr06aPv0wCg3blERkaWiNPa2lqjjJyfjTbn0q1btxLnolAo0K9fP6mMXJ/LgQMHEB4eDm9vbygUCmzatOmJ28TExKBly5ZQKpUICAhAZGRkiTLa/j/UBW3P5ffff0evXr3g5uYGR0dHtG/fHjt37tQoM2PGjBKfS8OGDfV4Fv/S9nxiYmJK/XeWlJSkUU6Oz6Yq0/UzpzrR9TOhutDXfbs60Nd9tTqYO3cuWrduDQcHB7i7u2PgwIG4fPnyE7fT1T3P4EnF2rVrMWnSJEyfPh0nT55EUFAQwsLCkJKSUmr5I0eOYNiwYRgzZgxOnTqFgQMHYuDAgTh37pxU5tNPP8UXX3yB5cuX49ixY7Czs0NYWBgePnxodOcTExODYcOGITo6GkePHoWPjw969+6N27dva5Tr06cPEhMTpeXXX381unMBHk2eUjzOmzdvarwv12ej7bn8/vvvGudx7tw5mJubY/DgwRrl5PhcsrOzERQUhKVLl5arfHx8PPr164fu3bsjNjYWEydOxNixYzW+jFfks9YFbc/lwIED6NWrF7Zv344TJ06ge/fuCA8Px6lTpzTKNWnSRONzOXTokD7CL0Hb81G7fPmyRrzu7u7Se3J9NlWVPp451YU+ngnVhT7u29WFPu6r1cX+/fsxYcIE/Pnnn9i9ezcKCgrQu3dvZGdnl7mNTu95wsDatGkjJkyYIL0uKioS3t7eYu7cuaWWHzJkiOjXr5/GurZt24pXX31VCCGESqUSnp6e4rPPPpPeT0tLE0qlUvz66696OANN2p7PfxUWFgoHBwexevVqad3IkSPFgAEDdB3qE2l7LqtWrRJOTk5l7k/Oz6ayn8vixYuFg4ODyMrKktbJ9bkUB0Bs3LjxsWXee+890aRJE411Q4cOFWFhYdLryl4fXSjPuZSmcePGYubMmdLr6dOni6CgIN0FVkHlOZ/o6GgBQKSmppZZxhg+m6pE18+c6kTXz4TqSlf37epIV/fV6iolJUUAEPv37y+zjC7veQatqcjPz8eJEycQGhoqrTMzM0NoaCiOHj1a6jZHjx7VKA8AYWFhUvn4+HgkJSVplHFyckLbtm3L3KeuVOR8/isnJwcFBQWoUaOGxvqYmBi4u7sjMDAQ48ePx/3793Ua+39V9FyysrLg6+sLHx8fDBgwAOfPn5fek+uz0cXn8v333+P555+HnZ2dxnpDfy4V8aT/M7q4PnJRqVTIzMws8f/l6tWr8Pb2Rt26dfHCCy8gISFBpgjLp0WLFvDy8kKvXr1w+PBhab0pfzbGSB/PnOpCH88EKhv/3VVeWffV6iw9PR0ASjwzi9Plvz2DJhX37t1DUVERPDw8NNZ7eHiU2fYtKSnpseXVf2qzT12pyPn81+TJk+Ht7a3xgfbp0wc//PAD9u7di/nz52P//v3o27cvioqKdBp/cRU5l8DAQKxcuRKbN2/GTz/9BJVKhQ4dOuCff/4BIN9nU9nP5a+//sK5c+cwduxYjfVyfC4VUdb/mYyMDOTm5urk361cFixYgKysLAwZMkRa17ZtW0RGRiIqKgrLli1DfHw8OnfujMzMTBkjLZ2XlxeWL1+ODRs2YMOGDfDx8UG3bt1w8uRJALq5p9C/9PHMqS708Uygsj3pvk1le9J9tbpSqVSYOHEiOnbsiKZNm5ZZTpf3PAuttyCdmTdvHtasWYOYmBiNzmzPP/+89PdmzZqhefPmqFevHmJiYtCzZ085Qi1V+/bt0b59e+l1hw4d0KhRI3zzzTf4+OOPZYyscr7//ns0a9YMbdq00VhvKp9LVfXLL79g5syZ2Lx5s0Zb2b59+0p/b968Odq2bQtfX1/89ttvGDNmjByhlikwMBCBgYHS6w4dOiAuLg6LFy/Gjz/+KGNkRJVXVZ8JZNx4Xy3dhAkTcO7cOYP1MQQMXFPh6uoKc3NzJCcna6xPTk6Gp6dnqdt4eno+trz6T232qSsVOR+1BQsWYN68edi1axeaN2/+2LJ169aFq6srrl27VumYy1KZc1GztLREcHCwFKdcn01lziU7Oxtr1qwp15dRQ3wuFVHW/xlHR0fY2Njo5LM2tDVr1mDs2LH47bffSlTT/pezszMaNGhgdJ9LWdq0aSPFaoqfjTHTxzOnutDHM4HK9qT7Nmmn+H21OoqIiMAff/yB6Oho1K5d+7FldXnPM2hSYWVlhZCQEOzdu1dap1KpsHfvXo1fN4pr3769RnkA2L17t1Te398fnp6eGmUyMjJw7NixMvepKxU5H+DRiEgff/wxoqKi0KpVqyce559//sH9+/fh5eWlk7hLU9FzKa6oqAhnz56V4pTrs6nMuaxbtw55eXl48cUXn3gcQ3wuFfGk/zO6+KwN6ddff8Xo0aPx66+/agzxW5asrCzExcUZ3edSltjYWClWU/tsjJ0+njnVhT6eCVQ2/rvTreL31epECIGIiAhs3LgR+/btg7+//xO30em/Pa27dlfSmjVrhFKpFJGRkeLChQvilVdeEc7OziIpKUkIIcRLL70kpkyZIpU/fPiwsLCwEAsWLBAXL14U06dPF5aWluLs2bNSmXnz5glnZ2exefNmcebMGTFgwADh7+8vcnNzje585s2bJ6ysrMT69etFYmKitGRmZgohhMjMzBTvvPOOOHr0qIiPjxd79uwRLVu2FPXr1xcPHz40qnOZOXOm2Llzp4iLixMnTpwQzz//vLC2thbnz5/XOF85Phttz0WtU6dOYujQoSXWy/m5ZGZmilOnTolTp04JAGLRokXi1KlT4ubNm0IIIaZMmSJeeuklqfz169eFra2tePfdd8XFixfF0qVLhbm5uYiKipLKPOn6GMu5/Pzzz8LCwkIsXbpU4/9LWlqaVOZ///ufiImJEfHx8eLw4cMiNDRUuLq6ipSUFL2eS0XOZ/HixWLTpk3i6tWr4uzZs+Ktt94SZmZmYs+ePVIZuT6bqkofz5zqQh/PhOpCH/ft6kIf99XqYvz48cLJyUnExMRoPDNzcnKkMvq85xk8qRBCiC+//FLUqVNHWFlZiTZt2og///xTeq9r165i5MiRGuV/++030aBBA2FlZSWaNGkitm3bpvG+SqUSH330kfDw8BBKpVL07NlTXL582RCnIoTQ7nx8fX0FgBLL9OnThRBC5OTkiN69ews3NzdhaWkpfH19xbhx4wz2hUKbc5k4caJU1sPDQzz11FPi5MmTGvuT87PR9t/ZpUuXBACxa9euEvuS83NRD5f330Ud/8iRI0XXrl1LbNOiRQthZWUl6tatK1atWlViv4+7PsZyLl27dn1seSEeDbvo5eUlrKysRK1atcTQoUPFtWvX9H4uFTmf+fPni3r16glra2tRo0YN0a1bN7Fv374S+5Xjs6nKdP3MqU50/UyoLvR1364O9HVfrQ5Ku24ANP4t6fOep/j/IIiIiIiIiCrE4DNqExERERFR1cKkgoiIiIiIKoVJBRERERERVQqTCiIiIiIiqhQmFUREREREVClMKoiIiIiIqFKYVBARERERUaUwqSAiIiIiokphUkEEICYmBgqFAmlpabIcf+/evWjUqBGKioqeWDYqKgotWrSASqUyQGRUEQcOHEB4eDi8vb2hUCiwadMm2Y83Y8YMNGzYEHZ2dnBxcUFoaCiOHTum17iIdEkIgVdeeQU1atSAQqFAbGys3CEZrfz8fAQEBODIkSM63S+fP4ZX2efJw4cPMWrUKDRr1gwWFhYYOHDgY8sfPnwYFhYWaNGihdaxMqmgaqdbt26YOHGixroOHTogMTERTk5OssT03nvv4cMPP4S5ufkTy/bp0weWlpb4+eefDRAZVUR2djaCgoKwdOlSozlegwYN8NVXX+Hs2bM4dOgQ/Pz80Lt3b9y9e9cgMRJVVlRUFCIjI/HHH38gMTERTZs2lTsko7V8+XL4+/ujQ4cO0rqyvpCOGjXqiV801fj8MbzKPk+KiopgY2ODN998E6GhoY8tm5aWhhEjRqBnz54VOhaTCiIAVlZW8PT0hEKhMPixDx06hLi4ODz77LPl3mbUqFH44osv9BgVVUbfvn0xe/ZsDBo0qNT38/Ly8M4776BWrVqws7ND27ZtERMTo7fjAcDw4cMRGhqKunXrokmTJli0aBEyMjJw5syZCh+XyJDi4uLg5eWFDh06wNPTExYWFiXK5OfnyxCZcRFC4KuvvsKYMWP0sn8+fwyrss8TOzs7LFu2DOPGjYOnp+djj/Xaa69h+PDhaN++fYViZVJB1cqoUaOwf/9+fP7551AoFFAoFLhx40aJ5k+RkZFwdnbGH3/8gcDAQNja2uK5555DTk4OVq9eDT8/P7i4uODNN9/UaLJUkS+La9asQa9evWBtbS2tO336NLp37w4HBwc4OjoiJCQEx48fl94PDw/H8ePHERcXp9PrQ4YRERGBo0ePYs2aNThz5gwGDx6MPn364OrVqwY5fn5+Pr799ls4OTkhKCjIIMckqoxRo0bhjTfeQEJCAhQKBfz8/AA8qnmOiIjAxIkT4erqirCwMADAuXPn0LdvX9jb28PDwwMvvfQS7t27J+0vOzsbI0aMgL29Pby8vLBw4cIStdil/bLv7OyMyMhI6fWtW7cwZMgQODs7o0aNGhgwYABu3LihEffAgQOxYMECeHl5oWbNmpgwYQIKCgqkMnl5eZg8eTJ8fHygVCoREBCA77//HkIIBAQEYMGCBRoxxMbGQqFQ4Nq1a6VeqxMnTiAuLg79+vXT4go/cuPGDenZWHzp1q2bVIbPH+Oiq+fJqlWrcP36dUyfPr3CsTCpoGrl888/R/v27TFu3DgkJiYiMTERPj4+pZbNycnBF198gTVr1iAqKgoxMTEYNGgQtm/fju3bt+PHH3/EN998g/Xr10vbVOQ/98GDB9GqVSuNdS+88AJq166Nv//+GydOnMCUKVNgaWkpvV+nTh14eHjg4MGDlbwiZGgJCQlYtWoV1q1bh86dO6NevXp455130KlTJ6xatUqvx/7jjz9gb28Pa2trLF68GLt374arq6tej0mkC59//jlmzZqF2rVrIzExEX///bf03urVq2FlZYXDhw9j+fLlSEtLQ48ePRAcHIzjx48jKioKycnJGDJkiLTNu+++i/3792Pz5s3YtWsXYmJicPLkSa1iKigoQFhYGBwcHHDw4EEcPnwY9vb26NOnj0aNSXR0NOLi4hAdHY3Vq1cjMjJSIzEZMWIEfv31V3zxxRe4ePEivvnmG9jb20OhUODll18ucV9YtWoVunTpgoCAgFLjOnjwIBo0aAAHBwetzgcAfHx8pGdjYmIiTp06hZo1a6JLly5SGT5/jIeunidXr17FlClT8NNPP5VaA1heFd+SyAQ5OTnBysoKtra2T6wGLCgowLJly1CvXj0AwHPPPYcff/wRycnJsLe3R+PGjdG9e3dER0dj6NCh0n/uhIQEeHt7AwDeeecdREVFYdWqVZgzZ06px7l586ZUXi0hIQHvvvsuGjZsCACoX79+ie28vb1x8+ZNra8Byevs2bMoKipCgwYNNNbn5eWhZs2aAIBLly6hUaNGj93P5MmTMW/ePK2O3b17d8TGxuLevXtYsWIFhgwZgmPHjsHd3V27kyAyMCcnJzg4OMDc3LzEvbt+/fr49NNPpdezZ89GcHCwxj135cqV8PHxwZUrV+Dt7Y3vv/8eP/30k9R2fPXq1ahdu7ZWMa1duxYqlQrfffed1HR21apVcHZ2RkxMDHr37g0AcHFxwVdffQVzc3M0bNgQ/fr1w969ezFu3DhcuXIFv/32G3bv3i21d69bt650jFGjRmHatGn466+/0KZNGxQUFOCXX34pUXtRXGnPFLVhw4aV6LuXl5cn1WoUv74PHz7EwIED0b59e8yYMUNjGz5/jEN5nidPUlRUhOHDh2PmzJkl9qMtJhVEZbC1tZUSCgDw8PCAn58f7O3tNdalpKQAqPh/7tzcXI2mTwAwadIkjB07Fj/++CNCQ0MxePBgjVgAwMbGBjk5ORU+P5JHVlYWzM3NceLEiRIPd/W/rbp16+LixYuP3U95HxjF2dnZISAgAAEBAWjXrh3q16+P77//HlOnTtV6X0TGIiQkROP16dOnER0drXGvVouLi0Nubi7y8/PRtm1baX2NGjUQGBio1XFPnz6Na9eulagRePjwoUbToCZNmmj8X/fy8sLZs2cBPGrKZG5ujq5du5Z6DG9vb/Tr1w8rV65EmzZtsHXrVuTl5WHw4MFlxlXaM0Vt8eLFJTrrTp48udSRB19++WVkZmZi9+7dMDPTbNjC549xKM/z5EkyMzNx/PhxnDp1ChEREQAAlUoFIQQsLCywa9cu9OjRo1z7YlJBVIbizY2AR+1rS1unHlqvov+5XV1dkZqaqrFuxowZGD58OLZt24YdO3Zg+vTpWLNmjUZHrQcPHsDNza1C50byCQ4ORlFREVJSUtC5c+dSy1hZWf1fe3cX0tQfxgH8a+J0WhqxtBXpenEGku3YTXf2QgWCmUQvYk3L3iDJLKQisIgiFMIuyuimdVtkRdGLF9lqBekGhZiYMWakKDQn5WJMaM//Iv4H11Knm9X/7/cDXpzD75zz28GdZ8/5Ped31FGqqRQIBOD3+6f8OERTKSkpKWjZ6/WioKAAtbW1IW31ev2ozyL8LCYmBiIStG7ksxBerxcrV6785UxII6/NY8UNrVY7bj/27t2LXbt2ob6+HhaLBdu3b0diYuKo7XU6nZq0/GzevHkhZVOzZs0KmU793LlzaGpqQmtr6y/LqBh//g7hxJPxJCcnh/y/NDQ0oLm5Gbdv38aiRYvC3heTCpp2NBpNWO+DmKjJfrkVRUFHR0fIeqPRCKPRiKqqKhQXF8NisahJxb93whRFiVr/KXq8Xm/QDxeXy4W3b99izpw5MBqNKCkpgdlsxsWLF6EoCj5//oynT58iJydnUg9XjnW89PR0fPv2DefPn8emTZug1+vhdrtx5coV9Pb2jnnHk+i/KDc3F42NjTAYDL+sD1+yZAni4uLQ0tKC9PR0AMDg4CC6urqCRgzmzp2Lvr4+dfnDhw9Bd+dzc3Nx8+ZNpKamIjk5eVJ9Xb58OQKBAJ4/fz7qdJ/5+fnqDD5PnjzBixcvxtynoii4evUqRGRSMxo2Njbi7NmzePz4ccgIOcD487tFI550dHRgeHgYHo8HQ0ND6jteTCYTZsyYETI9c2pqKhISEiY8bTMf1KZpx2AwoKWlBd3d3XC73VF7ic/IL/edO3fgcrnQ2tqKCxcu4OHDh6Nut3HjRrx8+VJd9vl8qKiogNVqxcePH/Hq1SvY7fagGvvXr18jPj5+0tO+0dRyOBxQFEUNukePHoWiKKipqQHwo+7abDbj2LFjyMrKwubNm2G329UfONE+XmxsLDo7O7FlyxYYjUYUFBRgYGAANpsN2dnZUfjERH+PQ4cOwePxoLi4GHa7HU6nE01NTdi9eze+f/+OmTNnory8HNXV1WhubkZ7ezvKyspCSnzWrl2Ly5cv482bN3A4HDh48GDQqENJSQl0Oh0KCwths9ngcrlgtVpx+PBh9PT0hNVXg8GA0tJS7NmzB/fu3VP3cevWLbVNbGwsysrKcPLkSWRmZo573V+zZg28Xi/evXs3gbP2Q3t7O8xmM44fP47s7Gz09/ejv78fHo9HbcP483tFI57k5+dDURQ8ePAAVqs1aH9RJUTTzPv372XVqlWi1WoFgLhcLnn27JkAkMHBQRERsVgskpKSErTd6dOnZcWKFUHrSktLpbCwUF0eHh6WmpoaMRgMEhcXJ3q9XoqKiqStrW3U/gwMDEhCQoJ0dnaKiIjf75cdO3bIwoULRaPRyPz586WiokJ8Pp+6zf79++XAgQMRnQciov+S+vp6ycjICFqXl5cnlZWVIW27urqkqKhIZs+eLVqtVpYtWyZHjhyRQCAgIiJDQ0Oyc+dOSUxMlLS0NKmrqwvZV29vr2zYsEGSkpIkMzNTHj16JCkpKWKxWNQ2fX19YjabRafTSXx8vCxevFj27dsnX758EZHQGCEiUllZKXl5eeqyz+eTqqoq0ev1otFoZOnSpXL9+vWgbZxOpwCQurq6sM7Vtm3b5MSJE0HrAMjdu3dD2o7so8ViEQAhfyP7y/hDo4kR+algkIh+u+rqanz9+hXXrl0bt63b7UZWVhYcDseEah2JiGh0q1evhslkwqVLl/50V0LYbDasW7cOnz59Qlpa2rjt29rasH79ejidzrAf2A0H4w+NheVPRH+BU6dOISMjI6xSrO7ubjQ0NPCCTkT0P+f3+9HT04MzZ85g69atYSUUAJCTk4Pa2lq4XK6o9ofxh8bCkQoiIiKa9v7GkYobN26gvLwcJpMJ9+/fx4IFC/50l4hGxaSCiIiIiIgiwvInIiIiIiKKCJMKIiIiIiKKCJMKIiIiIiKKCJMKIiIiIiKKCJMKIiIiIiKKCJMKIiIiIiKKCJMKIiIiIiKKCJMKIiIiIiKKCJMKIiIiIiKKyD8eMByMgSBERAAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxUAAAGGCAYAAAANcKzOAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAACRn0lEQVR4nOzdd3wT9f8H8Fe60j2gG0pbKJRdStl7FApCBVRAUBkCKlIV+aqAgyUylOVAUBSKEwRkCZTZskUZZc9SKEIHo7ulK5/fH/xyNraFpk1ySft6Ph73gFw+d/e+C9zlnc9SCCEEiIiIiIiIKshM7gCIiIiIiMi0MakgIiIiIqJKYVJBRERERESVwqSCiIiIiIgqhUkFERERERFVCpMKIiIiIiKqFCYVRERERERUKUwqiIiIiIioUphUEBERERFRpTCpIDJxCoUCM2bMkF5HRkZCoVDgxo0bBjm+n58fRo0aZZBjERERkXFiUkFUDXz99deIjIyUOwwiIpLRhQsXMGPGDIP96ETVC5MKoirmpZdeQm5uLnx9faV1TCqIiOjChQuYOXMmkwrSCyYVZPIKCwuRn58vdxhGw9zcHNbW1lAoFHKHQkRkNPis0I4QArm5uXKHQSaESQVVWGZmJiZOnAg/Pz8olUq4u7ujV69eOHnypEa5devWISQkBDY2NnB1dcWLL76I27dva5Tp1q0bunXrVuIYo0aNgp+fn/T6xo0bUCgUWLBgAZYsWYJ69epBqVTiwoULAIBLly5hyJAhcHNzg42NDQIDA/HBBx9o7PP27dt4+eWX4eHhAaVSiSZNmmDlypXlOudVq1ahR48ecHd3h1KpROPGjbFs2bIS5fz8/NC/f3/ExMSgVatWsLGxQbNmzRATEwMA+P3339GsWTNYW1sjJCQEp06dKnHe9vb2uH79OsLCwmBnZwdvb2/MmjULQojHxvjfPhV+fn44f/489u/fD4VCAYVCIV3rGTNmlJp8lNYvQwiB2bNno3bt2rC1tUX37t1x/vz5UmNIS0vDxIkT4ePjA6VSiYCAAMyfPx8qleqxsRNR1VMdnxW7d+9Gp06d4OzsDHt7ewQGBuL999+X3o+JiYFCocDatWvx/vvvw9PTE3Z2dnj66adx69atEvs7duwY+vTpAycnJ9ja2qJr1644fPhwiXK3b9/GmDFj4O3tDaVSCX9/f4wfPx75+fmIjIzE4MGDAQDdu3eXngfq55L6ubVz507pufXNN99I17K02u7/9ulTP1OuXLmCF198EU5OTnBzc8NHH30EIQRu3bqFAQMGwNHREZ6enli4cGG5rieZBgu5AyDT9dprr2H9+vWIiIhA48aNcf/+fRw6dAgXL15Ey5YtATz6cjp69Gi0bt0ac+fORXJyMj7//HMcPnwYp06dgrOzc4WOvWrVKjx8+BCvvPIKlEolatSogTNnzqBz586wtLTEK6+8Aj8/P8TFxWHr1q345JNPAADJyclo164dFAoFIiIi4Obmhh07dmDMmDHIyMjAxIkTH3vcZcuWoUmTJnj66adhYWGBrVu34vXXX4dKpcKECRM0yl67dg3Dhw/Hq6++ihdffBELFixAeHg4li9fjvfffx+vv/46AGDu3LkYMmQILl++DDOzf/P8oqIi9OnTB+3atcOnn36KqKgoTJ8+HYWFhZg1a1a5r9WSJUvwxhtvwN7eXnpoenh4lHt7tWnTpmH27Nl46qmn8NRTT+HkyZPo3bt3iV/+cnJy0LVrV9y+fRuvvvoq6tSpgyNHjmDq1KlITEzEkiVLtD42EZmu6vasOH/+PPr374/mzZtj1qxZUCqVuHbtWqlJwCeffAKFQoHJkycjJSUFS5YsQWhoKGJjY2FjYwMA2LdvH/r27YuQkBBMnz4dZmZm0g9cBw8eRJs2bQAAd+7cQZs2bZCWloZXXnkFDRs2xO3bt7F+/Xrk5OSgS5cuePPNN/HFF1/g/fffR6NGjQBA+hMALl++jGHDhuHVV1/FuHHjEBgYWKHrPnToUDRq1Ajz5s3Dtm3bMHv2bNSoUQPffPMNevTogfnz5+Pnn3/GO++8g9atW6NLly4VOg4ZGUFUQU5OTmLChAllvp+fny/c3d1F06ZNRW5urrT+jz/+EADEtGnTpHVdu3YVXbt2LbGPkSNHCl9fX+l1fHy8ACAcHR1FSkqKRtkuXboIBwcHcfPmTY31KpVK+vuYMWOEl5eXuHfvnkaZ559/Xjg5OYmcnJzHnnNp74eFhYm6detqrPP19RUAxJEjR6R1O3fuFACEjY2NRozffPONACCio6M1zhuAeOONNzTOo1+/fsLKykrcvXtXWg9ATJ8+XXq9atUqAUDEx8dL65o0aVLq9Z0+fboo7Tbw332kpKQIKysr0a9fP43r+f777wsAYuTIkdK6jz/+WNjZ2YkrV65o7HPKlCnC3NxcJCQklDgeEVVd1e1ZsXjxYgFA4z79X9HR0QKAqFWrlsjIyJDW//bbbwKA+Pzzz6WY6tevL8LCwjTiy8nJEf7+/qJXr17SuhEjRggzMzPx999/lzieett169aVeN6oqZ9bUVFRGuvV13LVqlUltvnv80f9THnllVekdYWFhaJ27dpCoVCIefPmSetTU1OFjY2NxvODTBubP1GFOTs749ixY7hz506p7x8/fhwpKSl4/fXXYW1tLa3v168fGjZsiG3btlX42M8++yzc3Nyk13fv3sWBAwfw8ssvo06dOhpl1c17hBDYsGEDwsPDIYTAvXv3pCUsLAzp6eklquP/S/3LEQCkp6fj3r176Nq1K65fv4709HSNso0bN0b79u2l123btgUA9OjRQyNG9frr16+XOF5ERITGeURERCA/Px979ux5bJy6tmfPHuTn5+ONN97QaC5V2q9169atQ+fOneHi4qJxjUNDQ1FUVIQDBw4YMHIiklt1e1aoa1U2b978xCafI0aMgIODg/T6ueeeg5eXF7Zv3w4AiI2NxdWrVzF8+HDcv39fiiM7Oxs9e/bEgQMHoFKpoFKpsGnTJoSHh6NVq1YljlPePnb+/v4ICwsrV9nHGTt2rPR3c3NztGrVCkIIjBkzRlrv7OyMwMDAUp99ZJqYVFCFffrppzh37hx8fHzQpk0bzJgxQ+PmcPPmTQAotfq0YcOG0vsV4e/vr/FafdymTZuWuc3du3eRlpaGb7/9Fm5ubhrL6NGjAQApKSmPPe7hw4cRGhoKOzs7ODs7w83NTWon+9+k4r8PLCcnJwCAj49PqetTU1M11puZmaFu3boa6xo0aAAABh+5Q/1Z1a9fX2O9m5sbXFxcNNZdvXoVUVFRJa5xaGgogCdfY6KKOnDgAMLDw+Ht7Q2FQoFNmzbJfrxRo0ZJbdfVS58+ffQal7Gpbs+KoUOHomPHjhg7diw8PDzw/PPP47fffis1wfjvPVWhUCAgIEC6x1+9ehUAMHLkyBKxfPfdd8jLy0N6ejru3r2LjIyMx55Xefz3elVUac8/a2truLq6llj/32cfmS72qaAKGzJkCDp37oyNGzdi165d+OyzzzB//nz8/vvv6Nu3r1b7UigUpXZALioqKrV88RqD8lLf0F988UWMHDmy1DLNmzcvc/u4uDj07NkTDRs2xKJFi+Dj4wMrKyts374dixcvLvHAMDc3L3U/Za0v7fz1raxfr8q67uWhUqnQq1cvvPfee6W+r06MiHQtOzsbQUFBePnll/HMM88YzfH69OmDVatWSa+VSqXeYzMm1e1ZYWNjgwMHDiA6Ohrbtm1DVFQU1q5dix49emDXrl1lPgMeF8tnn32GFi1alFrG3t4eDx48KPc+H6e061WR50Rp52hMzz7SDyYVVCleXl54/fXX8frrryMlJQUtW7bEJ598gr59+0rzJFy+fBk9evTQ2O7y5csa8yi4uLiUWgVa3l+o1L/onzt3rswybm5ucHBwQFFRkfSruTa2bt2KvLw8bNmyReNXmOjoaK33VR4qlQrXr1/X+BJ+5coVANAY5aQ8ynooqGsZ0tLSNDpC/ve6qz+rq1evatSe3L17t8SvTPXq1UNWVlaFrjFRZfTt2/exX1Lz8vLwwQcf4Ndff0VaWhqaNm2K+fPnlzqakC6Op6ZUKuHp6VmhY1QV1elZATyqae7Zsyd69uyJRYsWYc6cOfjggw8QHR2tsU91TYSaEALXrl2TkpZ69eoBABwdHR8bi5ubGxwdHR97XkD5m0EVV/w5UVxlapCoamLzJ6qQoqKiEs193N3d4e3tjby8PABAq1at4O7ujuXLl0vrAGDHjh24ePEi+vXrJ62rV68eLl26hLt370rrTp8+XepoGaVxc3NDly5dsHLlSiQkJGi8p/4VxNzcHM8++yw2bNhQ6o23+LFLo/6VpfivKunp6Rq/QOraV199Jf1dCIGvvvoKlpaW6Nmzp1b7sbOzK/FAAP59YBXv55CdnY3Vq1drlAsNDYWlpSW+/PJLjfMvbSSnIUOG4OjRo9i5c2eJ99LS0lBYWKhV7ES6EhERgaNHj2LNmjU4c+YMBg8ejD59+pT4YqdrMTExcHd3R2BgIMaPH4/79+/r9XjGpDo+K0qrNVDXMhQ/PwD44YcfkJmZKb1ev349EhMTpWQ1JCQE9erVw4IFC5CVlVVmLGZmZhg4cCC2bt2K48ePlyinPjc7OzsAJROEx3F0dISrq2uJ/nBff/11ufdB1QNrKqhCMjMzUbt2bTz33HMICgqCvb099uzZg7///lsad9rS0hLz58/H6NGj0bVrVwwbNkwaJtDPzw9vv/22tL+XX34ZixYtQlhYGMaMGYOUlBQsX74cTZo0QUZGRrli+uKLL9CpUye0bNkSr7zyCvz9/XHjxg1s27YNsbGxAIB58+YhOjoabdu2xbhx49C4cWM8ePAAJ0+exJ49ex5bhdy7d29YWVkhPDwcr776KrKysrBixQq4u7sjMTGx4hezDNbW1oiKisLIkSPRtm1b7NixA9u2bcP777+v0fGwPEJCQrBs2TLMnj0bAQEBcHd3R48ePdC7d2/UqVMHY8aMwbvvvgtzc3OsXLkSbm5uGg9cNzc3vPPOO5g7dy769++Pp556CqdOncKOHTtKtJF99913sWXLFvTv3x+jRo1CSEgIsrOzcfbsWaxfvx43btwosQ2RviUkJGDVqlVISEiAt7c3AOCdd95BVFQUVq1ahTlz5ujluH369MEzzzwDf39/xMXF4f3330ffvn1x9OhRrZrBmKrq+KyYNWsWDhw4gH79+sHX1xcpKSn4+uuvUbt2bXTq1EmjbI0aNdCpUyeMHj0aycnJWLJkCQICAjBu3DgAj5KF7777Dn379kWTJk0wevRo1KpVC7dv30Z0dDQcHR2xdetWAMCcOXOwa9cudO3aFa+88goaNWqExMRErFu3DocOHYKzszNatGgBc3NzzJ8/H+np6VAqldLcS48zduxYzJs3D2PHjkWrVq1w4MABqeacSGL4AaeoKsjLyxPvvvuuCAoKEg4ODsLOzk4EBQWJr7/+ukTZtWvXiuDgYKFUKkWNGjXECy+8IP75558S5X766SdRt25dYWVlJVq0aCF27txZ5jCBn332WalxnTt3TgwaNEg4OzsLa2trERgYKD766CONMsnJyWLChAnCx8dHWFpaCk9PT9GzZ0/x7bffPvG8t2zZIpo3by6sra2Fn5+fmD9/vli5cmWJIVx9fX1Fv379SmwPoMTQiqWd08iRI4WdnZ2Ii4sTvXv3Fra2tsLDw0NMnz5dFBUVldjnk4aUTUpKEv369RMODg4CgMaQjCdOnBBt27YVVlZWok6dOmLRokWl7qOoqEjMnDlTeHl5CRsbG9GtWzdx7tw54evrW2JIwMzMTDF16lQREBAgrKyshKurq+jQoYNYsGCByM/Pf+J1JqosAGLjxo3Sa/XwpHZ2dhqLhYWFGDJkiBBCiIsXLwoAj10mT55cruOVJS4uTgAQe/bs0cVpGr3q+KzYu3evGDBggPD29hZWVlbC29tbDBs2TGOYbfWQsr/++quYOnWqcHd3FzY2NqJfv34lhroVQohTp06JZ555RtSsWVMolUrh6+srhgwZIvbu3atR7ubNm2LEiBHCzc1NKJVKUbduXTFhwgSRl5cnlVmxYoWoW7euMDc31xhetqznlhCPhrAdM2aMcHJyEg4ODmLIkCEiJSWlzCFl/zucrvqZ9l9du3YVTZo0eez1JNOhEII9ZIiMzahRo7B+/fpSq7uJ6MkUCgU2btyIgQMHAgDWrl2LF154AefPny9RQ2Bvbw9PT0/k5+c/cXjLmjVrllpT+N/jPY6bmxtmz56NV199tdznQ1VLTEwMunfvjnXr1uG5556TOxwinWDzJyIiqvKCg4NRVFSElJQUdO7cudQyVlZWaNiwoV7j+Oeff3D//n14eXnp9ThERIbGpIKIiKqErKwsXLt2TXodHx+P2NhY1KhRAw0aNMALL7yAESNGYOHChQgODsbdu3exd+9eNG/eXKMzsC6OV6dOHWRlZWHmzJl49tln4enpibi4OLz33nsICAjQyQRjRETGhEkFERFVCcePH0f37t2l15MmTQLwaOKwyMhIrFq1CrNnz8b//vc/3L59G66urmjXrh369++vl+OZm5vjzJkzWL16NdLS0uDt7Y3evXvj448/rnZzVRBR1cc+FUREREREVCmcp4KIiIiIiCqFSQUREREREVWKSfSpUKlUuHPnDhwcHCo0xTwREZVNCIHMzEx4e3vDzMy0fmvi84GISH+0eT6YRFJx584d+Pj4yB0GEVGVduvWLdSuXVvuMLTC5wMRkf6V5/lgEkmFg4MDgEcn5OjoKHM0RERVS0ZGBnx8fKR7rSnh84GISH+0eT6YRFKhrtJ2dHTkQ4OISE9MsfkQnw9ERPpXnueDaTWeJSIiIiIio8OkgoiIiIiIKoVJBRERERERVYpJ9KkgInoSlUqF/Px8ucMwWlZWViY3XCxRVcZ7FhkLS0tLmJubV3o/TCqIyOTl5+cjPj4eKpVK7lCMlpmZGfz9/WFlZSV3KETVHu9ZZGycnZ3h6elZqQE7mFQQkUkTQiAxMRHm5ubw8fHhr/GlUE8Ql5iYiDp16pjkKE9EVQXvWWRMhBDIyclBSkoKAMDLy6vC+2JSQUQmrbCwEDk5OfD29oatra3c4RgtNzc33LlzB4WFhbC0tJQ7HKJqi/csMjY2NjYAgJSUFLi7u1e4KZTW6fGBAwcQHh4Ob29vKBQKbNq06YnbxMTEoGXLllAqlQgICEBkZGQFQiUiKqmoqAgA2KznCdTXR329iEgevGeRMVInuAUFBRXeh9ZJRXZ2NoKCgrB06dJylY+Pj0e/fv3QvXt3xMbGYuLEiRg7dix27typdbBERGVhk57H4/UhMi78P0nGRBf/HrVu/tS3b1/07du33OWXL18Of39/LFy4EADQqFEjHDp0CIsXL0ZYWJi2hyciIiIiIiOj995BR48eRWhoqMa6sLAwHD16tMxt8vLykJGRobFURZs2bUKrVq0wduxYPHz4UO5wiMiI3LhxAwqFArGxsXKHQlTtZWVlISoqClOnTkWHDh0QEhKCl19+GV988QVOnTold3hERkHvHbWTkpLg4eGhsc7DwwMZGRnIzc2VOocUN3fuXMycOVPfocnq+vXrGDp0KPLz83HixAm4u7tjzpw5codFRERE/08IgR9++AFvvfUW0tPTNd47efKk9Pfhw4dj0aJFJb7vEP1XTEwMunfvjtTUVDg7O8sdjk4Z5ThmU6dORXp6urTcunVL7pB0btmyZRqT3ixfvpy1FUREREYiOTkZgwYNwqhRo5Ceno46depg1KhRiIyMxIYNGzBt2jT069cPZmZm+OWXXxAYGIjly5dDCCF36FVCUVFRtZ7HwxQnRtR7UuHp6Ynk5GSNdcnJyXB0dCy1lgIAlEolHB0dNZaqRKVS4ddffwUArF+/Hj4+PkhNTcWWLVtkjoyIDCkqKgqdOnWCs7Mzatasif79+yMuLk6jzKVLl9ChQwdYW1ujadOm2L9/v/ReamoqXnjhBbi5ucHGxgb169fHqlWrDH0aRFVObGwsmjVrhs2bN8PS0hJz5sxBXFwcVq1ahZEjR+KZZ57BzJkz8ccff+DYsWMICQlBeno6xo8fj7fffrtKJhbr169Hs2bNYGNjg5o1ayI0NBTZ2dkAHn2vmTVrFmrXrg2lUokWLVogKipK2jYmJgYKhQJpaWnSutjYWCgUCty4cQMAEBkZCWdnZ2zZsgWNGzeGUqlEQkIC8vLyMHnyZPj4+EijiH7//ffSfs6dO4e+ffvC3t4eHh4eeOmll3Dv3r0yz+PmzZsIDw+Hi4sL7Ozs0KRJE2zfvl0jzm3btqF58+awtrZGu3btcO7cOY19HDp0CJ07d4aNjQ18fHzw5ptvStcCQJkx37hxA927dwcAuLi4QKFQYNSoUQCAbt26ISIiAhMnToSrqyvCwsJKbQablpYGhUKBmJgYjZh37tyJ4OBg2NjYoEePHkhJScGOHTvQqFEjODo6Yvjw4cjJySnfh11Bem/+1L59e+nDUtu9ezfat2+v70MbrdjYWNy+fRsODg7o378//vzzTyxYsAA7d+7EkCFD5A6PyKSpJ/KRg62trVYjaGRnZ2PSpElo3rw5srKyMG3aNAwaNEjjAfLuu+9iyZIlaNy4MRYtWoTw8HDEx8ejZs2a+Oijj3DhwgXs2LEDrq6uuHbtGnJzc/VwZkTVR3x8PPr27Yu7d++iefPm+PHHH9G8efMyy7dq1QrHjh3D4sWL8e677+Lzzz+HjY0N5syZU677gSncsxITEzFs2DB8+umnGDRoEDIzM3Hw4EEpefr888+xcOFCfPPNNwgODsbKlSvx9NNP4/z586hfv36548nJycH8+fPx3XffoWbNmnB3d8eIESNw9OhRfPHFFwgKCkJ8fLyUNKSlpaFHjx4YO3YsFi9ejNzcXEyePBlDhgzBvn37Sj3GhAkTkJ+fjwMHDsDOzg4XLlyAvb29Rhn15+jp6Yn3338f4eHhuHLlCiwtLREXF4c+ffpg9uzZWLlyJe7evYuIiAhERERIP+qUFbOPjw82bNiAZ599FpcvXy7xA/vq1asxfvx4HD58uNzXTG3GjBn46quvYGtriyFDhmDIkCFQKpX45ZdfkJWVhUGDBuHLL7/E5MmTtd53uQktZWZmilOnTolTp04JAGLRokXi1KlT4ubNm0IIIaZMmSJeeuklqfz169eFra2tePfdd8XFixfF0qVLhbm5uYiKiir3MdPT0wUAkZ6erm24Rmnx4sUCgHjqqaeEEEJs375dABD+/v4yR0ZkenJzc8WFCxdEbm6uEEKIrKwsAUCWJSsrq1LncvfuXQFAnD17VsTHxwsAYt68edL7BQUFonbt2mL+/PlCCCHCw8PF6NGjK3SdijPle6wpx07GJyUlRdSvX18AEM2bNxdpaWlabf/1119L94OPP/641DKmeM86ceKEACBu3LhR6vve3t7ik08+0VjXunVr8frrrwshhIiOjhYARGpqqvS++ntkfHy8EEKIVatWCQAiNjZWKnP58mUBQOzevbvU43788ceid+/eGutu3bolAIjLly+Xuk2zZs3EjBkzSn1PHeeaNWukdffv3xc2NjZi7dq1QgghxowZI1555RWN7Q4ePCjMzMxEbm7uE2Mu7VoIIUTXrl1FcHCwxjr1c+DUqVPSutTUVAFAREdHa+xvz549Upm5c+cKACIuLk5a9+qrr4qwsLBSYxKi7GeENvdYrZs/HT9+HMHBwQgODgYATJo0CcHBwZg2bRqAR9lsQkKCVN7f3x/btm3D7t27ERQUhIULF+K7776r1sPJHjhwAADQpUsXAECnTp1gbm6O+Pj4Ktl/hIhKd/XqVQwbNgx169aFo6Mj/Pz8AEDjHlq8VtfCwgKtWrXCxYsXAQDjx4/HmjVr0KJFC7z33ns4cuSIQeMnqkqysrLQr18/XL16Fb6+vtixYwecnJy02sf48eOlIfQ/+ugjrFy5Uh+hGlxQUBB69uyJZs2aYfDgwVixYgVSU1MBABkZGbhz5w46duyosU3Hjh2le1V5WVlZadQKxcbGwtzcHF27di21/OnTpxEdHQ17e3tpadiwIQCUaEqq9uabb2L27Nno2LEjpk+fjjNnzpQoU/y+W6NGDQQGBkrncvr0aURGRmocMywsDCqVCvHx8U+M+XFCQkK03kat+HXz8PCAra0t6tatq7EuJSWlwvsvD62bP3Xr1u2xbQVLmy27W7duHHKtmL/++gsApP+ADg4OaNKkCc6cOYOTJ0/Cx8dHzvCITJqtrS2ysrJkO7Y2wsPD4evrixUrVsDb2xsqlQpNmzYtdwe9vn374ubNm9i+fTt2796Nnj17YsKECViwYEFFwieq1iZNmoS///4brq6u2LVrF7y9vSu8n4yMDMycORNvvvkmunbtinr16pVZ3hTuWebm5ti9ezeOHDmCXbt24csvv8QHH3yAY8eOoWbNmk/c3szs0W/Yxb8/ljZzs42NjUZzrLL63qplZWUhPDwc8+fPL/Gel5dXqduMHTsWYWFh2LZtG3bt2oW5c+di4cKFeOONN554Hupjvvrqq3jzzTdLvFenTh1cu3atXPspjZ2dncbr8l43ALC0tJT+rlAoNF6r1+m747tRjv5Uld27dw+3b98G8CjzV1PX/DD5IqochUIBOzs7WRZt+lPcv38fly9fxocffoiePXuiUaNG0i9/xf3555/S3wsLC3HixAk0atRIWufm5oaRI0fip59+wpIlS/Dtt99W7gISVUN79uzBihUrAADr1q1DgwYNKrW/adOmoVu3bsjOzsaIESNQVFRUZllTuWcpFAp07NgRM2fOxKlTp2BlZYWNGzfC0dER3t7eJfoBHD58GI0bNwbw6D4FPGrNolaeOXiaNWsGlUqlMUBFcS1btsT58+fh5+eHgIAAjeW/X9CL8/HxwWuvvYbff/8d//vf/6TPXq34fTc1NRVXrlyR7rstW7bEhQsXShwvICAAVlZWT4zZysoKAB77b0KtotdNLkwqDOz06dMAgHr16sHBwUFaz6SCqHpxcXFBzZo18e233+LatWvYt28fJk2aVKLc0qVLsXHjRly6dAkTJkxAamoqXn75ZQCPvrhs3rwZ165dw/nz5/HHH39oJBxE9GRZWVkYN24cgEedeLt161bpfZqZmSEyMhKOjo44cuQIPv3000rvU07Hjh3DnDlzcPz4cSQkJOD333/H3bt3pfvNu+++i/nz52Pt2rW4fPkypkyZgtjYWLz11lsAgICAAPj4+GDGjBm4evUqtm3bJjUTexw/Pz+MHDkSL7/8MjZt2oT4+HjExMTgt99+A/Do83rw4AGGDRuGv//+G3Fxcdi5cydGjx5d5pf2iRMnYufOnYiPj8fJkycRHR1d4r45a9Ys7N27F+fOncOoUaPg6uqKgQMHAgAmT56MI0eOICIiArGxsbh69So2b96MiIiIcsXs6+sLhUKBP/74A3fv3n1sLZWNjQ3atWuHefPm4eLFi9i/fz8+/PDDJ1432Tyx14URqEod8RYuXCgAiGeffVZjfUxMDDtrE1XA4zogG7vdu3eLRo0aCaVSKZo3by7dBzZu3Ch10Pvll19EmzZthJWVlWjcuLHYt2+ftP3HH38sGjVqJGxsbESNGjXEgAEDxPXr10s9FjtqE5UuIiJCABC+vr4iMzNTp/tevXq1ACAsLCzEyZMnhRCmec+6cOGCCAsLE25ubkKpVIoGDRqIL7/8Unq/qKhIzJgxQ9SqVUtYWlqKoKAgsWPHDo19HDp0SDRr1kxYW1uLzp07i3Xr1pXoqO3k5FTi2Lm5ueLtt98WXl5ewsrKSgQEBIiVK1dK71+5ckUMGjRIODs7CxsbG9GwYUMxceJEoVKpSj2XiIgIUa9ePaFUKoWbm5t46aWXxL1794QQ/3Z63rp1q2jSpImwsrISbdq0EadPn9bYx19//SV69eol7O3thZ2dnWjevLlGR/UnxTxr1izh6ekpFAqFGDlypBDiUUftt956q9Rr3759e2FjYyNatGghdu3aVWpH7eIdv0u7ltOnTxdBQUGlXhN1zJXtqK0QwvgHU87IyICTkxPS09NNfs6KV199Fd9++y0++ugjzJo1S1qflJQELy8vmJmZIScnB0qlUsYoiUzHw4cPER8fD39/f1hbW8sdjtF63HUy5XusKcdO8jt48KA0aMru3bsRGhqq0/0LIfDcc8/h999/R9u2bXH06FHk5eXxnmWkqvJs109S1jNCm3ssmz8Z2NWrVwGgxLjNHh4ecHBwgEqlwvXr1+UIjYiIqNoQQuDtt98GAIwZM0bnCQXwqB/C0qVLYWdnh2PHjmHDhg06PwaRsWBSYWBlJRUKhULqGHblyhWDx0VERFSdbNy4ESdOnIC9vT3mzp2rt+N4enrinXfeAQBMnTq13KO7EZkaJhUGlJOTg3/++QdAyaQCAJMKIiIiAygqKpI6vL799tvSKDv68s4778DDwwPXrl2TOuyS8VFPm1Ddmj7pCpMKA1KPXawe9eW/mFQQERHp388//4yLFy/CxcUF//vf//R+PHt7e8ycORPAoxHd9D1fAJEcmFQYUFlNn9SYVBAREelXfn4+pk+fDgCYMmWK1rNmV9SYMWPQsGFDpKamIiMjwyDHJDIkJhUG9KSkIiAgAAAqNRsjUXVlAgPZyYrXh+iR7777Djdu3ICnp6c0t4AhWFhYYN68eQAejahTWFhosGMTGYKF3AFUJzdu3AAA1K1bt9T3fX19ATyaObGgoKDEFOtEVJKlpSUUCgXu3r0LNzc3rWaIrS6EELh79y4UCgXvK1StFRYWShPRffjhh7C1tTXo8Z9++mksXboUQgikpqbC3t7eoMcn0icmFQak7qTt4+NT6vtubm5QKpXIy8vDP//8A39/f0OGR2SSzM3NUbt2bfzzzz9S4k4lKRQK1K5dG+bm5nKHQiSbzZs34+bNm3B1dZVmpjckhUKB0aNHAwDu37+PWrVqwcyMjUaoamBSYUC3bt0CUHZSYWZmhjp16uDq1atISEhgUkFUTvb29qhfvz4KCgrkDsVoWVpaMqGgam/JkiUAgNdeew02NjayxNCvXz8cO3YMhYWFePDgAVxdXQEAq06tMmgco4NHG/R4VPUxqTCgJyUVADSSCiIqP3Nzc35pJqIyHT9+HIcOHYKlpSVef/112eKwsrKSZiZOSkpCzZo1oVAoUKDijyJk2ljnZiDZ2dlITU0F8OSkAgBu3rxpkLiIiIiqA3UtxfPPPw8vLy9ZY7G3t4eZmRkePnyI9PR0WWMh4zJjxgy0aNFC7jAqhEmFgahrKRwcHKRfKEqj7qzNmgoiIiLduHPnDtauXQsAeOutt2SO5lFz5xo1agB4VFtBhiGE4KhbesSkwkDK0/QJ+LemgkkFERGRbixduhSFhYXo3LkzQkJC5A4HAFCjRg0oFApkZWUhNzdX7nCeqFu3bnjjjTcwceJEuLi4wMPDAytWrEB2djZGjx4NBwcHBAQEYMeOHdI2586dQ9++fWFvbw8PDw+89NJLuHfvnvR+VFQUOnXqBGdnZ9SsWRP9+/dHXFyc9H5+fj4iIiLg5eUFa2tr+Pr6Yu7cuQAejaipUCgQGxsrlU9LS4NCoUBMTAwAICYmBgqFAjt27EBISAiUSiUOHToElUqFuXPnwt/fHzY2NggKCsL69eul/ai327lzJ4KDg2FjY4MePXogJSUFO3bsQKNGjeDo6Ijhw4cjJydH2q68+927dy9atWoFW1tbdOjQAZcvXwYAREZGYubMmTh9+jQUCgUUCgUiIyN18vkZApMKA3nSyE9qbP5ERESkO/n5+VixYgUAYOLEifIGU4yVlZU08d7du3dljqZ8Vq9eDVdXV/z111944403MH78eAwePBgdOnTAyZMn0bt3b7z00kvIyclBWloaevTogeDgYBw/fhxRUVFITk7GkCFDpP1lZ2dj0qRJOH78OPbu3QszMzMMGjRImnH8iy++wJYtW/Dbb7/h8uXL+Pnnn+Hn56d13FOmTMG8efNw8eJFNG/eHHPnzsUPP/yA5cuX4/z583j77bfx4osvYv/+/RrbzZgxA1999RWOHDmCW7duYciQIViyZAl++eUXbNu2Dbt27cKXX34plS/vfj/44AMsXLgQx48fh4WFhTQS2dChQ/G///0PTZo0QWJiIhITEzF06FCtz1cu7KhtIOWtqahduzYA4Pbt23qPiYiIqKrbtm0b7t69Cy8vLzz99NNyh6PBzc0NaWlpuH//PlRCBTOFcf/WGxQUhA8//BAAMHXqVMybNw+urq4YN24cAGDatGlYtmwZzpw5gz179iA4OBhz5syRtl+5ciV8fHxw5coVNGjQAM8++6zG/leuXAk3NzdcuHABTZs2RUJCAurXr49OnTpBoVBITcS1NWvWLPTq1QsAkJeXhzlz5mDPnj1o3749gEfzhx06dAjffPMNunbtKm03e/ZsdOzYEcCjGdGnTp2KuLg4ab6x5557DtHR0Zg8ebJW+/3kk0+k11OmTEG/fv3w8OFD2NjYwN7eHhYWFvD09KzQucqJSYWBlDepUHcey8zMRHZ2Nuzs7PQeGxERUVW1cuVKAMDIkSNhYWFcX3scHR1hZWWF/Px85GTnGP1keM2bN5f+bm5ujpo1a6JZs2bSOg8PDwBASkoKTp8+jejo6FLPKS4uDg0aNMDVq1cxbdo0HDt2DPfu3ZNqKBISEtC0aVOMGjUKvXr1QmBgIPr06YP+/fujd+/eWsfdqlUr6e/Xrl1DTk6OlGSo5efnIzg4uMzz9fDwgK2trcYExh4eHvjrr78qtV/1976UlBSptYqpMq7/XVVYeZMKBwcH2NraIicnB4mJiQgICDBEeERERFXOnTt3sH37dgCQJp0zJgqFAm5ubrh9+zaysrKMPqmwtLTUeK1QKDTWKRQKAI/6FmRlZSE8PBzz588vsR/1F+nw8HD4+vpixYoV8Pb2hkqlQtOmTZGfnw8AaNmyJeLj47Fjxw7s2bMHQ4YMQWhoKNavXy9NGiiEkPZb1lxFxX+gzcrKAvCoBqtWrVoa5ZRKZZnn+99zVa9TJ0KV2S8AaT+mjEmFgZQ3qVAoFPDy8kJcXByTCiIiokr48ccfoVKp0KlTJzRo0EDucEpVs2ZN3L59Gw/zHiI/Px9WVlZyh6QTLVu2xIYNG+Dn51dqDdH9+/dx+fJlrFixAp07dwYAHDp0qEQ5R0dHDB06FEOHDsVzzz2HPn364MGDB3BzcwMAJCYmSjUBxTttl6Vx48ZQKpVISEjQaJJUWbrar5WVFYqKinQWlyExqTAQdR+J/2avpfH29paSCiIiItKeEEJq+qTuCGuMrKys4OzsDCQ8+rVbPdSsqZswYQJWrFiBYcOG4b333kONGjVw7do1rFmzBt999x1cXFxQs2ZNfPvtt/Dy8kJCQgKmTJmisY9FixbBy8sLwcHBMDMzw7p16+Dp6QlnZ2eYmZmhXbt2mDdvHvz9/ZGSkiL193gcBwcHvPPOO3j77belhDM9PR2HDx+Go6MjRo4cWaHz1dV+/fz8EB8fj9jYWNSuXRsODg4lajqMlXH3CKoiik9uU54Jd9RlmFQQkamYO3cuWrduDQcHB7i7u2PgwIHSMIlliYyMlIZNVC/W1tYGipiquiNHjuDKlSuws7PD4MGD5Q7nsdS/umdlZUElTL8ZDPDoB9LDhw+jqKgIvXv3RrNmzTBx4kQpITAzM8OaNWtw4sQJNG3aFG+//TY+++wzjX04ODjg008/RatWrdC6dWvcuHED27dvl5o+rVy5EoWFhQgJCcHEiRMxe/bscsX28ccf46OPPsLcuXPRqFEj9OnTB9u2bYO/v3+lzlkX+3322WfRp08fdO/eHW5ubvj1118rFZMhKUTxxmhGKiMjA05OTkhPT3/sxHHG6ubNm/Dz84NSqURubq7Ufq4sEydOxOeff47Jkydj3rx5BoqSiKorXdxj+/Tpg+effx6tW7dGYWEh3n//fZw7dw4XLlwoc8CJyMhIvPXWWxrJh0KhkDp7Gip2qprGjBmDlStXYvTo0VKNhTF4+PAh4uPj4e/vLyXRQghM3zIdhUWFcHN1M8ggLa+EvKL3Y5DpKO3fJaDdPZbNnwxAPVumh4fHExMKgDUVRGR6oqKiNF5HRkbC3d0dJ06cQJcuXcrcTqFQmOTQiWTccnJy8NtvvwEw7qZPagqFAk4Oj7645eXmwdnBWe6QiLTGpMIA1ElFeR+cTCqIyNSpm3w+qX14VlYWfH19oVKp0LJlS8yZMwdNmjQps3xeXh7y8vKk1xkZGboJmKqUbdu2ISsrC/7+/tI8A8bu9fav4/z581AoFAhqFmR0w98SPQn7VBhAcnIyACYVRFQ9qFQqTJw4ER07dkTTpk3LLBcYGIiVK1di8+bN+Omnn6BSqdChQwf8888/ZW4zd+5cODk5ScuTRtSj6mnNmjUAgOeff75cLQSMgY2NDWxsbCCEQGpqqtzhEGmNSYUBFG/+VB7qpOLOnTt6i4mISF8mTJiAc+fOSV/sytK+fXuMGDECLVq0QNeuXfH777/Dzc0N33zzTZnbTJ06Fenp6dKiHq6bSC0jIwPbtm0DAAwdOlTmaLRTs2ZNAI+GWyUyNaxbM4CKNn968OAB8vLyTGYoMSKiiIgI/PHHHzhw4ABq166t1baWlpYIDg7GtWvXyiyjVCp5T6TH2rx5M/Ly8tCwYUONmYtNQY0aNfDPP/8gKyuLz38yOaypMABtk4oaNWpIk9+otyUiMmZCCERERGDjxo3Yt29fhYZmLCoqwtmzZ8s19DZRWUyl6VNpg29aWVnBwcEBwKMfFokMRRczerOmwgC0TSrUo6EkJCQgMTERvr6++gyPiKjSJkyYgF9++QWbN2+Gg4ODdN9zcnKCjY0NAGDEiBGoVasW5s6dCwCYNWsW2rVrh4CAAKSlpeGzzz7DzZs3MXbsWNnOg0zb/fv3sWvXLgDG2/TJ0tISCoUCd+/ehZubW4nEx9HREZmZmbh79y6cnZ2NOjEi0yeEQH5+Pu7evQszM7NKzejOpMIA1B21tRl7XZ1UqLclIjJmy5YtAwB069ZNY/2qVaswatQoAEBCQoI0aRUApKamYty4cUhKSoKLiwtCQkJw5MgRNG7c2FBhUxWzceNGFBYWIigoCA0bNpQ7nFKZm5ujdu3a+Oeff3Djxo0S76tUKty/fx9CCAghKvUlj6i8bG1tUadOHY17tLaYVOiZEELrmgoAcHd3BwDcvXtXL3EREelSeeZRjYmJ0Xi9ePFiLF68WE8RUXVUvOmTMbO3t0f9+vVRUFBQ6vuff/45du3ahVdffRVvv/22gaOj6sbc3BwWFhaVrhVjUqFnWVlZyMnJAaBdTYWbmxsAICUlRS9xERERVSXJycmIjo4GYLxNn4ozNzeHubl5qe91794dK1aswKpVqzBlyhQ2gSKTwI7aeqaupbCzs4O9vX25t2NNBRERUflt2bIFKpUKrVq1qtBAAcakf//+UCqVuHr1Ks6ePSt3OETlwqRCz7Sd+E5NnVSwpoKIiOjJNm7cCAAYNGiQzJFUnoODA/r06QMAWL9+vczREJUPkwo9UycV6iShvNj8iYiIqHwyMjKwd+9eAMDAgQPlDUZHnnvuOQBMKsh0MKnQM3XzJXWSUF5s/kRERFQ+O3bsQH5+Pho0aIBGjRrJHY5OhIeHw9LSEhcvXsSFCxfkDofoiZhU6Nm9e/cAaJ9UsKaCiIiofDZt2gTgUdOnqtKp2cnJCb179wYArFu3TuZoiJ6MSYWeqWsaXF1dtdqueE1FeYZqJCIiqo7y8vKwbds2AFWn6ZMam0CRKWFSoWeVrakoLCxEWlqarsMiIiKqEvbt24fMzEx4eXmhTZs2coejUwMGDICFhQXOnTuHS5cuyR0O0WMxqdCzitZUKJVKODo6auyDiIiINKmbPg0YMKBSswEbIxcXF/Ts2RPAv+dJZKyq1v8+I1TRmgqAw8oSERE9TlFRETZv3gygagwlWxp1ky71eRIZqwolFUuXLoWfnx+sra3Rtm1b/PXXX48tv2TJEgQGBsLGxgY+Pj54++238fDhwwoFbGoqWlMB/JuIsKaCiIiopGPHjiE5ORlOTk7o1q2b3OHoRXh4OIBH56qeUJfIGGmdVKxduxaTJk3C9OnTcfLkSQQFBSEsLKzMX9N/+eUXTJkyBdOnT8fFixfx/fffY+3atXj//fcrHbyxE0KwpoKIiEhP/vjjDwBA3759YWVlJXM0+lGrVi20atUKQghs3bpV7nCIyqR1UrFo0SKMGzcOo0ePRuPGjbF8+XLY2tpi5cqVpZY/cuQIOnbsiOHDh8PPzw+9e/fGsGHDnli7URXk5ORINTIVqalgUkFERFQ29ahP/fv3lzkS/RowYAAAYMuWLTJHQlQ2rZKK/Px8nDhxAqGhof/uwMwMoaGhOHr0aKnbdOjQASdOnJCSiOvXr2P79u146qmnKhG2aVA3W1IqlbC3t9d6ezZ/IiIiKt2tW7dw5swZmJmZoU+fPnKHo1fqpGLPnj3Izs6WORqi0lloU/jevXsoKiqCh4eHxnoPD48yhzobPnw47t27h06dOkEIgcLCQrz22muPbf6Ul5eHvLw86XVGRoY2YRoNddMnV1fXCk3Gw5oKIiKi0qlrKdq1a4eaNWvKHI1+NW3aFP7+/oiPj8euXbuqbKd0Mm16H/0pJiYGc+bMwddff42TJ0/i999/x7Zt2/Dxxx+Xuc3cuXPh5OQkLT4+PvoOUy/UNQwV6U8BQLpJ3r9/X2cxERERVQXVpekTACgUCjz99NMA2ASKjJdWSYWrqyvMzc2RnJyssT45ORmenp6lbvPRRx/hpZdewtixY9GsWTMMGjQIc+bMwdy5c6FSqUrdZurUqUhPT5eWW7duaROm0ahMJ22ASQUREVFpcnNzsXfvXgBAv379ZI7GMNRNoP744w8UFRXJHA1RSVolFVZWVggJCZH+IwOASqXC3r170b59+1K3ycnJKTEZjbm5OYBHoyOVRj3xW/HFFFVmOFmASQUREVFpYmJikJubi9q1a6NZs2Zyh2MQnTt3houLC+7du4cjR47IHQ5RCVo3f5o0aRJWrFiB1atX4+LFixg/fjyys7MxevRoAMCIESMwdepUqXx4eDiWLVuGNWvWID4+Hrt378ZHH32E8PBwKbmoqlhTQUREpHvqoWT79etXoT6LpsjCwkKqleHQsmSMtOqoDQBDhw7F3bt3MW3aNCQlJaFFixaIioqSOm8nJCRo1Ex8+OGHUCgU+PDDD3H79m24ubkhPDwcn3zyie7OwkjpqqYiOzsbDx8+hLW1tc5iIyIiMkVCiGrVn6K4/v3746effsK2bdvw6aefyh0OkQaFKKsNkhHJyMiAk5MT0tPTTaop1KBBg7Bp0yYsW7YMr732mtbbCyFgaWmJoqIi/PPPP6hVq5YeoiSi6s5U77GAacdOFXP+/Hk0bdoU1tbWuH//PmxtbeUOyWBSU1Ph5uaGoqIixMfHw8/PT+6QqIrT5h6r99GfqrPK1lQoFAo2gSIiIipm+/btAIDu3btXq4QCAFxcXNChQwcA/45+RWQsmFToUWX7VADsV0FERFRcVFQUAKBv374yRyIPdb8KJhVkbJhU6FFlayoAJhVERERqWVlZOHToEABU+Vm0y6JOKqKjo5GTkyNzNET/YlKhJ0VFRUhNTQXApIKIiEgXYmJikJ+fD39/fwQEBMgdjiyaNGmCOnXq4OHDh4iOjpY7HCIJkwo9SU1NlebhUCcGFaHeVt2UioiIqLrauXMnACAsLKzaDCX7XwqFgk2gyCgxqdCTBw8eAAAcHR1hYaH1yL0S1lQQERE9ou5PUV2bPqk99dRTAB4lFSYwiCdVE0wq9ESdBNSoUaNS+1E3nWJSQURE1VlcXByuXbsGCwsLdO/eXe5wZNWjRw9YW1sjISEB58+flzscIgBMKvRGXVNRmaZPxbdnUkFERNWZuulTx44dq/2cJLa2tlJixSZQZCyYVOiJOqmobE0FkwoiIiLN/hT07yhQO3bskDkSokeYVOiJrpMKdtQmIqLqKj8/H/v27QPA/hRq6utw+PBhZGRkyBwNEZMKvVHXLLD5ExERUeUcOXIEWVlZcHd3R1BQkNzhGIV69eohICAAhYWFUsJFJCcmFXqi65qKtLQ0FBUVVTouIiIiU1O86ZOZGb+6qKlnFVePikUkJ/7P1BNdJRXq7YUQ0mR6RERE1cmuXbsAAL1795Y5EuOibgIVFRXFoWVJdkwq9ERXQ8paWlrCyclJY59ERETVxb1793Dq1CkAQGhoqMzRGJeuXbtCqVTi5s2buHz5stzhUDXHpEJPdDWkbPF9MKkgIqLqZt++fRBCoGnTpvD09JQ7HKNiZ2eHLl26AGATKJIfkwo90VXzJ4AjQBERUfW1e/duAECvXr1kjsQ4qZtAcWhZkhuTCj3RVfMngDUVRGT85s6di9atW8PBwQHu7u4YOHBguZpjrFu3Dg0bNoS1tTWaNWuG7du3GyBaMhVCCCYVT6BOKvbv34+cnByZo6HqjEmFHhQWFiI9PR0Amz8RUfWwf/9+TJgwAX/++Sd2796NgoIC9O7dG9nZ2WVuc+TIEQwbNgxjxozBqVOnMHDgQAwcOBDnzp0zYORkzK5du4abN2/CyspKauZDmho1agQfHx/k5eVh//79codD1RiTCj1IS0uT/u7i4lLp/TGpICJjFxUVhVGjRqFJkyYICgpCZGQkEhIScOLEiTK3+fzzz9GnTx+8++67aNSoET7++GO0bNkSX331lQEjJ2OmrqXo0KED7OzsZI7GOCkUCg4tS0aBSYUeqPtTODo6wsLCotL7c3V1BcCkgohMh7q29nFNQI8ePVpiNJ+wsDAcPXpUr7GR6dizZw8ANn16krCwMABMKkhelf/GSyXoajZtNdZUEJEpUalUmDhxIjp27IimTZuWWS4pKQkeHh4a6zw8PJCUlFTmNnl5ecjLy5NeZ2RkVD5gMkrFZ4pmUvF4PXv2hLm5Oa5cuYKbN2/C19dX7pCoGmJNhR7ocuQngKM/EZFpmTBhAs6dO4c1a9bofN9z586Fk5OTtPj4+Oj8GGQcjh8/jvT0dLi4uKBly5Zyh2PUnJyc0K5dOwD/ThRIZGhMKvRA10mFej/q/RIRGauIiAj88ccfiI6ORu3atR9b1tPTE8nJyRrrkpOTHzsXwdSpU5Geni4tt27d0kncZHzU/SnUv8LT46lnG2dSQXJhUqEHuhxOFvi3poJJBREZKyEEIiIisHHjRuzbtw/+/v5P3KZ9+/bYu3evxrrdu3ejffv2ZW6jVCrh6OiosVDVpO5PwVm0y0edVOzZsweFhYUyR0PVEZMKPdDlbNrAv8nJ/fv3IYTQyT6JiHRpwoQJ+Omnn/DLL7/AwcEBSUlJSEpKQm5urlRmxIgRmDp1qvT6rbfeQlRUFBYuXIhLly5hxowZOH78OCIiIuQ4BTIi2dnZUod9JhXl07p1azg7OyMtLQ3Hjx+XOxyqhphU6IG++lTk5eVpPKCJiIzFsmXLkJ6ejm7dusHLy0ta1q5dK5VJSEhAYmKi9LpDhw745Zdf8O233yIoKAjr16/Hpk2bHtu5m6qHgwcPoqCgAL6+vqhbt67c4ZgEc3NzKQHbuXOnzNFQdcTRn/RA10mFvb09LC0tUVBQgPv378PW1lYn+yUi0pXy1KLGxMSUWDd48GAMHjxYDxGRKVM3i+vZsycUCoXM0ZiOsLAwrF+/Hrt27cL06dPlDoeqGdZU6IGuh5RVKBTsrE1ERNVG8aSCyk899O6xY8c0JuIlMgQmFXqg65oKgHNVEBFR9XDv3j3ExsYCAHr06CFvMCbG19cXgYGBKCoqkub4IDIUJhV6oI+kgjUVRERUHURHR0MIgSZNmjx2eGEqnXp2bQ4tS4bGpEIPdN38qfi+WFNBRERVGZs+VY56aNmdO3dyxEgyKCYVOlZYWIj09HQArKkgIiLSFpOKyunWrRssLS1x48YNxMXFyR0OVSNMKnSseMcoFxcXne2XNRVERFTVJSQk4Nq1azAzM0PXrl3lDsck2dnZoUOHDgD+nZWcyBCYVOiY+ku/o6MjLCx0N2Jv8QnwiIiIqiJ1LUWbNm3g5OQkczSmS90Eiv0qyJCYVOiYrmfTVlPvj82fiIioqmLTJ91QDy27b98+FBYWyhwNVRdMKnRMHyM/Fd8fayqIiKgqEkJISQWHkq2cli1bokaNGsjIyMBff/0ldzhUTTCp0DF9JRWsqSAioqrs0qVLSEpKgrW1tdQngCrG3Nxcqu1hvwoyFCYVOqaP4WQB1lQQEVHVpq6l6NixI6ytrWWOxvSxXwUZGpMKHTNETQXHnSYioqpGPQM0mz7phrpfxbFjx6Sh7on0iUmFjum7T0VhYSEyMzN1um8iIiI5FRUVISYmBgCTCl3x9fVF/fr1UVRUhOjoaLnDoWqASYWO6av5k62trVQdzH4VRERUlZw+fRqpqalwcHBAq1at5A6nylA3gWK/CjIEJhU6pq+aCoAT4BERUdWkbvrUtWtXnc7xVN2pm0CxXwUZApMKHdNnUqHeJ2sqiIioKuFQsvrRvXt3mJub49q1a7hx44bc4VAVx6RCx/TV/Kn4PllTQUREVUV+fj4OHjwIgEmFrjk6OqJdu3YA2ASK9K9CScXSpUvh5+cHa2trtG3b9okTq6SlpWHChAnw8vKCUqlEgwYNsH379goFbOxYU0FERFR+f//9N7Kzs+Hq6opmzZrJHU6VwyZQZChaJxVr167FpEmTMH36dJw8eRJBQUEICwtDSkpKqeXz8/PRq1cv3LhxA+vXr8fly5exYsUK1KpVq9LBG5vCwkJp2Db2qSAiInoydX+K7t27w8yMDSh0TZ1U7N27F0VFRTJHQ1WZ1v97Fy1ahHHjxmH06NFo3Lgxli9fDltbW6xcubLU8itXrsSDBw+wadMmdOzYEX5+fujatSuCgoIqHbyxSUtLk/7u4uKi8/2zpoKIiKoa9qfQrzZt2sDR0RGpqak4efKk3OFQFaZVUpGfn48TJ04gNDT03x2YmSE0NBRHjx4tdZstW7agffv2mDBhAjw8PNC0aVPMmTOnSmbL6hoER0dHvYxewZoKIiKqSnJycqTvD927d5c5mqrJwsJCStjYr4L0Sauk4t69eygqKoKHh4fGeg8PDyQlJZW6zfXr17F+/XoUFRVh+/bt+Oijj7Bw4ULMnj27zOPk5eUhIyNDYzEF6hoEfXTSBlhTQUREVcuRI0eQn5+PWrVqoUGDBnKHU2Wpm0AxqSB90nvjRZVKBXd3d3z77bcICQnB0KFD8cEHH2D58uVlbjN37lw4OTlJi4+Pj77D1Al9dtIGWFNBRERVi7o/RY8ePaBQKGSOpupSJxWHDx9GVlaWzNFQVaVVUuHq6gpzc3MkJydrrE9OToanp2ep23h5eaFBgwYwNzeX1jVq1AhJSUnIz88vdZupU6ciPT1dWm7duqVNmLLRd1LBmgoiIqpK1ElFz549ZY6kagsICICvry8KCgpw4MABucOhKkqrpMLKygohISFSpyrgUU3E3r170b59+1K36dixI65duwaVSiWtu3LlCry8vGBlZVXqNkqlEo6OjhqLKWBNBRERUfmkp6fj77//BsD+FPqmUCjYBIr0TuvmT5MmTcKKFSuwevVqXLx4EePHj0d2djZGjx4NABgxYgSmTp0qlR8/fjwePHiAt956C1euXMG2bdswZ84cTJgwQXdnYSQMVVORmpqqkaQRERGZmoMHD0KlUiEgIAB16tSRO5wqr3fv3gCYVJD+aD1E0dChQ3H37l1MmzYNSUlJaNGiBaKioqTO2wkJCRrjTPv4+GDnzp14++230bx5c9SqVQtvvfUWJk+erLuzMBKG6qitUqmQnp6ul2FriYiIDKF4fwrSP3W/lfPnz+POnTvw9vaWOySqYio07mlERAQiIiJKfS8mJqbEuvbt2+PPP/+syKFMir5rKpRKJezs7JCdnY379+8zqSAiIpPFpMKwatasiZCQEBw/fhy7d+/GyJEj5Q6JqhhOXalD6r4O+koqgH9rQdhZm4iITNW9e/dw+vRpAEC3bt3kDaYaYRMo0icmFTqk75oKgJ21iYjI9KlbNTRt2rTE3FekP8WTCvbNJF1jUqFDhkgqOKwsERGZOjZ9kkf79u1hZ2eHlJQUnDlzRu5wqIphUqFDrKkgIiJ6MiYV8rCyspKam7EJFOkakwodKSoqQlpaGgDWVBAREZXl9u3buHz5MszMzNC1a1e5w6l21PNV7Nq1S+ZIqKphUqEj6enpEEIAgF5HZWJNBRERmTJ1LUXLli3h7OwsbzDVkLpfxcGDB5GbmytzNFSVMKnQEXXNgYODQ5kzhesCayqIiMiU7d27FwDQs2dPmSOpnho2bIjatWsjLy8PBw8elDscqkIqNE8FlWSI4WQB1lQQEdG/Vp1aJXcIWhEQ2HJrC9ACKGxaaHLxVxV+A/3wz6F/sGjfItx2u63VtqODR+spKjJ1TCp0xBCdtIvvnzUVRERUoCqQOwStJKckIzU9FeZW5vCr52dy8VcVDZs0xKGjh3Du4jk8o3pG7nCoimDzJx0xVFLBmgoiIjJVly9dBgDUrVtXr02F6fEaNWoE4FGn+fT0dJmjoaqCSYWOsKaCiKq7AwcOIDw8HN7e3lAoFNi0adNjy8fExEChUJRYkpKSDBMwGdylS5cAPGrXT/Kxt7dHnTp1AAAXLlyQORqqKphU6IihayrS0tJQWFio12MREWkjOzsbQUFBWLp0qVbbXb58GYmJidLi7u6upwhJTiqhwuXLj2oqmFTIr3HjxgCYVJDusE+FjhgqqSg+XG1aWhpcXV31ejwiovLq27cv+vbtq/V27u7uHFq0Grh9+zaysrJgZWUFPz8/ucOp9ho3boyoqChcuHABKqGCmYK/M1Pl8F+QjhgqqbCwsICTkxMA9qsgoqqhRYsW8PLyQq9evXD48OHHls3Ly0NGRobGQqZB3Z+ifv36sLDgb5pyq1evHpRKJbKysvDPrX/kDoeqACYVOqJOKtTNk/SJ/SqIqCrw8vLC8uXLsWHDBmzYsAE+Pj7o1q0bTp48WeY2c+fOhZOTk7T4+PgYMGKqDPanMC4WFhYIDAwEwCZQpBtMKnTEUPNUABwBioiqhsDAQLz66qsICQlBhw4dsHLlSnTo0AGLFy8uc5upU6ciPT1dWm7dumXAiKmiioqKcOXKFQBMKoyJul/F+fPnZY6EqgLWP+qIoZo/Af8mFaypIKKqpk2bNjh06FCZ7yuVSiiVSgNGRLpw4+YN5OXlwdbWFrV9assdDv2/xk0eJRVxcXF4mPcQ1kprmSMiU8aaCh0xZFKhPgZrKoioqomNjYWXl5fcYZCOXbr4qOlTYGAgOwQbEXc3d9SsWfNRTdLlK3KHQyaONRU6oFKpkJqaCoDNn4io+srKysK1a9ek1/Hx8YiNjUWNGjVQp04dTJ06Fbdv38YPP/wAAFiyZAn8/f3RpEkTPHz4EN999x327duHXbt2yXUKpCcXL14E8O+ka2QcFAoFmjRpggMHDuDChQto3ry53CGRCWNSoQMZGRlQqVQANId81Rd21CYiY3T8+HF0795dej1p0iQAwMiRIxEZGYnExEQkJCRI7+fn5+N///sfbt++DVtbWzRv3hx79uzR2AeZvry8PFy/fh0Akwpj1LhxYxw4cID9KqjSmFTogPrLva2tLayt9d8ekTUVRGSMunXrBiFEme9HRkZqvH7vvffw3nvv6Tmqqs3SzFLuEJ7oUtwlFOUXoUbNGvD29IYCCrlDomKaNm4KhVAgJTEF6Q/SOf8VVRiTCh0wZH+K4sdhTQURUfU2Oni03CE80bu/vAvEAgNfHoiXg1+WOxwqxRrbNTh06BAcrztidC/j/zdFxom9pXTAkHNUFD8OayqIiMjY7dmzBwDQs2dPmSOhsoSFhQEAoqKiZI6ETBmTCh0w5BwVxY/DmgoiIjJmd+/eRWxsLAAmFcasb9++AIC9e/ciPz9f5mjIVDGp0AFDN39iTQUREZmC6OhoAECzZs3g4eEhczRUluDgYLi5uSEzMxNHjx6VOxwyUUwqdECuPhVZWVn8RYGIiIwWmz6ZBjMzM6kJ1I4dO2SOhkwVkwodMHRS4ezsDIVCoXFsIiIiY6NOKkJDQ2WOhJ5E3QSK/SqoophU6IChkwozMzNpPgwmFUREZIyuX7+O+Ph4WFhYoEuXLnKHQ0/Qq1cvKBQKnD59Gnfu3JE7HDJBTCp0wNBJBcB+FUREZNz27t0LAGjTpg0cHBxkjoaexM3NDa1atQIA7Ny5U+ZoyBQxqdABOZIKjgBFRETGbPfu3QAe/QJOpkHdBIr9KqgimFTogLq2wFDzVBQ/FmsqiIjI2BQVFUn9KXr37i1zNFReffr0AfAoISwsLJQ5GjI1TCp0QM7mT6ypICIiY3Py5EmkpqbC0dERbdq0kTscKqc2bdrAxcUFaWlpOHbsmNzhkIlhUlFJQghZmz+xpoKIiIyNuulTjx49YGFhIXM0VF7m5uZSzRKbQJG2mFRUUmZmJoqKigCwpoKIiAgAdu3aBYD9KUwR+1VQRTGpqCT1l3pra2vY2NgY7LisqSAiImOUlZWFI0eOAGB/ClOk7ldx8uRJJCYmyhwNmRImFZUkR9MngDUVRERknPbv34+CggL4+fmhXr16codDWvLw8EDr1q0BANu3b5c5GjIlTCoqSV1TYOikgjUVRERkjNT9KXr37g2FQiFzNFQR/fr1A8CkgrTDpKKS7t27B+DRpDGGxCFliYjIGHF+CtP31FNPAXj0Webn58scDZkKJhWVpE4qDDlHBcDJ74iIyPj8888/uHDhAhQKBXr06CF3OFRBISEh8PDwQGZmJg4ePCh3OGQimFRUkjqpcHV1Nehx1UlMbm4ucnNzDXpsIiKi0qgnvGvdurXBmwWT7piZmUmjQG3btk3maMhUMKmoJHXzI0MnFQ4ODtLY36ytICIiY8ChZKsO9qsgbTGpqCS5aioUCgU7axMRkdEoKiqSkgr1sKRkunr16gULCwtcvnwZcXFxcodDJoBJRSXJlVQA7FdBRETG48SJE7h//z6cnJzQrl07ucOhSnJyckKnTp0AsAkUlQ+TikqSM6ngCFBERGQsoqKiAAChoaFS81wybeomUEwqqDyYVFSSXKM/AaypICIi46FOKtj0qero378/ACA6OhoZGRkyR0PGrkJJxdKlS+Hn5wdra2u0bdsWf/31V7m2W7NmDRQKBQYOHFiRwxodIQRrKoiIqNp78OABjh07BgAICwuTORrSlcDAQNSvXx8FBQVSfxmismidVKxduxaTJk3C9OnTcfLkSQQFBSEsLAwpKSmP3e7GjRt455130Llz5woHa2xycnKQl5cHQN6kgjUVREQkpz179kClUqFx48bw8fGROxzSEYVCgaeffhoAsGXLFpmjIWOndVKxaNEijBs3DqNHj0bjxo2xfPly2NraYuXKlWVuU1RUhBdeeAEzZ85E3bp1KxWwMVHXUiiVStjZ2Rn8+Bz9iYiIjMHOnTsBsOlTVRQeHg7g0dCyhYWFMkdDxkyrpCI/Px8nTpxAaGjovzswM0NoaCiOHj1a5nazZs2Cu7s7xowZU67j5OXlISMjQ2MxRsWbPikUCoMfnzUVREQkNyEE+1NUYR07doSLiwvu37//2O96RFolFffu3UNRURE8PDw01nt4eCApKanUbQ4dOoTvv/8eK1asKPdx5s6dCycnJ2kx1qpUOftTAKypICIi+Z07dw537tyBjY1NlWriTI9YWFhIo0CxCRQ9jl5Hf8rMzMRLL72EFStWaPXFe+rUqUhPT5eWW7du6THKipNz5Kfix2VNBRERyUVdS9G9e3dYW1vLHA3pA/tVUHloNZC0q6srzM3NkZycrLE+OTkZnp6eJcrHxcXhxo0bUns8AFCpVI8O/P+zNNarV6/EdkqlEkqlUpvQZMGaCiIiqu527NgBgKM+VWVhYWGwtLTElStXcPnyZQQGBsodEhkhrWoqrKysEBISgr1790rrVCoV9u7di/bt25co37BhQ5w9exaxsbHS8vTTT6N79+6IjY012mZN5aX+Mi9XUlG8pkIIIUsMRERUfaWnp+PgwYMAgKeeekrmaEhfHB0d0a1bNwDA1q1b5Q2GjJbWzZ8mTZqEFStWYPXq1bh48SLGjx+P7OxsjB49GgAwYsQITJ06FQBgbW2Npk2baizOzs5wcHBA06ZNYWVlpduzMTBjqanIz89Hdna2LDEQEVH1tXv3bhQWFqJBgwYICAiQOxzSI3UTqM2bN8scCRkrrZOKoUOHYsGCBZg2bRpatGiB2NhYREVFSZ23ExISkJiYqPNAjZHcSYWtra3UTIz9KoiIyNC2bdsGAFJHXqq61EnF4cOHnzg3GVVPWvWpUIuIiEBERESp78XExDx228jIyIoc0ijJ3VFboVCgRo0aSExMxP3791GnTh1Z4iAioupHpVJh+/btAJhUVAd16tRBy5YtcfLkSWzZsgVjx46VOyQyMnod/amqk7umAuAIUEREJI8TJ04gJSUFDg4OHEq2mnjmmWcAABs3bpQ5EjJGTCoqwRiSCo4ARUREclA3ferVq5fJ95Gk8hk0aBAAYM+ePUY7MTHJh0lFBQkhZB/9Cfi3poJJBRHJ7cCBAwgPD4e3tzcUCgU2bdr0xG1iYmLQsmVLKJVKBAQEVKkmslUd+1NUP40aNUJgYCDy8/Olpm9EakwqKigrKwv5+fkAjKOmgs2fiEhu2dnZCAoKwtKlS8tVPj4+Hv369ZOGGZ84cSLGjh2LnTt36jlSqqykpCQcP34cAIeSrU4UCoVUW/H777/LHA0Zmwp11KZ/mz7Z2NjA1tZWtjhYU0FExqJv377o27dvucsvX74c/v7+WLhwIYBHv4IeOnQIixcv5kRqRk494V1ISEipk99S1fXMM89g3rx52L59Ox4+fMhZ1EnCmooKknvkJzUmFURkqo4ePYrQ0FCNdWFhYTh69KhMEVF5selT9dWqVSvUrl0b2dnZ2L17t9zhkBFhUlFBxtBJGwDc3NwAAHfv3pU1DiIibSUlJUlzHKl5eHggIyMDubm5pW6Tl5eHjIwMjYUMKy8vT2qixqSi+ineBIqjQFFxTCoqSP0lXv2lXi7u7u4AwIloiKhamDt3LpycnKTFx8dH7pCqnejoaGRlZcHLywutWrWSOxySgTqp2LJlCwoLC2WOhowFk4oKSk5OBoASv7IZGpMKIjJVnp6e0r1ULTk5GY6OjrCxsSl1m6lTpyI9PV1abt26ZYhQqZjNmzcDAMLDw2Fmxq8R1VHnzp3h6uqK+/fvP3HSY6o+eDeoIPWXePWXerkUTyqEELLGQkSkjfbt22Pv3r0a63bv3o327duXuY1SqYSjo6PGQoYjhMCWLVsAAAMGDJA5GpKLhYUFnn32WQDAb7/9JnM0ZCyYVFSQsSUVeXl5yMzMlDUWIqresrKyEBsbi9jYWACPhoyNjY1FQkICgEe1DCNGjJDKv/baa7h+/Tree+89XLp0CV9//TV+++03vP3223KET+Vw4sQJ3LlzB3Z2dujRo4fc4ZCMhgwZAuDR0LIFBQUyR0PGgElFBRlL8ycbGxs4ODgAQIlmBEREhnT8+HEEBwcjODgYADBp0iQEBwdj2rRpAIDExEQpwQAAf39/bNu2Dbt370ZQUBAWLlyI7777jsPJGjF106c+ffpwKNFqrkuXLnBzc8P9+/cRHR0tdzhkBDhPRQUZS02FOobMzEykpKSgfv36codDRNVUt27dHtsMs7TZsrt164ZTp07pMSrSJXVSwaZPpG4CtXz5cvz222/o3bu33CGRzFhTUUHGllQA7KxNRET6Ex8fj7Nnz8Lc3JyzaBOAf5tAbdy4kU2giElFRQghmFQQEVG1oq6l6NSpk+wTv5Jx6NKlC9zd3fHgwQPs27dP7nBIZkwqKiAtLU3KyJlUEBFRdcCmT/Rf5ubmeO655wBwFChiUlEh6i/vjo6ORtFRjUkFERHp071793Dw4EEATCpI0+DBgwE8agKVn58vczQkJyYVFWBMTZ8AJhVERKRfmzdvRlFREVq0aIG6devKHQ4Zkc6dO8PT0xOpqanYtWuX3OGQjJhUVICxDCerxqSCiIj0acOGDQAgTXhGpGZubo6hQ4cCAH7++WeZoyE5MamoAGOtqeA8FUREpGtpaWnYs2cPAEjt54mKe/HFFwE8qtHiRLzVF5OKCjDWpII1FUREpGtbt25FQUEBmjRpgoYNG8odDhmhkJAQNGjQALm5udi4caPc4ZBMmFRUgPrLu7E0f1LHcf/+fRQWFsocDRERVSXr168HwKZPVDaFQoEXXngBAJtAVWdMKipA3czIWGoqatSoATOzRx/lvXv3ZI6GiIiqiszMTOzcuRMAmz7R4w0fPhwAsGfPHiQlJckcDcmBSUUFGFvzJ3Nzc7i6ugJgEygiItKdbdu2IS8vDw0aNEDTpk3lDoeMWEBAANq1aweVSoU1a9bIHQ7JgElFBRhb8yeA/SqIiEj3ijd9UigUMkdDxo5NoKo3JhUVYGzNnwCOAEVERLqVnZ2NHTt2AGDTJyqfIUOGwNzcHMePH8elS5fkDocMjEmFlvLy8pCeng7AuJIKLy8vAEBiYqLMkRARUVWwdetW5OTkoG7duggODpY7HDIB7u7uCAsLAwD88MMPMkdDhsakQkvqzkdWVlZwcXGROZp/MakgIiJd+vXXXwEAw4YNY9MnKrfRo0cDAFavXo2ioiKZoyFDYlKhJfWXdi8vL6O6yaqTijt37sgcCRERmboHDx5ITZ+GDRsmczRkSsLDw1GzZk3cuXMHu3btkjscMiAmFVoqnlQYE29vbwCsqSAiosr7/fffUVBQgObNm6NJkyZyh0MmRKlUSh22V65cKXM0ZEhMKrSkrgkwtqSCNRVERKQrv/zyCwDWUlDFvPzyywCAzZs3c/6saoRJhZZYU0FERFXZnTt3EBMTAwB4/vnn5Q2GTFJQUBCCg4NRUFAgJahU9TGp0JL6S7v6S7yxUCc5WVlZyMzMlDkaIiIyVWvXroUQAh06dICfn5/c4ZCJUtdWrFq1SuZIyFCYVGjJWGsq7O3t4eDgAIC1FUREVHHFR30iqqjhw4fDysoKsbGxOHXqlNzhkAEwqdCSsfapANivgoiIKufq1av4+++/YW5ujsGDB8sdDpmwGjVqYODAgQCAFStWyBsMGQSTCi0Za/MngP0qiIioctQTloWGhsLDw0PmaMjUvfrqqwCAH3/8kU2zqwEmFVooKCjA3bt3ARh3TQWTCiIi0pZKpcLq1asBAKNGjZI3GKoSunfvjsDAQGRlZeHnn3+WOxzSMyYVWkhOToYQAhYWFnB1dZU7nBLUNRVs/kRERNqKjo7GrVu34OTkJDVbIaoMhUKB1157DQCwbNkyCCFkjoj0iUmFFtQ1AB4eHjAzM75Lx5oKIiKqqMjISACPOmhbW1vLGwxVGSNHjoSNjQ3OnDmDI0eOyB0O6ZHxfTM2YsbcnwJgTQUREVVMeno6NmzYAIBNn0i3XFxcpPlOli1bJnM0pE9MKrRgrMPJqrGmgoiIKmLdunXIzc1Fo0aN0KZNG7nDoSpm/PjxAB79O1P3TaWqh0mFFm7dugUAqF27tsyRlI41FUREVBHqpk+jRo2CQqGQNxiqclq3bo2QkBDk5+dj5cqVcodDesKkQgvGnlSoayoyMzORlZUlczRERGQKrl69isOHD8PMzAwvvfSS3OFQFTVhwgQAwNKlS1FQUCBzNKQPTCq0oE4qfHx8ZI6kdA4ODtKs2rdv35Y5GiIiMgXfffcdAKBPnz5G27yXTN+wYcPg7u6OW7duSf13qGqpUFKxdOlS+Pn5wdraGm3btsVff/1VZtkVK1agc+fOcHFxgYuLC0JDQx9b3pgZe1IBAHXq1AEAJCQkyBwJEREZu7y8PKk5yiuvvCJzNFSVWVtb4/XXXwcALFy4kMPLVkFaJxVr167FpEmTMH36dJw8eRJBQUEICwtDSkpKqeVjYmIwbNgwREdH4+jRo/Dx8UHv3r1N7pd0IQT++ecfAMadVKhjUydAREREZdmwYQPu3buH2rVro1+/fnKHQ1Xc+PHjoVQqcfz4cRw+fFjucEjHtE4qFi1ahHHjxmH06NFo3Lgxli9fDltb2zI73vz88894/fXX0aJFCzRs2BDfffcdVCoV9u7dW+ngDenevXt4+PAhAKBWrVoyR1M21lQQEVF5qYf4fOWVV2BhYSFzNFTVubu7S/12Fi9eLHM0pGtaJRX5+fk4ceIEQkND/92BmRlCQ0Nx9OjRcu0jJycHBQUFqFGjhnaRykz9y7+HhweUSqXM0ZSNSQUREZXHuXPncOjQIZibm2PMmDFyh0PVxMSJEwEAGzduRFxcnLzBkE5plVTcu3cPRUVF8PDw0Fjv4eGBpKSkcu1j8uTJ8Pb21khM/isvLw8ZGRkai9xMoT8FwOZPRERUPsuXLwcADBw40GgndaWqp0mTJujTpw+EEPj888/lDod0yKCjP82bNw9r1qzBxo0bYW1tXWa5uXPnwsnJSVqM4Yu8qSQVrKkgIqInycrKwg8//AAAeO2112SOhqqb//3vfwAejTxWVp9cMj1aJRWurq4wNzdHcnKyxvrk5GR4eno+dtsFCxZg3rx52LVrF5o3b/7YslOnTkV6erq0GMOv7qaYVHBkBSIiKs2vv/6KzMxM1K9fHz169JA7HKpmevbsidatWyM3N5d9K6oQrZIKKysrhISEaHSyVne6bt++fZnbffrpp/j4448RFRWFVq1aPfE4SqUSjo6OGovcTCWpUHcif/jwIe7fvy9zNERU3Wgz5HhkZCQUCoXG8rhabNINIQSWLFkC4FEthZkZp6wiw1IoFPjwww8BAF999RUePHggc0SkC1rfSSZNmoQVK1Zg9erVuHjxIsaPH4/s7GyMHj0aADBixAhMnTpVKj9//nx89NFHWLlyJfz8/JCUlISkpCSTm/HZ2GfTVlMqlVKtEZtAEZEhaTvkOAA4OjoiMTFRWm7evGnAiKunqKgoXLhwAQ4ODuygTbLp378/mjdvjqysLHz55Zdyh0M6oHVSMXToUCxYsADTpk1DixYtEBsbi6ioKKnzdkJCAhITE6Xyy5YtQ35+Pp577jl4eXlJy4IFC3R3FgagftD5+vrKHMmTqWtTmFQQkSFpO+Q48OgXS09PT2n570AgpHuLFi0CAIwdOxZOTk4yR0PVlZmZGT744AMAwOeff24Ug/JQ5VSozjMiIgI3b95EXl4ejh07hrZt20rvxcTEIDIyUnp948YNCCFKLDNmzKhs7AaTl5cnTXxXt25dmaN5MnbWJiJDq+iQ41lZWfD19YWPjw8GDBiA8+fPP/Y4xjg6oCk5ffo09uzZAzMzM7z11ltyh0PV3LPPPovAwECkpqZKc6aQ6WJDynK4efMmhBCwtbWFu7u73OE8kZ+fHwAgPj5e3kCIqNqoyJDjgYGBWLlyJTZv3oyffvoJKpUKHTp0kH7EKY0xjg5oStSdYp977jmTqHmnqs3c3Bzvv/8+gEcD+mRmZsocEVUGk4pyUH85r1u3LhQKhczRPFm9evUAANevX5c5EiKisrVv3x4jRoxAixYt0LVrV/z+++9wc3PDN998U+Y2xjg6oKm4c+cOfvnlFwD/DulJJLfhw4ejQYMGuHfvntQ0j0wTk4pyUH85N4WmT8C/cXKmSiIylMoMOa5maWmJ4OBgXLt2rcwyxjg6oKn46quvUFBQgI4dO6JNmzZyh0MEALCwsMDs2bMBPKqtuHv3rswRUUUxqSgHdVLh7+8vcyTlU7ymgnNVEJEhVHTI8eKKiopw9uxZeHl56SvMais1NRVLly4FALzzzjsyR0Ok6dlnn0VISAiysrIwZ84cucOhCmJSUQ6mVlPh6+sLc3Nz5ObmltmWmYhI17QdcnzWrFnYtWsXrl+/jpMnT+LFF1/EzZs3MXbsWLlOocpSj67TrFkzPP3003KHQ6TBzMwMc+fOBQB8/fXXHFraRDGpKIfifSpMgaWlpTQCFJtAEZGhaDvkeGpqKsaNG4dGjRrhqaeeQkZGBo4cOYLGjRvLdQpVUnp6ujTZ3UcffcTJ7sgohYaGokePHsjPzzepEULpXwphAu1jMjIy4OTkhPT0dIO3nxVCwNnZGRkZGTh//rzJPOxCQ0Oxd+9eREZGYuTIkXKHQ0RGTM57bGWZcuyGMnv2bHz00Udo3Lgxzp49y6SCjNZff/2Ftm3bQqFQ4MSJEwgODpY7pGpPm3ss7yxPkJqaKo2Drh6q1RSo+1WwpoKIqPrKzMyURtT58MMPmVCQUWvTpg2ef/55CCHw5ptvsl+oieHd5QnUX8o9PT1ha2srczTlx2FliYho6dKlSE1NRWBgIIYMGSJ3OERP9Omnn8LW1haHDh3CmjVr5A6HtMCk4gkuXboEAGjYsKHMkWiHNRVERNVbamoqPv30UwDABx98AHNzc5kjInoyHx8faUK8d999F1lZWTJHROXFpOIJTDWpCAgIAABcvnyZ1YdERNXQvHnzkJqaiiZNmmD48OFyh0NUbv/73//g7++P27dvS6NCkfFjUvEEpppUNGjQAAqFAqmpqUhJSZE7HCIiMqCEhAR8/vnnAB41J2EtBZkSa2trLF68GMCjCfEuX74sc0RUHkwqnsBUkwobGxtpCNyLFy/KHA0RERnShx9+iLy8PHTv3h19+/aVOxwirT399NPo06cP8vPzMXbsWKhUKrlDoidgUvEYhYWFuHr1KgDTSyoAoFGjRgCACxcuyBwJEREZyqlTp/DTTz8BeFRLoVAoZI6ISHsKhQLLly+HnZ0dDh06hGXLlskdEj0Bk4rHiI+PR0FBAWxsbODj4yN3OFpTz6nBmgoioupBCIH33nsPQggMGzYMrVq1kjskogrz9fXFvHnzAABTpkzhTNtGjknFY6ibPgUGBprk2N6sqSAiql42bNiAPXv2wMrKCp988onc4RBV2uuvv46OHTsiKysLr732GgefMWKm903ZgNRJhfrLualRx82aCiKiqi8zMxNvvfUWgEe/6vr7+8scEVHlmZmZ4fvvv4dSqURUVBRWrFghd0hUBiYVj3Hu3DkAptmfAvg3qUhMTERaWpq8wRARkV5NmzYNd+7cQb169TB16lS5wyHSmcDAQMyePRsAMHHiRLbAMFJMKh7j1KlTAIAWLVrIG0gFOTo6onbt2gCA8+fPyxwNERHpS2xsLL744gsAj2bRtra2ljkiIt2aNGkSevXqhdzcXDz//PN4+PCh3CHRfzCpKMPDhw+lZkPBwcEyR1NxQUFBAP5NkIiIqGopKirC+PHjoVKpMHjwYISFhckdEpHOmZmZ4YcffoCbmxvOnj2L9957T+6Q6D+YVJTh/PnzKCwsRI0aNaRf+01Ry5YtAQAnT56UORIiItKHRYsW4c8//4S9vb00YRhRVeTp6YnVq1cDAL788kts3LhR5oioOCYVZVD/sh8cHGzSY3yHhIQAYFJBRFQVnTlzBh9++CEAYMmSJahVq5bMERHpV9++fTFp0iQAwIgRI6T+ryQ/JhVlKJ5UmDJ1TcX58+fZ/pCIqArJy8vDiy++iPz8fISHh+Pll1+WOyQig5g3bx66d++OrKwsDBgwAA8ePJA7JAKTijLFxsYCMN1O2mq1a9eGq6srCgsLcfbsWbnDISIiHZk2bRrOnj0LNzc3rFixwqRr1Ym0YWlpiXXr1sHf3x/Xr1/H0KFDUVhYKHdY1R6TilIUFhbi9OnTAEy/pkKhUEhNoE6cOCFzNEREpAt79uzBZ599BgBYsWIFPDw8ZI6IyLBq1qyJzZs3w87ODnv27MEbb7zBifFkxqSiFGfOnEF2djYcHR1Ndo6K4tRNoP7++2+ZIyEiosq6efMmnn/+eQghMHbsWAwYMEDukIhk0axZM/z4449QKBRYvnw5ZsyYIXdI1RqTilIcOXIEANC+fXuYmZn+JerQoQMA4NChQzJHQkRElZGbm4tnnnkG9+/fR6tWrfDll1/KHRKRrAYNGoSvv/4aADBr1ixpvhYyPNP/xqwHhw8fBgB07NhR5kh0o1OnTlAoFLhy5QoSExPlDoeIiCpACIHx48fj5MmTcHV1xYYNGzjJHRGA1157DbNmzQIAvPXWW/jxxx9ljqh6YlJRCnVNhfoXflPn7OwsTYJ38OBBmaMhIqKKWLRoEVavXg0zMzOsWbMGderUkTskIqPx4Ycf4s033wQAjBw5Et9//73MEVU/TCr+Iy4uDgkJCbCwsEDbtm3lDkdnunTpAgA4cOCAzJEQEZG2fvrpJ7zzzjsAgM8++ww9e/aUOSIi46JQKLB48WKMHz9e6m/01VdfyR1WtcKk4j92794N4FF/Cnt7e5mj0Z2uXbsCAPbv3y9zJEREpI2oqCiMHj0aADBp0iS8/fbbMkdEZJzMzMywdOlSaXK8N954A3PmzOGoUAbCpOI/1ElFr169ZI5Etzp37gwAOHfuHPtVEBGZiKNHj+LZZ59FYWEhXnjhBXz22Wecj4LoMRQKBRYsWCDNNP/BBx9gzJgxyM/Plzmyqo9JRTGFhYXYt28fgKqXVLi5uaFNmzYAgG3btskcDRERPUlMTAx69eqFnJwc9O7dGytXrqwSIxIS6ZtCocDHH3+ML774AmZmZli1ahV69eqFe/fuyR1alca7UzH79+9HWloaatasiVatWskdjs71798fAPDHH3/IHAkRET3O9u3b0bdvX2RnZ6NXr174/fffYWVlJXdYRCbljTfewLZt2+Do6IgDBw6gdevWOHbsmNxhVVlMKorZsGEDAGDgwIGwsLCQORrdUycVu3fvRnZ2tszREBFRadasWYOBAwfi4cOHePrpp7FlyxbY2dnJHRaRSerTpw+OHj2KunXr4saNG+jUqRM+/fRTqFQquUOrcphU/L+ioiJs3LgRAPDss8/KHI1+tGjRAv7+/sjJycGWLVvkDoeIiIpRqVT44IMPMGzYMBQUFGDo0KFYv34956IgqqTGjRvjxIkTGDJkCAoLCzF58mT06dMHN2/elDu0KoVJxf/bvXs3kpKS4OLiUmWH6lMoFHjxxRcBPBqekIiIjENGRgYGDhyIOXPmAADeffdd/Pzzz7C0tJQ5MqKqwdnZGWvWrMGKFStgY2OD3bt3o0mTJliyZAmKiorkDq9KYFLx/7777jsAwEsvvVSl262+8MILAICdO3fi9u3bMkdDRERHjx5Fy5YtsXXrViiVSvz444/49NNPYW5uLndoRFWKQqHA2LFjcfLkSXTu3BnZ2dl4++230a5dOxw+fFju8EwekwoAd+7cwebNmwEAY8aMkTka/QoMDETnzp1RVFSEr7/+Wu5wiIiqrfz8fHzwwQfo1KkT4uLi4OPjg4MHD0o1ykSkHw0bNkRMTAy++eYbODk54fjx4+jUqROeeeYZXL58We7wTBaTCgALFy5EYWEhOnfujObNm8sdjt5NnDgRAPDNN9+wwzYRkQxiYmLQqlUrzJkzByqVCi+++CLOnDmD1q1byx0aUbVgZmaGV155BZcuXcK4ceNgZmaGjRs3okmTJnjppZdw7tw5uUM0OdU+qUhKSsLy5csBAO+//77M0RjGgAEDUK9ePdy/fx9LliyROxwiomrjxo0bGDx4MLp3746zZ8+iRo0aWLduHX788Uc4OzvLHR5RtePp6Ylvv/0WZ8+eRf/+/VFUVISffvoJzZo1w9NPP409e/ZwpKhyqvZJxZQpU5CTk4M2bdogLCxM7nAMwtzcHB9//DEAYP78+Zxhm4hIz65fv45XX30VDRo0wPr162FmZobXX38dV65cwXPPPSd3eETVXuPGjbF161b8/fffeO6556BQKLB161b06tULDRo0wPz583Hnzh25wzRqCiGEkDuIJ8nIyICTkxPS09Ph6Oios/3u3r0bvXv3BgD8+eefaNu2rc72bexUKhXatWuHv//+G+Hh4di8eTMUCoXcYRGRDPR1jzUEY45dCIE///wTS5cuxZo1a6QRZnr06IHFixdXi+a2RKbqypUr+Pzzz/HTTz8hIyMDwKOO3l26dMGQIUMwaNAgeHl5yRyl/mlzj622ScXNmzfRtm1bJCcnY/z48dWy0/LZs2cREhKCgoICfPbZZ3jnnXfkDomIZGDMX8yfxBhjv3PnDtatW4cVK1bg/Pnz0vo+ffpIHbOJyDRkZ2dj7dq1+P7773HkyBGN94KDg/HUU0+hd+/eaNOmTZWcU0abe2yFmj8tXboUfn5+sLa2Rtu2bfHXX389tvy6devQsGFDWFtbo1mzZti+fXtFDqszN2/eRO/evZGcnIxmzZph4cKFssYjl+Ln/t5771XLxIqIdMvUnw8VIYTAhQsXsHjxYnTq1Am1a9fGxIkTcf78edjY2GDUqFE4fvw4duzYwYSCyMTY2dnh5ZdfxuHDh3Hz5k189tlnaNOmDQDg1KlT+OSTT9C1a1c4OzujS5cueP/99/H777/j5s2bMIHf7XVLaGnNmjXCyspKrFy5Upw/f16MGzdOODs7i+Tk5FLLHz58WJibm4tPP/1UXLhwQXz44YfC0tJSnD17ttzHTE9PFwBEenq6tuGWsHXrVuHq6ioAiDp16ohbt25Vep+mTKVSiYkTJwoAAoB47bXXREZGhtxhEZEB6eoea+rPh/LKz88XJ06cEMuWLRMvvvii8PLyku6h6qVdu3biq6++EqmpqQaLi4gMJykpSaxevVoMHTpUeHh4lLgHABA1a9YUXbp0EePHjxdffvmliIqKElevXhX5+flyh19u2txjtW7+1LZtW7Ru3RpfffUVgEdt8318fPDGG29gypQpJcoPHToU2dnZ+OOPP6R17dq1Q4sWLaRRl56kstXbWVlZ2LVrF5YuXYp9+/YBAFq2bIlNmzbBx8dH6/1VNUIIzJo1CzNmzAAAuLu7IyIiAs8//zzq168vb3BEpHe6akJkis+HxyksLMSNGzdw9epVXLx4EefOncPZs2dx7tw5PHz4UKOstbU1OnfujKeffhqDBg1CrVq1dBoLERkvIQSuXbuGAwcO4NixYzh+/DjOnj2LwsLCUsubm5vD29sbPj4+8PHxgbe3Nzw9PeHp6Qk3Nze4urqiZs2aqFGjBhwdHWFmJt+4StrcYy202XF+fj5OnDiBqVOnSuvMzMwQGhqKo0ePlrrN0aNHMWnSJI11YWFh2LRpkzaHBgCcO3cONjY2KCoqKnUpLCxERkYG7t+/j/v37yMuLg4XLlzAyZMnUVBQAACwtLTExIkTMWPGDNja2modQ1WkUCgwffp0dOrUCa+88gquX7+OadOmYdq0afDz80OLFi0QGBgIDw8PuLu7w9HREdbW1lAqlbC2toaVlZXUybv4n6WtK+1PIpJXVlZWpfch9/OhIh4+fIhbt24hISEBt27dwq1bt3Dz5k3cuHEDN27cwM2bN8v8UuDk5IQ2bdqgbdu26NGjB9q3b18l21MT0ZMpFArUr18f9evXlyZRfvjwIS5evIjz58/j3LlzuHjxIuLi4hAXFyfde27dulWufTs4OMDJyQn29vZwcHCAvb097OzsYGtrC1tbW1hbW8PGxkb6TqZUKmFlZQVLS0vpz5o1a2LAgAF6vQ5aJRX37t1DUVERPDw8NNZ7eHjg0qVLpW6TlJRUavmkpKQyj5OXl4e8vDzptbrXfceOHbUJV4Ovry+ef/55vPbaa/Dz86vwfqqynj174tKlS1i7di0iIyOxf/9+6eFKRPQ4cj8fKuL7779HRETEY8tYW1sjICAAgYGBaNq0KZo1a4ZmzZohICBA1l8Pici4WVtbIzg4GMHBwRrrVSoVkpKSNH7QSEpKkpZ79+5JS25uLoQQyMjIqNS9DgAaNWpkXEmFocydOxczZ84ssd7NzQ2WlpYwNzcvc3F0dJSqjHx9fdGwYUO0bNkS9erV4y/j5WBpaYkXX3wRL774ItLT03Hy5EmcOXMG169fR0pKCpKTk5GVlSU92B8+fIj8/HypM1LxP8v6e/E/iUh+QgikpaXJHUa5lPV8qAgfHx/Y2dlJTRB8fHzg6+sLPz8/+Pn5oW7duvD29mbyQEQ6Y2ZmBm9vb3h7ez9xKoO8vDykp6cjLS0N6enpyMzMRFZWFjIzM5Gbm4ucnBxkZ2cjLy8Pubm5ePjwIfLy8pCfn4+8vDwUFBRIS+3atfV+blolFa6urjA3N0dycrLG+uTkZHh6epa6jaenp1blAWDq1KkaVeIZGRnw8fHBtWvXjGbIwOrAyckJ3bt3R/fu3eUOhYj0SN1mtjLkfj5URP/+/ZGZmckfnIjIKCmVSri7u8Pd3V3uUMpFq59frKysEBISgr1790rrVCoV9u7di/bt25e6Tfv27TXKA48mnSurPPDoIjo6OmosRERkvEzx+WBmZsaEgohIR7Ru/jRp0iSMHDkSrVq1Qps2bbBkyRJkZ2dj9OjRAIARI0agVq1amDt3LgDgrbfeQteuXbFw4UL069cPa9aswfHjx/Htt9/q9kyIiEhWfD4QEVVfWicVQ4cOxd27dzFt2jQkJSWhRYsWiIqKkjrbJSQkaLQ/7dChA3755Rd8+OGHeP/991G/fn1s2rQJTZs21d1ZEBGR7Ph8ICKqvrSep0IO+hyHnIioujPle6wpx05EZOy0ucdySAsiIiIiIqoUJhVERERERFQpTCqIiIiIiKhSmFQQEREREVGlMKkgIiIiIqJKYVJBRERERESVwqSCiIiIiIgqRevJ7+SgnkojIyND5kiIiKoe9b3VBKYtKoHPByIi/dHm+WASScX9+/cBAD4+PjJHQkRUdWVmZsLJyUnuMLSSmZkJgM8HIiJ9Ks/zwSRm1E5LS4OLiwsSEhJM7oH3XxkZGfDx8cGtW7dMfvbXqnQuQNU6H56LcTLWcxFCIDMzE97e3jAzM61WsSqVCnfu3IGDgwMUCoXW2xvrZ2IKeO0qjteu4njtKkfb66fN88EkairUJ+Hk5FRl/gE5OjryXIxUVTofnotxMsZzMdUfbMzMzFC7du1K78cYPxNTwWtXcbx2FcdrVznaXL/yPh9M6ycpIiIiIiIyOkwqiIiIiIioUkwiqVAqlZg+fTqUSqXcoVQaz8V4VaXz4bkYp6p0LlUFP5OK47WrOF67iuO1qxx9Xj+T6KhNRERERETGyyRqKoiIiIiIyHgxqSAiIiIiokphUkFERERERJUiS1KxdOlS+Pn5wdraGm3btsVff/312PLr1q1Dw4YNYW1tjWbNmmH79u0a7wshMG3aNHh5ecHGxgahoaG4evWqPk9Bgzbns2LFCnTu3BkuLi5wcXFBaGhoifKjRo2CQqHQWPr06aPv0wCg3blERkaWiNPa2lqjjJyfjTbn0q1btxLnolAo0K9fP6mMXJ/LgQMHEB4eDm9vbygUCmzatOmJ28TExKBly5ZQKpUICAhAZGRkiTLa/j/UBW3P5ffff0evXr3g5uYGR0dHtG/fHjt37tQoM2PGjBKfS8OGDfV4Fv/S9nxiYmJK/XeWlJSkUU6Oz6Yq0/UzpzrR9TOhutDXfbs60Nd9tTqYO3cuWrduDQcHB7i7u2PgwIG4fPnyE7fT1T3P4EnF2rVrMWnSJEyfPh0nT55EUFAQwsLCkJKSUmr5I0eOYNiwYRgzZgxOnTqFgQMHYuDAgTh37pxU5tNPP8UXX3yB5cuX49ixY7Czs0NYWBgePnxodOcTExODYcOGITo6GkePHoWPjw969+6N27dva5Tr06cPEhMTpeXXX381unMBHk2eUjzOmzdvarwv12ej7bn8/vvvGudx7tw5mJubY/DgwRrl5PhcsrOzERQUhKVLl5arfHx8PPr164fu3bsjNjYWEydOxNixYzW+jFfks9YFbc/lwIED6NWrF7Zv344TJ06ge/fuCA8Px6lTpzTKNWnSRONzOXTokD7CL0Hb81G7fPmyRrzu7u7Se3J9NlWVPp451YU+ngnVhT7u29WFPu6r1cX+/fsxYcIE/Pnnn9i9ezcKCgrQu3dvZGdnl7mNTu95wsDatGkjJkyYIL0uKioS3t7eYu7cuaWWHzJkiOjXr5/GurZt24pXX31VCCGESqUSnp6e4rPPPpPeT0tLE0qlUvz66696OANN2p7PfxUWFgoHBwexevVqad3IkSPFgAEDdB3qE2l7LqtWrRJOTk5l7k/Oz6ayn8vixYuFg4ODyMrKktbJ9bkUB0Bs3LjxsWXee+890aRJE411Q4cOFWFhYdLryl4fXSjPuZSmcePGYubMmdLr6dOni6CgIN0FVkHlOZ/o6GgBQKSmppZZxhg+m6pE18+c6kTXz4TqSlf37epIV/fV6iolJUUAEPv37y+zjC7veQatqcjPz8eJEycQGhoqrTMzM0NoaCiOHj1a6jZHjx7VKA8AYWFhUvn4+HgkJSVplHFyckLbtm3L3KeuVOR8/isnJwcFBQWoUaOGxvqYmBi4u7sjMDAQ48ePx/3793Ua+39V9FyysrLg6+sLHx8fDBgwAOfPn5fek+uz0cXn8v333+P555+HnZ2dxnpDfy4V8aT/M7q4PnJRqVTIzMws8f/l6tWr8Pb2Rt26dfHCCy8gISFBpgjLp0WLFvDy8kKvXr1w+PBhab0pfzbGSB/PnOpCH88EKhv/3VVeWffV6iw9PR0ASjwzi9Plvz2DJhX37t1DUVERPDw8NNZ7eHiU2fYtKSnpseXVf2qzT12pyPn81+TJk+Ht7a3xgfbp0wc//PAD9u7di/nz52P//v3o27cvioqKdBp/cRU5l8DAQKxcuRKbN2/GTz/9BJVKhQ4dOuCff/4BIN9nU9nP5a+//sK5c+cwduxYjfVyfC4VUdb/mYyMDOTm5urk361cFixYgKysLAwZMkRa17ZtW0RGRiIqKgrLli1DfHw8OnfujMzMTBkjLZ2XlxeWL1+ODRs2YMOGDfDx8UG3bt1w8uRJALq5p9C/9PHMqS708Uygsj3pvk1le9J9tbpSqVSYOHEiOnbsiKZNm5ZZTpf3PAuttyCdmTdvHtasWYOYmBiNzmzPP/+89PdmzZqhefPmqFevHmJiYtCzZ085Qi1V+/bt0b59e+l1hw4d0KhRI3zzzTf4+OOPZYyscr7//ns0a9YMbdq00VhvKp9LVfXLL79g5syZ2Lx5s0Zb2b59+0p/b968Odq2bQtfX1/89ttvGDNmjByhlikwMBCBgYHS6w4dOiAuLg6LFy/Gjz/+KGNkRJVXVZ8JZNx4Xy3dhAkTcO7cOYP1MQQMXFPh6uoKc3NzJCcna6xPTk6Gp6dnqdt4eno+trz6T232qSsVOR+1BQsWYN68edi1axeaN2/+2LJ169aFq6srrl27VumYy1KZc1GztLREcHCwFKdcn01lziU7Oxtr1qwp15dRQ3wuFVHW/xlHR0fY2Njo5LM2tDVr1mDs2LH47bffSlTT/pezszMaNGhgdJ9LWdq0aSPFaoqfjTHTxzOnutDHM4HK9qT7Nmmn+H21OoqIiMAff/yB6Oho1K5d+7FldXnPM2hSYWVlhZCQEOzdu1dap1KpsHfvXo1fN4pr3769RnkA2L17t1Te398fnp6eGmUyMjJw7NixMvepKxU5H+DRiEgff/wxoqKi0KpVqyce559//sH9+/fh5eWlk7hLU9FzKa6oqAhnz56V4pTrs6nMuaxbtw55eXl48cUXn3gcQ3wuFfGk/zO6+KwN6ddff8Xo0aPx66+/agzxW5asrCzExcUZ3edSltjYWClWU/tsjJ0+njnVhT6eCVQ2/rvTreL31epECIGIiAhs3LgR+/btg7+//xO30em/Pa27dlfSmjVrhFKpFJGRkeLChQvilVdeEc7OziIpKUkIIcRLL70kpkyZIpU/fPiwsLCwEAsWLBAXL14U06dPF5aWluLs2bNSmXnz5glnZ2exefNmcebMGTFgwADh7+8vcnNzje585s2bJ6ysrMT69etFYmKitGRmZgohhMjMzBTvvPOOOHr0qIiPjxd79uwRLVu2FPXr1xcPHz40qnOZOXOm2Llzp4iLixMnTpwQzz//vLC2thbnz5/XOF85Phttz0WtU6dOYujQoSXWy/m5ZGZmilOnTolTp04JAGLRokXi1KlT4ubNm0IIIaZMmSJeeuklqfz169eFra2tePfdd8XFixfF0qVLhbm5uYiKipLKPOn6GMu5/Pzzz8LCwkIsXbpU4/9LWlqaVOZ///ufiImJEfHx8eLw4cMiNDRUuLq6ipSUFL2eS0XOZ/HixWLTpk3i6tWr4uzZs+Ktt94SZmZmYs+ePVIZuT6bqkofz5zqQh/PhOpCH/ft6kIf99XqYvz48cLJyUnExMRoPDNzcnKkMvq85xk8qRBCiC+//FLUqVNHWFlZiTZt2og///xTeq9r165i5MiRGuV/++030aBBA2FlZSWaNGkitm3bpvG+SqUSH330kfDw8BBKpVL07NlTXL582RCnIoTQ7nx8fX0FgBLL9OnThRBC5OTkiN69ews3NzdhaWkpfH19xbhx4wz2hUKbc5k4caJU1sPDQzz11FPi5MmTGvuT87PR9t/ZpUuXBACxa9euEvuS83NRD5f330Ud/8iRI0XXrl1LbNOiRQthZWUl6tatK1atWlViv4+7PsZyLl27dn1seSEeDbvo5eUlrKysRK1atcTQoUPFtWvX9H4uFTmf+fPni3r16glra2tRo0YN0a1bN7Fv374S+5Xjs6nKdP3MqU50/UyoLvR1364O9HVfrQ5Ku24ANP4t6fOep/j/IIiIiIiIiCrE4DNqExERERFR1cKkgoiIiIiIKoVJBRERERERVQqTCiIiIiIiqhQmFUREREREVClMKoiIiIiIqFKYVBARERERUaUwqSAiIiIiokphUkEEICYmBgqFAmlpabIcf+/evWjUqBGKioqeWDYqKgotWrSASqUyQGRUEQcOHEB4eDi8vb2hUCiwadMm2Y83Y8YMNGzYEHZ2dnBxcUFoaCiOHTum17iIdEkIgVdeeQU1atSAQqFAbGys3CEZrfz8fAQEBODIkSM63S+fP4ZX2efJw4cPMWrUKDRr1gwWFhYYOHDgY8sfPnwYFhYWaNGihdaxMqmgaqdbt26YOHGixroOHTogMTERTk5OssT03nvv4cMPP4S5ufkTy/bp0weWlpb4+eefDRAZVUR2djaCgoKwdOlSozlegwYN8NVXX+Hs2bM4dOgQ/Pz80Lt3b9y9e9cgMRJVVlRUFCIjI/HHH38gMTERTZs2lTsko7V8+XL4+/ujQ4cO0rqyvpCOGjXqiV801fj8MbzKPk+KiopgY2ODN998E6GhoY8tm5aWhhEjRqBnz54VOhaTCiIAVlZW8PT0hEKhMPixDx06hLi4ODz77LPl3mbUqFH44osv9BgVVUbfvn0xe/ZsDBo0qNT38/Ly8M4776BWrVqws7ND27ZtERMTo7fjAcDw4cMRGhqKunXrokmTJli0aBEyMjJw5syZCh+XyJDi4uLg5eWFDh06wNPTExYWFiXK5OfnyxCZcRFC4KuvvsKYMWP0sn8+fwyrss8TOzs7LFu2DOPGjYOnp+djj/Xaa69h+PDhaN++fYViZVJB1cqoUaOwf/9+fP7551AoFFAoFLhx40aJ5k+RkZFwdnbGH3/8gcDAQNja2uK5555DTk4OVq9eDT8/P7i4uODNN9/UaLJUkS+La9asQa9evWBtbS2tO336NLp37w4HBwc4OjoiJCQEx48fl94PDw/H8ePHERcXp9PrQ4YRERGBo0ePYs2aNThz5gwGDx6MPn364OrVqwY5fn5+Pr799ls4OTkhKCjIIMckqoxRo0bhjTfeQEJCAhQKBfz8/AA8qnmOiIjAxIkT4erqirCwMADAuXPn0LdvX9jb28PDwwMvvfQS7t27J+0vOzsbI0aMgL29Pby8vLBw4cIStdil/bLv7OyMyMhI6fWtW7cwZMgQODs7o0aNGhgwYABu3LihEffAgQOxYMECeHl5oWbNmpgwYQIKCgqkMnl5eZg8eTJ8fHygVCoREBCA77//HkIIBAQEYMGCBRoxxMbGQqFQ4Nq1a6VeqxMnTiAuLg79+vXT4go/cuPGDenZWHzp1q2bVIbPH+Oiq+fJqlWrcP36dUyfPr3CsTCpoGrl888/R/v27TFu3DgkJiYiMTERPj4+pZbNycnBF198gTVr1iAqKgoxMTEYNGgQtm/fju3bt+PHH3/EN998g/Xr10vbVOQ/98GDB9GqVSuNdS+88AJq166Nv//+GydOnMCUKVNgaWkpvV+nTh14eHjg4MGDlbwiZGgJCQlYtWoV1q1bh86dO6NevXp455130KlTJ6xatUqvx/7jjz9gb28Pa2trLF68GLt374arq6tej0mkC59//jlmzZqF2rVrIzExEX///bf03urVq2FlZYXDhw9j+fLlSEtLQ48ePRAcHIzjx48jKioKycnJGDJkiLTNu+++i/3792Pz5s3YtWsXYmJicPLkSa1iKigoQFhYGBwcHHDw4EEcPnwY9vb26NOnj0aNSXR0NOLi4hAdHY3Vq1cjMjJSIzEZMWIEfv31V3zxxRe4ePEivvnmG9jb20OhUODll18ucV9YtWoVunTpgoCAgFLjOnjwIBo0aAAHBwetzgcAfHx8pGdjYmIiTp06hZo1a6JLly5SGT5/jIeunidXr17FlClT8NNPP5VaA1heFd+SyAQ5OTnBysoKtra2T6wGLCgowLJly1CvXj0AwHPPPYcff/wRycnJsLe3R+PGjdG9e3dER0dj6NCh0n/uhIQEeHt7AwDeeecdREVFYdWqVZgzZ06px7l586ZUXi0hIQHvvvsuGjZsCACoX79+ie28vb1x8+ZNra8Byevs2bMoKipCgwYNNNbn5eWhZs2aAIBLly6hUaNGj93P5MmTMW/ePK2O3b17d8TGxuLevXtYsWIFhgwZgmPHjsHd3V27kyAyMCcnJzg4OMDc3LzEvbt+/fr49NNPpdezZ89GcHCwxj135cqV8PHxwZUrV+Dt7Y3vv/8eP/30k9R2fPXq1ahdu7ZWMa1duxYqlQrfffed1HR21apVcHZ2RkxMDHr37g0AcHFxwVdffQVzc3M0bNgQ/fr1w969ezFu3DhcuXIFv/32G3bv3i21d69bt650jFGjRmHatGn466+/0KZNGxQUFOCXX34pUXtRXGnPFLVhw4aV6LuXl5cn1WoUv74PHz7EwIED0b59e8yYMUNjGz5/jEN5nidPUlRUhOHDh2PmzJkl9qMtJhVEZbC1tZUSCgDw8PCAn58f7O3tNdalpKQAqPh/7tzcXI2mTwAwadIkjB07Fj/++CNCQ0MxePBgjVgAwMbGBjk5ORU+P5JHVlYWzM3NceLEiRIPd/W/rbp16+LixYuP3U95HxjF2dnZISAgAAEBAWjXrh3q16+P77//HlOnTtV6X0TGIiQkROP16dOnER0drXGvVouLi0Nubi7y8/PRtm1baX2NGjUQGBio1XFPnz6Na9eulagRePjwoUbToCZNmmj8X/fy8sLZs2cBPGrKZG5ujq5du5Z6DG9vb/Tr1w8rV65EmzZtsHXrVuTl5WHw4MFlxlXaM0Vt8eLFJTrrTp48udSRB19++WVkZmZi9+7dMDPTbNjC549xKM/z5EkyMzNx/PhxnDp1ChEREQAAlUoFIQQsLCywa9cu9OjRo1z7YlJBVIbizY2AR+1rS1unHlqvov+5XV1dkZqaqrFuxowZGD58OLZt24YdO3Zg+vTpWLNmjUZHrQcPHsDNza1C50byCQ4ORlFREVJSUtC5c+dSy1hZWf1fe3cX0tQfxgH8a+J0WhqxtBXpenEGku3YTXf2QgWCmUQvYk3L3iDJLKQisIgiFMIuyuimdVtkRdGLF9lqBekGhZiYMWakKDQn5WJMaM//Iv4H11Knm9X/7/cDXpzD75zz28GdZ8/5Ped31FGqqRQIBOD3+6f8OERTKSkpKWjZ6/WioKAAtbW1IW31ev2ozyL8LCYmBiIStG7ksxBerxcrV6785UxII6/NY8UNrVY7bj/27t2LXbt2ob6+HhaLBdu3b0diYuKo7XU6nZq0/GzevHkhZVOzZs0KmU793LlzaGpqQmtr6y/LqBh//g7hxJPxJCcnh/y/NDQ0oLm5Gbdv38aiRYvC3heTCpp2NBpNWO+DmKjJfrkVRUFHR0fIeqPRCKPRiKqqKhQXF8NisahJxb93whRFiVr/KXq8Xm/QDxeXy4W3b99izpw5MBqNKCkpgdlsxsWLF6EoCj5//oynT58iJydnUg9XjnW89PR0fPv2DefPn8emTZug1+vhdrtx5coV9Pb2jnnHk+i/KDc3F42NjTAYDL+sD1+yZAni4uLQ0tKC9PR0AMDg4CC6urqCRgzmzp2Lvr4+dfnDhw9Bd+dzc3Nx8+ZNpKamIjk5eVJ9Xb58OQKBAJ4/fz7qdJ/5+fnqDD5PnjzBixcvxtynoii4evUqRGRSMxo2Njbi7NmzePz4ccgIOcD487tFI550dHRgeHgYHo8HQ0ND6jteTCYTZsyYETI9c2pqKhISEiY8bTMf1KZpx2AwoKWlBd3d3XC73VF7ic/IL/edO3fgcrnQ2tqKCxcu4OHDh6Nut3HjRrx8+VJd9vl8qKiogNVqxcePH/Hq1SvY7fagGvvXr18jPj5+0tO+0dRyOBxQFEUNukePHoWiKKipqQHwo+7abDbj2LFjyMrKwubNm2G329UfONE+XmxsLDo7O7FlyxYYjUYUFBRgYGAANpsN2dnZUfjERH+PQ4cOwePxoLi4GHa7HU6nE01NTdi9eze+f/+OmTNnory8HNXV1WhubkZ7ezvKyspCSnzWrl2Ly5cv482bN3A4HDh48GDQqENJSQl0Oh0KCwths9ngcrlgtVpx+PBh9PT0hNVXg8GA0tJS7NmzB/fu3VP3cevWLbVNbGwsysrKcPLkSWRmZo573V+zZg28Xi/evXs3gbP2Q3t7O8xmM44fP47s7Gz09/ejv78fHo9HbcP483tFI57k5+dDURQ8ePAAVqs1aH9RJUTTzPv372XVqlWi1WoFgLhcLnn27JkAkMHBQRERsVgskpKSErTd6dOnZcWKFUHrSktLpbCwUF0eHh6WmpoaMRgMEhcXJ3q9XoqKiqStrW3U/gwMDEhCQoJ0dnaKiIjf75cdO3bIwoULRaPRyPz586WiokJ8Pp+6zf79++XAgQMRnQciov+S+vp6ycjICFqXl5cnlZWVIW27urqkqKhIZs+eLVqtVpYtWyZHjhyRQCAgIiJDQ0Oyc+dOSUxMlLS0NKmrqwvZV29vr2zYsEGSkpIkMzNTHj16JCkpKWKxWNQ2fX19YjabRafTSXx8vCxevFj27dsnX758EZHQGCEiUllZKXl5eeqyz+eTqqoq0ev1otFoZOnSpXL9+vWgbZxOpwCQurq6sM7Vtm3b5MSJE0HrAMjdu3dD2o7so8ViEQAhfyP7y/hDo4kR+algkIh+u+rqanz9+hXXrl0bt63b7UZWVhYcDseEah2JiGh0q1evhslkwqVLl/50V0LYbDasW7cOnz59Qlpa2rjt29rasH79ejidzrAf2A0H4w+NheVPRH+BU6dOISMjI6xSrO7ubjQ0NPCCTkT0P+f3+9HT04MzZ85g69atYSUUAJCTk4Pa2lq4XK6o9ofxh8bCkQoiIiKa9v7GkYobN26gvLwcJpMJ9+/fx4IFC/50l4hGxaSCiIiIiIgiwvInIiIiIiKKCJMKIiIiIiKKCJMKIiIiIiKKCJMKIiIiIiKKCJMKIiIiIiKKCJMKIiIiIiKKCJMKIiIiIiKKCJMKIiIiIiKKCJMKIiIiIiKKyD8eMByMgSBERAAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -508,42 +465,10 @@ } }, "outputs": [ - { - "data": { - "text/html": [ - "
[10:06:16] Created task 'sim_0' with task_id                       webapi.py:188\n",
-       "           'fdve-6f0e6891-d719-4100-b368-de8aa51a95e6v1'.                       \n",
-       "
\n" - ], - "text/plain": [ - "\u001b[2;36m[10:06:16]\u001b[0m\u001b[2;36m \u001b[0mCreated task \u001b[32m'sim_0'\u001b[0m with task_id \u001b]8;id=378347;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=908184;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#188\u001b\\\u001b[2m188\u001b[0m\u001b]8;;\u001b\\\n", - "\u001b[2;36m \u001b[0m\u001b[32m'fdve-6f0e6891-d719-4100-b368-de8aa51a95e6v1'\u001b[0m. \u001b[2m \u001b[0m\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "
           View task using web UI at                               webapi.py:190\n",
-       "           'https://tidy3d.simulation.cloud/workbench?taskId=fdve-              \n",
-       "           6f0e6891-d719-4100-b368-de8aa51a95e6v1'.                             \n",
-       "
\n" - ], - "text/plain": [ - "\u001b[2;36m \u001b[0m\u001b[2;36m \u001b[0mView task using web UI at \u001b]8;id=965528;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=203142;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#190\u001b\\\u001b[2m190\u001b[0m\u001b]8;;\u001b\\\n", - "\u001b[2;36m \u001b[0m\u001b]8;id=204438;https://tidy3d.simulation.cloud/workbench?taskId=fdve-6f0e6891-d719-4100-b368-de8aa51a95e6v1\u001b\\\u001b[32m'https://tidy3d.simulation.cloud/workbench?\u001b[0m\u001b]8;;\u001b\\\u001b]8;id=971257;https://tidy3d.simulation.cloud/workbench?taskId=fdve-6f0e6891-d719-4100-b368-de8aa51a95e6v1\u001b\\\u001b[32mtaskId\u001b[0m\u001b]8;;\u001b\\\u001b]8;id=204438;https://tidy3d.simulation.cloud/workbench?taskId=fdve-6f0e6891-d719-4100-b368-de8aa51a95e6v1\u001b\\\u001b[32m=\u001b[0m\u001b]8;;\u001b\\\u001b]8;id=952808;https://tidy3d.simulation.cloud/workbench?taskId=fdve-6f0e6891-d719-4100-b368-de8aa51a95e6v1\u001b\\\u001b[32mfdve\u001b[0m\u001b]8;;\u001b\\\u001b]8;id=204438;https://tidy3d.simulation.cloud/workbench?taskId=fdve-6f0e6891-d719-4100-b368-de8aa51a95e6v1\u001b\\\u001b[32m-\u001b[0m\u001b]8;;\u001b\\ \u001b[2m \u001b[0m\n", - "\u001b[2;36m \u001b[0m\u001b]8;id=204438;https://tidy3d.simulation.cloud/workbench?taskId=fdve-6f0e6891-d719-4100-b368-de8aa51a95e6v1\u001b\\\u001b[32m6f0e6891-d719-4100-b368-de8aa51a95e6v1'\u001b[0m\u001b]8;;\u001b\\. \u001b[2m \u001b[0m\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "0eb04c956fa4476c88c09ca0af26f438", + "model_id": "52e5d90efd6741638ccab28fa5bf64ca", "version_major": 2, "version_minor": 0 }, @@ -580,67 +505,11 @@ { "data": { "text/html": [ - "
[10:06:17] Created task 'sim_1' with task_id                       webapi.py:188\n",
-       "           'fdve-11e84743-7c10-413e-a81b-cd6d73f958a9v1'.                       \n",
-       "
\n" - ], - "text/plain": [ - "\u001b[2;36m[10:06:17]\u001b[0m\u001b[2;36m \u001b[0mCreated task \u001b[32m'sim_1'\u001b[0m with task_id \u001b]8;id=6811;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=692030;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#188\u001b\\\u001b[2m188\u001b[0m\u001b]8;;\u001b\\\n", - "\u001b[2;36m \u001b[0m\u001b[32m'fdve-11e84743-7c10-413e-a81b-cd6d73f958a9v1'\u001b[0m. \u001b[2m \u001b[0m\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "
           View task using web UI at                               webapi.py:190\n",
-       "           'https://tidy3d.simulation.cloud/workbench?taskId=fdve-              \n",
-       "           11e84743-7c10-413e-a81b-cd6d73f958a9v1'.                             \n",
-       "
\n" - ], - "text/plain": [ - "\u001b[2;36m \u001b[0m\u001b[2;36m \u001b[0mView task using web UI at \u001b]8;id=853328;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=123154;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#190\u001b\\\u001b[2m190\u001b[0m\u001b]8;;\u001b\\\n", - "\u001b[2;36m \u001b[0m\u001b]8;id=229193;https://tidy3d.simulation.cloud/workbench?taskId=fdve-11e84743-7c10-413e-a81b-cd6d73f958a9v1\u001b\\\u001b[32m'https://tidy3d.simulation.cloud/workbench?\u001b[0m\u001b]8;;\u001b\\\u001b]8;id=602571;https://tidy3d.simulation.cloud/workbench?taskId=fdve-11e84743-7c10-413e-a81b-cd6d73f958a9v1\u001b\\\u001b[32mtaskId\u001b[0m\u001b]8;;\u001b\\\u001b]8;id=229193;https://tidy3d.simulation.cloud/workbench?taskId=fdve-11e84743-7c10-413e-a81b-cd6d73f958a9v1\u001b\\\u001b[32m=\u001b[0m\u001b]8;;\u001b\\\u001b]8;id=933519;https://tidy3d.simulation.cloud/workbench?taskId=fdve-11e84743-7c10-413e-a81b-cd6d73f958a9v1\u001b\\\u001b[32mfdve\u001b[0m\u001b]8;;\u001b\\\u001b]8;id=229193;https://tidy3d.simulation.cloud/workbench?taskId=fdve-11e84743-7c10-413e-a81b-cd6d73f958a9v1\u001b\\\u001b[32m-\u001b[0m\u001b]8;;\u001b\\ \u001b[2m \u001b[0m\n", - "\u001b[2;36m \u001b[0m\u001b]8;id=229193;https://tidy3d.simulation.cloud/workbench?taskId=fdve-11e84743-7c10-413e-a81b-cd6d73f958a9v1\u001b\\\u001b[32m11e84743-7c10-413e-a81b-cd6d73f958a9v1'\u001b[0m\u001b]8;;\u001b\\. \u001b[2m \u001b[0m\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "dfd90ebf21da4d9885c197c07dd11d06", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "Output()" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "
\n"
-      ],
-      "text/plain": []
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    },
-    {
-     "data": {
-      "text/html": [
-       "
\n",
+       "
14:04:45 -03 Started working on Batch containing 12 tasks.                      \n",
        "
\n" ], "text/plain": [ - "\n" + "\u001b[2;36m14:04:45 -03\u001b[0m\u001b[2;36m \u001b[0mStarted working on Batch containing \u001b[1;36m12\u001b[0m tasks. \n" ] }, "metadata": {}, @@ -649,13 +518,11 @@ { "data": { "text/html": [ - "
[10:06:18] Created task 'sim_2' with task_id                       webapi.py:188\n",
-       "           'fdve-7c275afb-12d7-49f8-8acc-45c7673126eav1'.                       \n",
+       "
14:04:56 -03 Maximum FlexCredit cost: 0.300 for the whole batch.                \n",
        "
\n" ], "text/plain": [ - "\u001b[2;36m[10:06:18]\u001b[0m\u001b[2;36m \u001b[0mCreated task \u001b[32m'sim_2'\u001b[0m with task_id \u001b]8;id=951674;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=552655;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#188\u001b\\\u001b[2m188\u001b[0m\u001b]8;;\u001b\\\n", - "\u001b[2;36m \u001b[0m\u001b[32m'fdve-7c275afb-12d7-49f8-8acc-45c7673126eav1'\u001b[0m. \u001b[2m \u001b[0m\n" + "\u001b[2;36m14:04:56 -03\u001b[0m\u001b[2;36m \u001b[0mMaximum FlexCredit cost: \u001b[1;36m0.300\u001b[0m for the whole batch. \n" ] }, "metadata": {}, @@ -664,15 +531,13 @@ { "data": { "text/html": [ - "
           View task using web UI at                               webapi.py:190\n",
-       "           'https://tidy3d.simulation.cloud/workbench?taskId=fdve-              \n",
-       "           7c275afb-12d7-49f8-8acc-45c7673126eav1'.                             \n",
+       "
             Use 'Batch.real_cost()' to get the billed FlexCredit cost after the\n",
+       "             Batch has completed.                                               \n",
        "
\n" ], "text/plain": [ - "\u001b[2;36m \u001b[0m\u001b[2;36m \u001b[0mView task using web UI at \u001b]8;id=792720;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=504976;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#190\u001b\\\u001b[2m190\u001b[0m\u001b]8;;\u001b\\\n", - "\u001b[2;36m \u001b[0m\u001b]8;id=403315;https://tidy3d.simulation.cloud/workbench?taskId=fdve-7c275afb-12d7-49f8-8acc-45c7673126eav1\u001b\\\u001b[32m'https://tidy3d.simulation.cloud/workbench?\u001b[0m\u001b]8;;\u001b\\\u001b]8;id=44297;https://tidy3d.simulation.cloud/workbench?taskId=fdve-7c275afb-12d7-49f8-8acc-45c7673126eav1\u001b\\\u001b[32mtaskId\u001b[0m\u001b]8;;\u001b\\\u001b]8;id=403315;https://tidy3d.simulation.cloud/workbench?taskId=fdve-7c275afb-12d7-49f8-8acc-45c7673126eav1\u001b\\\u001b[32m=\u001b[0m\u001b]8;;\u001b\\\u001b]8;id=157302;https://tidy3d.simulation.cloud/workbench?taskId=fdve-7c275afb-12d7-49f8-8acc-45c7673126eav1\u001b\\\u001b[32mfdve\u001b[0m\u001b]8;;\u001b\\\u001b]8;id=403315;https://tidy3d.simulation.cloud/workbench?taskId=fdve-7c275afb-12d7-49f8-8acc-45c7673126eav1\u001b\\\u001b[32m-\u001b[0m\u001b]8;;\u001b\\ \u001b[2m \u001b[0m\n", - "\u001b[2;36m \u001b[0m\u001b]8;id=403315;https://tidy3d.simulation.cloud/workbench?taskId=fdve-7c275afb-12d7-49f8-8acc-45c7673126eav1\u001b\\\u001b[32m7c275afb-12d7-49f8-8acc-45c7673126eav1'\u001b[0m\u001b]8;;\u001b\\. \u001b[2m \u001b[0m\n" + "\u001b[2;36m \u001b[0m\u001b[2;36m \u001b[0mUse \u001b[32m'Batch.real_cost\u001b[0m\u001b[32m(\u001b[0m\u001b[32m)\u001b[0m\u001b[32m'\u001b[0m to get the billed FlexCredit cost after the\n", + "\u001b[2;36m \u001b[0mBatch has completed. \n" ] }, "metadata": {}, @@ -681,7 +546,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "42af310b478443228d5846212103940e", + "model_id": "5ff218f0187248c1b7d240538ea6cc59", "version_major": 2, "version_minor": 0 }, @@ -695,67 +560,11 @@ { "data": { "text/html": [ - "
\n"
-      ],
-      "text/plain": []
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    },
-    {
-     "data": {
-      "text/html": [
-       "
\n",
-       "
\n" - ], - "text/plain": [ - "\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "
           Created task 'sim_3' with task_id                       webapi.py:188\n",
-       "           'fdve-c8b6d038-aecd-421e-9a90-d97cb0ecf080v1'.                       \n",
-       "
\n" - ], - "text/plain": [ - "\u001b[2;36m \u001b[0m\u001b[2;36m \u001b[0mCreated task \u001b[32m'sim_3'\u001b[0m with task_id \u001b]8;id=305921;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=472258;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#188\u001b\\\u001b[2m188\u001b[0m\u001b]8;;\u001b\\\n", - "\u001b[2;36m \u001b[0m\u001b[32m'fdve-c8b6d038-aecd-421e-9a90-d97cb0ecf080v1'\u001b[0m. \u001b[2m \u001b[0m\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "
           View task using web UI at                               webapi.py:190\n",
-       "           'https://tidy3d.simulation.cloud/workbench?taskId=fdve-              \n",
-       "           c8b6d038-aecd-421e-9a90-d97cb0ecf080v1'.                             \n",
+       "
14:05:23 -03 Batch complete.                                                    \n",
        "
\n" ], "text/plain": [ - "\u001b[2;36m \u001b[0m\u001b[2;36m \u001b[0mView task using web UI at \u001b]8;id=232202;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=379746;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#190\u001b\\\u001b[2m190\u001b[0m\u001b]8;;\u001b\\\n", - "\u001b[2;36m \u001b[0m\u001b]8;id=706385;https://tidy3d.simulation.cloud/workbench?taskId=fdve-c8b6d038-aecd-421e-9a90-d97cb0ecf080v1\u001b\\\u001b[32m'https://tidy3d.simulation.cloud/workbench?\u001b[0m\u001b]8;;\u001b\\\u001b]8;id=744907;https://tidy3d.simulation.cloud/workbench?taskId=fdve-c8b6d038-aecd-421e-9a90-d97cb0ecf080v1\u001b\\\u001b[32mtaskId\u001b[0m\u001b]8;;\u001b\\\u001b]8;id=706385;https://tidy3d.simulation.cloud/workbench?taskId=fdve-c8b6d038-aecd-421e-9a90-d97cb0ecf080v1\u001b\\\u001b[32m=\u001b[0m\u001b]8;;\u001b\\\u001b]8;id=847987;https://tidy3d.simulation.cloud/workbench?taskId=fdve-c8b6d038-aecd-421e-9a90-d97cb0ecf080v1\u001b\\\u001b[32mfdve\u001b[0m\u001b]8;;\u001b\\\u001b]8;id=706385;https://tidy3d.simulation.cloud/workbench?taskId=fdve-c8b6d038-aecd-421e-9a90-d97cb0ecf080v1\u001b\\\u001b[32m-\u001b[0m\u001b]8;;\u001b\\ \u001b[2m \u001b[0m\n", - "\u001b[2;36m \u001b[0m\u001b]8;id=706385;https://tidy3d.simulation.cloud/workbench?taskId=fdve-c8b6d038-aecd-421e-9a90-d97cb0ecf080v1\u001b\\\u001b[32mc8b6d038-aecd-421e-9a90-d97cb0ecf080v1'\u001b[0m\u001b]8;;\u001b\\. \u001b[2m \u001b[0m\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "96023263ac944d43833b1e7691f79cf1", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "Output()" + "\u001b[2;36m14:05:23 -03\u001b[0m\u001b[2;36m \u001b[0mBatch complete. \n" ] }, "metadata": {}, @@ -784,42 +593,10 @@ "metadata": {}, "output_type": "display_data" }, - { - "data": { - "text/html": [ - "
           Created task 'sim_4' with task_id                       webapi.py:188\n",
-       "           'fdve-abb0c8d9-6e3c-48af-a97e-c8ebd4283ca1v1'.                       \n",
-       "
\n" - ], - "text/plain": [ - "\u001b[2;36m \u001b[0m\u001b[2;36m \u001b[0mCreated task \u001b[32m'sim_4'\u001b[0m with task_id \u001b]8;id=734687;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=708088;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#188\u001b\\\u001b[2m188\u001b[0m\u001b]8;;\u001b\\\n", - "\u001b[2;36m \u001b[0m\u001b[32m'fdve-abb0c8d9-6e3c-48af-a97e-c8ebd4283ca1v1'\u001b[0m. \u001b[2m \u001b[0m\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "
           View task using web UI at                               webapi.py:190\n",
-       "           'https://tidy3d.simulation.cloud/workbench?taskId=fdve-              \n",
-       "           abb0c8d9-6e3c-48af-a97e-c8ebd4283ca1v1'.                             \n",
-       "
\n" - ], - "text/plain": [ - "\u001b[2;36m \u001b[0m\u001b[2;36m \u001b[0mView task using web UI at \u001b]8;id=871807;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=930374;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#190\u001b\\\u001b[2m190\u001b[0m\u001b]8;;\u001b\\\n", - "\u001b[2;36m \u001b[0m\u001b]8;id=979488;https://tidy3d.simulation.cloud/workbench?taskId=fdve-abb0c8d9-6e3c-48af-a97e-c8ebd4283ca1v1\u001b\\\u001b[32m'https://tidy3d.simulation.cloud/workbench?\u001b[0m\u001b]8;;\u001b\\\u001b]8;id=479456;https://tidy3d.simulation.cloud/workbench?taskId=fdve-abb0c8d9-6e3c-48af-a97e-c8ebd4283ca1v1\u001b\\\u001b[32mtaskId\u001b[0m\u001b]8;;\u001b\\\u001b]8;id=979488;https://tidy3d.simulation.cloud/workbench?taskId=fdve-abb0c8d9-6e3c-48af-a97e-c8ebd4283ca1v1\u001b\\\u001b[32m=\u001b[0m\u001b]8;;\u001b\\\u001b]8;id=806490;https://tidy3d.simulation.cloud/workbench?taskId=fdve-abb0c8d9-6e3c-48af-a97e-c8ebd4283ca1v1\u001b\\\u001b[32mfdve\u001b[0m\u001b]8;;\u001b\\\u001b]8;id=979488;https://tidy3d.simulation.cloud/workbench?taskId=fdve-abb0c8d9-6e3c-48af-a97e-c8ebd4283ca1v1\u001b\\\u001b[32m-\u001b[0m\u001b]8;;\u001b\\ \u001b[2m \u001b[0m\n", - "\u001b[2;36m \u001b[0m\u001b]8;id=979488;https://tidy3d.simulation.cloud/workbench?taskId=fdve-abb0c8d9-6e3c-48af-a97e-c8ebd4283ca1v1\u001b\\\u001b[32mabb0c8d9-6e3c-48af-a97e-c8ebd4283ca1v1'\u001b[0m\u001b]8;;\u001b\\. \u001b[2m \u001b[0m\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "857ede3015df4ec2aad0e5b2f21b618e", + "model_id": "7be9495d0f0a4fefa1f7270259db71ff", "version_major": 2, "version_minor": 0 }, @@ -852,1530 +629,270 @@ }, "metadata": {}, "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "
[10:06:24] Created task 'sim_5' with task_id                       webapi.py:188\n",
-       "           'fdve-67eac14f-7a6d-41f9-852f-98a33d6ba772v1'.                       \n",
-       "
\n" - ], - "text/plain": [ - "\u001b[2;36m[10:06:24]\u001b[0m\u001b[2;36m \u001b[0mCreated task \u001b[32m'sim_5'\u001b[0m with task_id \u001b]8;id=472428;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=960330;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#188\u001b\\\u001b[2m188\u001b[0m\u001b]8;;\u001b\\\n", - "\u001b[2;36m \u001b[0m\u001b[32m'fdve-67eac14f-7a6d-41f9-852f-98a33d6ba772v1'\u001b[0m. \u001b[2m \u001b[0m\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, + } + ], + "source": [ + "# initialize a batch and run them all\n", + "batch = td.web.Batch(simulations=sims, verbose=True)\n", + "\n", + "# run the batch and store all of the data in the `data/` dir.\n", + "batch_data = batch.run(path_dir=\"data\")\n" + ] + }, + { + "cell_type": "markdown", + "id": "c865c155", + "metadata": {}, + "source": [ + "Now that the simulations are complete, we can analyze the data. Let's first look at one of the FieldTimeMonitors to make sure the source has decayed." + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "4a97628f-c2d1-4e2f-82f2-ba97d88fe48e", + "metadata": { + "execution": { + "iopub.execute_input": "2023-08-18T17:08:28.235611Z", + "iopub.status.busy": "2023-08-18T17:08:28.235460Z", + "iopub.status.idle": "2023-08-18T17:08:29.381759Z", + "shell.execute_reply": "2023-08-18T17:08:29.381250Z" + } + }, + "outputs": [ { "data": { - "text/html": [ - "
           View task using web UI at                               webapi.py:190\n",
-       "           'https://tidy3d.simulation.cloud/workbench?taskId=fdve-              \n",
-       "           67eac14f-7a6d-41f9-852f-98a33d6ba772v1'.                             \n",
-       "
\n" - ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAksAAAHHCAYAAACvJxw8AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAABbyElEQVR4nO3deVxUVeMG8GfYUXbZRBFEUVwQDURxRaVAzfR93c1EM63UzDRLLbfqF+2ZvZaaiVaaZqVtpplbqbjhvuaCiAsgKrusc39/ECPD3LkMMDN3Bp7v5zOfmHvPvffc0ZyHc849RyEIggAiIiIiEmUhdwWIiIiITBnDEhEREZEEhiUiIiIiCQxLRERERBIYloiIiIgkMCwRERERSWBYIiIiIpLAsEREREQkgWGJiIiISALDElEddO3aNSgUCqxZs6bax+7ZswcKhQJ79uypsmxkZCQiIyOrfY01a9ZAoVDg2rVr1T62LqnOZy0HhUKBRYsWyV0NItkxLBGZofKwIfaaM2eOLHWKjIzUWqeKL7m/fMsDikKhwDfffCNapnv37lAoFGjfvr2RawesX78eS5YsMfp19encuXNYtGhRvQ/DVHdYyV0BIqq5N954A82bN1fb1r59e/j5+eHBgwewtrY2Wl1ee+01PPPMM6r3R44cwdKlSzFv3jy0adNGtb1Dhw5o164dRo0aBVtbW6PVrzI7OzusX78eY8eOVdt+7do1HDhwAHZ2dgavQ69evfDgwQPY2Niotq1fvx5nzpzBjBkzDH59Qzl37hwWL16MyMhI+Pv7y10dolpjWCIyY/3790dYWJjoPmN82Vf06KOPalx/6dKlePTRR0W76iwtLY1UM3EDBgzAzz//jIyMDLi7u6u2r1+/Hl5eXggMDMT9+/cNWgcLCwuj/DmVlJRAqVSqhTIi0h274YjqIG1jli5cuIBhw4bBzc0NdnZ2CAsLw88//6zTOVeuXIkWLVrA3t4e4eHh+Pvvv2tcP7ExS/7+/nj88cexZ88ehIWFwd7eHsHBwarxPD/++COCg4NhZ2eH0NBQHD9+XOO81bm/wYMHw9bWFps2bVLbvn79eowYMUI0zJWUlODNN99EixYtYGtrC39/f8ybNw+FhYVq5crvZd++fQgPD4ednR0CAgLw1VdfqZWrPGYpMjISv/32G5KTk1VdhRVbZtLT0zFx4kR4eXnBzs4OISEhWLt2rdo5y//sP/jgAyxZskRV13Pnzol+DgBQWFiIl156CR4eHnB0dMQTTzyBGzduaJRLTk7GlClT0Lp1a9jb26NRo0YYPny42p/jmjVrMHz4cABAnz59VPdRfo8//fQTBg4cCB8fH9ja2qJFixZ48803UVpaqrV+RHJjyxKRGcvKykJGRobatoqtJBWdPXsW3bt3R5MmTTBnzhw0bNgQ3333HYYMGYIffvgB//nPf7Re58svv8Szzz6Lbt26YcaMGbh69SqeeOIJuLm5wdfXV2/3c/nyZYwZMwbPPvssxo4diw8++ACDBg3C8uXLMW/ePEyZMgUAEBcXhxEjRuDixYuwsLCo0f01aNAAgwcPxrfffovnn38eAHDy5EmcPXsWq1atwqlTpzTq98wzz2Dt2rUYNmwYZs2ahUOHDiEuLg7nz5/H5s2bNe5l2LBhmDhxImJjY7F69WqMHz8eoaGhaNeunej9v/baa8jKysKNGzfw8ccfAwAcHBwAAA8ePEBkZCQuX76MadOmoXnz5ti0aRPGjx+PzMxMvPjii2rnio+PR0FBASZPngxbW1u4ublp/dyfeeYZfPPNNxgzZgy6deuGXbt2YeDAgRrljhw5ggMHDmDUqFFo2rQprl27hs8//xyRkZE4d+4cGjRogF69emH69OkaXbDl/12zZg0cHBwwc+ZMODg4YNeuXViwYAGys7Px/vvva60jkawEIjI78fHxAgDRlyAIQlJSkgBAiI+PVx3Tr18/ITg4WCgoKFBtUyqVQrdu3YTAwEDVtt27dwsAhN27dwuCIAhFRUWCp6en0LFjR6GwsFBVbuXKlQIAoXfv3qJ13LRpk9p5xOqflJSk2ubn5ycAEA4cOKDatn37dgGAYG9vLyQnJ6u2r1ixQuPc1b2/TZs2Cb/++qugUCiE69evC4IgCLNnzxYCAgIEQRCE3r17C+3atVMdd+LECQGA8Mwzz6jdy8svvywAEHbt2qVxL3/99ZdqW3p6umBrayvMmjVLoy4V72PgwIGCn5+fxme2ZMkSAYDwzTffqLYVFRUJERERgoODg5CdnS0IwsM/eycnJyE9PV3jPJWV39eUKVPUto8ZM0YAICxcuFC1LT8/X+P4hIQEAYDw1VdfqbZJ/dmLnePZZ58VGjRooPZnR2RK2A1HZMaWLVuGHTt2qL3E3Lt3D7t27cKIESOQk5ODjIwMZGRk4O7du4iOjsalS5dw8+ZN0WOPHj2K9PR0PPfcc2pjXsaPHw9nZ2e93k/btm0RERGhet+lSxcAQN++fdGsWTON7VevXq3V/T322GNwc3PDhg0bIAgCNmzYgNGjR4vWbevWrQCAmTNnqm2fNWsWAOC3337TuJeePXuq3nt4eKB169aqOlfX1q1b4e3trVY/a2trTJ8+Hbm5udi7d69a+aFDh8LDw0On8wLA9OnT1baLDTC3t7dX/VxcXIy7d++iZcuWcHFxwbFjx3S6j4rnKP+z6tmzJ/Lz83HhwgWdzkFkbOyGIzJj4eHhWgd4V3T58mUIgoD58+dj/vz5omXS09PRpEkTje3JyckAgMDAQLXt1tbWCAgIqEGttasYiACowljlrr7y7eUDsGt6f9bW1hg+fDjWr1+P8PBwpKSkYMyYMaLHJycnw8LCAi1btlTb7u3tDRcXF9XnpO1eAMDV1bXGg8aTk5MRGBio6nYsV969Vfn6lZ+SlDqvhYUFWrRooba9devWGmUfPHiAuLg4xMfH4+bNmxAEQbUvKytLp+udPXsWr7/+Onbt2oXs7Gy1fbqeg8jYGJaI6gGlUgkAePnllxEdHS1apnIIkIO2J+S0bS//sq7N/Y0ZMwbLly/HokWLEBISgrZt20rWUaFQSO7Xtc6GVrEFR19eeOEFxMfHY8aMGYiIiICzszMUCgVGjRql+jOQkpmZid69e8PJyQlvvPEGWrRoATs7Oxw7dgyvvvqqTucgkgPDElE9UN4CZG1tjaioqGod6+fnBwC4dOkS+vbtq9peXFyMpKQkhISE6K+iNVSb++vRoweaNWuGPXv24N1339Vazs/PD0qlEpcuXVKbNyotLQ2ZmZmqz6m2tIUxPz8/nDp1CkqlUq11qbzrqqbXL7+vK1euqLUmXbx4UaPs999/j9jYWHz44YeqbQUFBcjMzNTpHvbs2YO7d+/ixx9/RK9evVTbk5KSalR3ImPhmCWiesDT0xORkZFYsWIFbt++rbH/zp07Wo8NCwuDh4cHli9fjqKiItX2NWvWaHxJyqU296dQKLB06VIsXLgQTz31lNZyAwYMAACN2bU/+ugjABB9eqwmGjZsKNodNWDAAKSmpmLjxo2qbSUlJfj000/h4OCA3r171+h6/fv3BwAsXbpUbbvYLOKWlpYaLWOffvqpxmP/DRs2BACNvx/lrW0Vz1FUVITPPvusRnUnMha2LBHVE8uWLUOPHj0QHByMSZMmISAgAGlpaUhISMCNGzdw8uRJ0eOsra3x1ltv4dlnn0Xfvn0xcuRIJCUlIT4+Xu9jlmqjpvcHlM25NHjwYMnzh4SEIDY2FitXrlR1Jx0+fBhr167FkCFD0KdPH73cR2hoKDZu3IiZM2eic+fOcHBwwKBBgzB58mSsWLEC48ePR2JiIvz9/fH9999j//79WLJkCRwdHWt0vY4dO2L06NH47LPPkJWVhW7dumHnzp24fPmyRtnHH38cX3/9NZydndG2bVskJCTgzz//RKNGjTTOaWlpiXfffRdZWVmwtbVF37590a1bN7i6uiI2NhbTp0+HQqHA119/bbSuSaKaYlgiqifatm2Lo0ePYvHixVizZg3u3r0LT09PdOrUCQsWLJA8dvLkySgtLcX777+P2bNnIzg4GD///LPWwdRyqM396WrVqlUICAjAmjVrsHnzZnh7e2Pu3LlYuHChXs4PAFOmTMGJEycQHx+Pjz/+GH5+fhg0aBDs7e2xZ88ezJkzB2vXrkV2djZat26N+Ph4jB8/vlbXXL16NTw8PLBu3Tps2bIFffv2xW+//aYxsP6TTz6BpaUl1q1bh4KCAnTv3h1//vmnxjgxb29vLF++HHFxcZg4cSJKS0uxe/duREZG4tdff8WsWbPw+uuvw9XVFWPHjkW/fv20jjUjMgUKgZGeiIiISCuOWSIiIiKSwLBEREREJIFhiYiIiEgCwxIRERGRBIYlIiIiIgkMS0REREQSOM+SHiiVSty6dQuOjo46rxtFRERE8hIEATk5OfDx8dFYpLoihiU9uHXrlsbkbURERGQeUlJS0LRpU637GZb0oHyZgZSUFDg5OclcGyIiItJFdnY2fH19q1wuiGFJD8q73pycnBiWiIiIzExVQ2g4wJuIiIhIAsMSERERkQSGJSIiIiIJDEtEREREEhiWiIiIiCQwLBERERFJYFgiIiIiksCwRERERCSBYYmIiIhIAsMSERERkQSGJSIiIiIJDEtEREREEhiWqEoPikrlrgIREZFsGJbMlFIpQBAEg1/n4x3/oM2Cbdj7zx2DX4uIiMgUMSyZIaVSwOBl+/Gfzw4YPDB9svMSAGDhT2cMeh0iIiJTZSV3Baj60nMKcfpmFgAg+0EJnBtYG/yahm/DIiIiMk1sWTJzgpFijBF6/IiIiEwSw5IZUige/iwVYgTBOOOaiIiI6jKGJTOkqLoIBEHAU18exrDlCXoJTMZqwSIiIjI1HLNURz0oLsW+yxkAgBv3H8DXrUG1z5GUkaf6mQ1URERUX7FlycwZMsN8nZD88DoMS0REVE8xLJkjHfrhFDp11hEREVFVzC4sLVu2DP7+/rCzs0OXLl1w+PBhrWXPnj2LoUOHwt/fHwqFAkuWLKn1OU1BxSBkyAHcCuYtIiIi8wpLGzduxMyZM7Fw4UIcO3YMISEhiI6ORnp6umj5/Px8BAQE4J133oG3t7dezlmfMCsRERGZWVj66KOPMGnSJEyYMAFt27bF8uXL0aBBA6xevVq0fOfOnfH+++9j1KhRsLW11cs5zYWu0wvoilMQEBFRfWU2YamoqAiJiYmIiopSbbOwsEBUVBQSEhKMes7CwkJkZ2ervQyhVClg36UM5BQUq21XC0IGuTIRERGVM5uwlJGRgdLSUnh5ealt9/LyQmpqqlHPGRcXB2dnZ9XL19e3Rtevyhd/X8XYLw9hzBeH1LZX7B4zZINPxVCm4AAmIiKqp8wmLJmSuXPnIisrS/VKSUkxyHV+SLwBAKp14KRsO5OK3RfEx1nVdEJJBiQiIiIzCkvu7u6wtLREWlqa2va0tDStg7cNdU5bW1s4OTmpvQxBW1apHGLu5xXhuW8SMWHNEZSUKg1SFyl//XMHQz8/gMvpOUa/NhERkaGZTViysbFBaGgodu7cqdqmVCqxc+dOREREmMw5jU2AgOwKY5pKlJqtSFV11W07k4oRKxJwM/NBjeowbvVhJCbfx5R1x2p0PBERkSkzq+VOZs6cidjYWISFhSE8PBxLlixBXl4eJkyYAAAYN24cmjRpgri4OABlA7jPnTun+vnmzZs4ceIEHBwc0LJlS53OKSdtE0tW3lrbCSif+yYRADB/yxmsHt9Z63XE/JOWU+HnXFxMzUFrb8da1YeIiMiUmFVYGjlyJO7cuYMFCxYgNTUVHTt2xLZt21QDtK9fvw4Li4eNZbdu3UKnTp1U7z/44AN88MEH6N27N/bs2aPTOU2dUodet7t5hfB3b1hluXt5ReobdEhLm4/fVHsfveQvXHtnYNUHEhERmQmzCksAMG3aNEybNk10X3kAKufv76/T/EBS55ST+lxJgmqsUsXtL208gfeGddA4tuJtD/08QacAU5Nh4BwCTkREdZ3ZjFmq70atPCi6PeHqXbX32rLhH2erP72CLt17fGCOiIjqOoYlM3Eo6R52X6x6CRZt0wR8c+i6vqsEgAv2EhFR3cewZEYmxB/RuWzl0KTTciWVyrDViIiIiGHJpGmbFFJseoBy3x0xzASZ2jBQERFRXcewZMK05ZDn/33UX1WuQsFFv/w7VUJJ9SenrNEAb6YlIiKq4xiWzNCRa/fV3osFlue/UZ8gUlsvnFKilUoXjEpERFTXMSzVAWKBpfJTcvsuZ2iUWXcoGR3f+EP1vnKgMuQivZUVFJciI7fQeBckIiLSEcNSPfba5jPILiip1Tn01QvX491dCHvrT9zOqtmSK0RERIbCsGTC9N2wU9UTcadvZqm91yUI6av1KSO3bPbw/ZfvVlGSiIjIuBiWzMzYVYc0tunauqNLsCkprf7AcH3SaYoDIiIiI2JYMmFiGUhs7JGu+UKXYhXHe1c8r1IPIaaoRImlOy/hREqm1jKMSkREZGoYlkyYsbvhyq4pXuZ2VkGtW53WHEjCRzv+wZBl+2t1HiIiImNiWKpHahu+rt/Lr9XxF1JzalkDIiIi42NYqkdqsOKJ+r5aXl+ndeTYD0dERCaGYake0dbFpvPxDDJERFQPMSzVI7VtWTJGs09tAx0REZG+MSzVU4UlpdU+prYtS7pMcVBcyrBERESmhWGpDqhuvPjmYDJav75Ny7kE0Z9rcp3KdJkO6vUtZ2p5FSIiIv1iWKqHpAKJIccl5RXVbmkVIiIiOVjJXQGqPT0tzwZAvfWo8tNrYtfRJVvlFpbgmbVHcPDqvdpUDYIgoLhUgI0VMz4RERkPv3VIjdTElTVtdIrfl1TroAQAT685gg6LtyMrv7jW5yIiItIVw1IdoM+eM0HtZ/Uzv75Zs/tOl1atvKLqDyYXs/viHRQUK7H9bKpezkdERKQLhiUTJseislKXPHxNt9ah/ZXWr9N1oV9dVQ5xRSVK/PXPHeRzTBQRERkAwxJpdSz5vsa20zey1N6LZaulOy+pvddzVtIQ9/t5jFt9GC+sP27gKxERUX3EsFQH6BpGqttQdeSaZlha/MvZ6p3ECL5OSAYA7LyQbvBrydHaR0RE8mJYMmEKHfuvjPn1Xflaujwhp/duuEoX0Pf5tSkpVeLxT/dh6rpjxrkgERGZBIYlE2aIVoyzt7KkC1RxSWUN6qTTArq1YOjzlzuekomzt7Lx2+nbRrkeERGZBoaleubqnbxaHV85K4lGp2rmqWW7L1evDtU7PRERUa0wLNUj+likVpczVLzOrcwH+OXULcny72+/WL06SPQFKpU1v8cLqdm4cT9f6/75XIqFiKheYliiaqlO1+CVO7no9s4uJN/VHkD0oWIn3O9najYHU3p2AWKW/I0e7+7WWuZCak6Nzk1EROaNYYnU6KX16d9T7Dqv/em00lq0AFWuY8UB3ilaWoYupGZj+PIDSLhyV3T/5Tu5Na4PERHVbQxL9UxtnxzT5fDyKCN1rTUHrtWuIhVUHOCtreFr4pqjOHLtPkZ/cVB0v4WxHqkjIiKzw7BUB+jaNaaPh+v0Nbj65xM3a3zsa5vP4OVNJ1X3rUvOuZNbqPp58P/24dSNTLX9jEpERKQNw1IdsMsIkzFWhy7hrbah6/vEGzj172ziFS+nrRvRokIaOnkjC0M/P1DLGhARUX1hJXcFqPYW/KS/WbWryjmVW2AqL21SkT67tvb+c0djW0Gx5gK92upfeS6m4tKHBRf+dAYnb1Qx/5QeFJcqkXw3Hy08Guo84SgREcmPLUtkMPrMA7GrD2tsq07rlLa6pOcUYG1CMk6kZNaoXtXxzNqjiPpoLzYfr3kXJBERGR/DUj1irMkcdWk10cv4KZFzaOsC1NbKVdOn8moyu3p561j8/ms1uiYREcmDYYn0TjXw2tDXEYl/2rvhtG03fneYPqZnICIi42FYqmfkCAdipAKDzq02/xYrLlWqNn244x8cv36/NlWrldtZD/D76du1mkfqTk4hnvs6EX9f0hynRURExsewRGr00eZR3g238egN7deRuFDUR3vVApCUB0WlKKkUTP7zme5Puon1zumyZErlIoIg4F5eEXq9txvPrzuGd7dd0HpsVVlw8S9nse1sKp76UnOcFhERGR/DUj1SnXE2K/ZeqfX1zt/OrrJMRoX5j8pduZOHI0n3VO8PXMkQPVYAcDxFt1aknMIS0e1i7Wyv6bAG3OtbTqu9f/WHU3jkzR2qp+xW/nVV67Hnbmdj+d4rKCoRD4SpWQVVXp+IiIyHYakOWvlX7YNO3O/aW0b0oTy3/Xbqtvh+lHWvpecUYMwXh7SeQ1u3Ym5hCe7kFGLz8Rt4f7vEvYgc/u3h6xrbKrd0fXs4Re39dxKtaJUJAvDO7xewen+SeJVMo6eUiIj+xXmW6qC3t2oPB1V9Ed/OegC3hjZ6rpF2C38WnyPqyLV7eHKVeEgqJ0DQ+uRd+4Xbdbq+trBVUFwKO2tL1XupliJdiHXtnbkpPrdTxTpl5RfDuYF1ra5NRES1w5aleqaqnriBS/cZpyJVWPKn9skuyykMOFy9x7u71d5vPS3eAibl3K2H3ZCbElM09uvSK/rRjovVvm5hSSmyC4qrfRwREYljWKpH9DF4O/lePr47moISHQdga6OvriYLC8PEpYzcQuy//HCs1NlbVY+/qmzA0r9x6OpdAMCBK3d1P7DCLaXnaI7pqmrsWevXt6HDoj/wnsQgcyIi0h3DUj1T25CSmV+MV74/ha8SkvVToVoy5PCe8m7AXC2Dw3Xxx7k0AOKTYmqbPqFiycq5aEL8YTSfuxW7dVgP8LM9tR+7RkREDEtUQ4eSqtFSYkDGGAydV4uwVB52xKqprNQ4l/WgGFPWJeJQhScBKweq3RfL5l6asOZIjetERETVw7BENaKP5UpMgS6zaRvr4bRP/ryEradTjXQ1aRm5hfj28PVataoREdUVfBquHtlw+DoSk/Uzu3UdyUpIvptfdSEtaUkQtD+NpyoD7U1LlYPaHZE5p+QKpWNXHcKF1BwcvHoXn4zqJE8liIhMBFuW6pG3t17A9rNpejlXXWlZGr48ocoy2p65+/nkrSqPfdgNJzJmqdJnWFULlq6zmmtzK/MBnv36KL5PvAGlUpA834XUHADA72dMo6WLiEhODEski7O3snHgsvjM3Lqq7ePxus5orq3x6MUNJwBA8snAtOwCreeofHWxB/vKy9zOeoDA135X2/fa5tNITL6neZAWT685gu1n0/DyppNou3Abwt76EwXFpRrl7uUVPbx+DVJxSakSsasP48M/qj/tARGRKWJYIg26TQtQ+6alMVVMOlmVKeuOIX7/tRof//el2oW1cutFZvwuJ9UyUzmHiD4x92+ZNQeuaexbd+g6hn4u3TJWMQyVtxaVbVci60Exjl/PVCu/9sA1PPLmDq111MWuC+nY+88dfLrrcvUPJiIyQQxLJkyurq4/z1f9WLpU3Yy5WsevWpZL0YXYunRifjoh3d1W8em16igsqdSqI/rBCf/uqtmn+sF26dadyuOmKs+oXtVfQbHWvaJadhcSEZkahiXSoPElLqLo364WMeYynEnXMPrmr+e07ku4clfr+nZVKW/ZEgQBO8+n4eb9B1rrKDWOvGJXWfLdPLV9q/aJrz9X+fy6nLtcdkExvjuagrjfz6PDoj/w4zH1dfEqBrvL6bmi5y0uVWL48gN44xftny0RkalgWDJhci2omp5ddYvL35cysPefO0aojeHokpXitSx2W270FwdrXY+d59Mxce1RyRYqqb8Knf9vJ346cROf7ryE3u/v0difIzG2a86PpzD92+NaxyaJLGmHF789jle+P4UVe8vWy3v1h1Pqda1Q2VErxbsJ91y8gyPX7mtdTJiIyJRw6gATJlc33PtVdN1URaaMV226DF5erKeWD22XGrkiAS08HbQeVx48pIJzRm6harC5mMz8YjjaiS/Gm3LvAVLuPcArMa3R1LWBaJnCklLYWj1cVLh8YsxylQNVxapm5BZBTFKGeIsTEZEpYssSaagvY05MYfqDQ0n3sP6Q9gHi5ePHlu027NIlpWJNSP86kiQ9N5ey0gf5gQ5Pwb29levWEZH5YFgiMgK5ulSB2ofC8kHgKffyMfmro1We/8qdPI0yUt75/QJ2ntfP/F9ERIbAsERkBHK2Yr299XyVXY7X7+VLThlRqhTQ873dqoWBK9M2kFsXy/dewcS1D0OYIAgYH38Yvd/fjdX7kkRbvW7cz8fm4zfwzcFkPLnqoOS4LCKi2uKYJaI6btvZVOy/LL3w8VNfHsaqcWGi+wQBOHsrS/L4W5kP0NLTAd8dTdHYN3vTSbw/PETn+g5cug/nbmcDAN749RwcbK0worOvWpme7+1WC6Ar9l7Fy9Gtdb4GEVF1sGWJ9M4EhgKZnB3nar5siP+c32p9/as6DKiWGqtW1TxPAspae175/pTGvk2JN/DdEc0QpU15UCq3NuEa1uxPUmsdq9xQVrllKfluHh79aC++T7yBf9JycCdH8wnPvMKSWs8CT0T1A1uWiIwgu6BE1usv+OlslWW0xaF1h5LhpOVpunJbT93GUxF+Wve/+uMpjOjsi5JSJVL/XQJGV2dvZePsrXPwd2+IyNaeomVyCtU/39e3nMGl9Fy8vOmkatvvL/ZEm8ZOAAClUkC7hdsBAF+MC8Ojbb2qVSciql/YskR6Zy5TB3y2xzjLcfyiw4K7pmz72TRsSrwhWWbj0RRczdA+sLu8JWjc6sPo8e7uGtVj47+tUxXXriv347Gbau/F1ryr2EVYrHzYijbpq6M1WgOPiOoPhiWqt67dzTfKdV749rhRrlNbz687VqvjK7biiHnr13M4cEV67JTUQO3ydfb+77fzVdblyDXN6Q4q5qHK3YqjVh4UDUwp9/IRs+QvbBIZi1WupFSJYokuzHO3srH4l7OiIY+IzAO74YhIL4pKpOfnqmrplePX72u0EFX2zcFk7Lmofe1CpVLAD8ekW8EAaAxEP5R0D/H7r+HpHs3Vtvd8r6wVbPb3p+DpZIferTxU+zYfv4Hrdx/gh2M3kF9UgoS5/WBtqfn754ClfwMAUrMK8PnY0CrrRkSmh2GJ9I4dGlQT//nsQJVlXt9yRuu+rPxibEpMwVtaWp4OV1hORuw8b/x6ThWWZn13EgevqreCxa4+jKtvD4CFhQJnbmbhpY3qLWk37z+Av3tDrfU7eytb6z4iMm1m1w23bNky+Pv7w87ODl26dMHhw+KLuZbbtGkTgoKCYGdnh+DgYGzdulVt//jx46FQKNReMTExhrwFnVVeEd5cJCbf5xgQMrqBn/6tNSgBZU/ZJWXkSc5Wrvx33w/HbuBmpubCxuWzlQ9etl9jX36R5jipiotSX7+Xz/8viMyUWYWljRs3YubMmVi4cCGOHTuGkJAQREdHIz1dvFn+wIEDGD16NCZOnIjjx49jyJAhGDJkCM6cUf+tMiYmBrdv31a9vv32W2PcTp1W+ekkIkO7cV8z3FTW54M9iNuqPVAFzNuKkMV/aN3/578zjYsFruHL1VvGbmc9QJe3d6ptExsndz+vSHLM07zNp+E/5zckVDHei4gMx6zC0kcffYRJkyZhwoQJaNu2LZYvX44GDRpg9erVouU/+eQTxMTEYPbs2WjTpg3efPNNPPLII/jf//6nVs7W1hbe3t6ql6urqzFup0pVzW1jyjos0v6FQySnqsZOZT3QPsj8uW+0D4LPKypVOzYibhcy89XPVVrhKbx7eUWYt/k0Or25A4Gv/Y4RyxM0Wp4OV1g7cMyqg1qvfeByBlLuGeeBBaL6yGzCUlFRERITExEVFaXaZmFhgaioKCQkJIgek5CQoFYeAKKjozXK79mzB56enmjdujWef/553L3L3+CIqPpCFv+B746k4Pxt8fFJl9JycS0jD18fTMYjb+5QW0T58LV7WLrzMn47dVu19MypG5mq/YIA0W68bWdSMWbVIdVg9MoEQUAKuwCJasVsBnhnZGSgtLQUXl7qk8d5eXnhwgXxFcxTU1NFy6emPpxNOSYmBv/973/RvHlzXLlyBfPmzUP//v2RkJAAS0tL0fMWFhaisPDhjMDZ2YYZuGmuY5aI6rLu7+yS3P/KD6fwmJZJLquanuHjP/8BALw+sA3a+jjhyh31mdfn/nga7wztAKBsSoKjyffUJhx9/NO/MaRjEzzTM0C17Yu/r+LtrWX/Rp5dHI2Gtmbzzz6Ryaj3/9eMGjVK9XNwcDA6dOiAFi1aYM+ePejXr5/oMXFxcVi8eLGxqkhEJkRs4Hdl2hYc1tXqfUm4laU50/mGIykYGtoUnf3dVFMSVHTmZjbO3MzGsNCmcGlgAwCqoAQA6w9dx9iufrC3Ef9FUJuC4lLYWVfvGKK6xGy64dzd3WFpaYm0NPV/hNLS0uDt7S16jLe3d7XKA0BAQADc3d1x+bL22Z3nzp2LrKws1SslRfd1r4iIqiIWlMoNX56AjFzNte4qmv9va9OZm+oLIP/f1vNos2Cb2tiqVX9fhf+c3+A/5zdExO3E1UqtWfsuZSBo/jZ8+MfF6t4GUZ1hNmHJxsYGoaGh2Lnz4dMlSqUSO3fuREREhOgxERERauUBYMeOHVrLA8CNGzdw9+5dNG7cWGsZW1tbODk5qb2IiIwl7K0/Jfcfv142fcfjn+4T3T/nh1N4bfNpHE66pzbdwu2sAvT9cC9O33gYsl7fchoA8Omuy1i68xJmbzqpGlNV7s1fz+GD7RdRXKrEgSsZosvNEJkzhWBGo/42btyI2NhYrFixAuHh4ViyZAm+++47XLhwAV5eXhg3bhyaNGmCuLg4AGVTB/Tu3RvvvPMOBg4ciA0bNuDtt9/GsWPH0L59e+Tm5mLx4sUYOnQovL29ceXKFbzyyivIycnB6dOnYWtrq1O9srOz4ezsjKysLL0Gp8c+3ot/0qpeLZ6ISN+S4gYAAJrP3aqx771hHTAizBdA2RQJEXHq47ii23lhxVNhhq8kUS3p+v1tVmOWRo4ciTt37mDBggVITU1Fx44dsW3bNtUg7uvXr8PC4mFjWbdu3bB+/Xq8/vrrmDdvHgIDA7Flyxa0b98eAGBpaYlTp05h7dq1yMzMhI+PDx577DG8+eabOgclIqK6KGj+NhRqWcLmle9PYUjHJrCxskBisuY6fNvPPhz+kJFbiNmbTmJwxybwdLTFmFWH8N7QDhjR2VdVpqhECaUgICO3EKVKAX6NtM+ETiQHs2pZMlVsWSIiUvfJqI64kp6LpbvEx39ee2eg6ufQN3fgboWFhqf3C8TMR1tpHLP3nzv4YPtFvDM0GO18nPVfaap36mTLEhERmYcXN5yQ3D9/yxnczy/CI81c1YISACzdeUkVlkqVAqatP4bL6bm4lF72y+PApftw+f/6w6rSwsVKpYDdF9MR3NQZno52+rsZqvcYloiIyOi+PpgMAPj11G3R/R/v+Aef7LyE6HZeat165SZ/nYh2Pk6Y9VhrbD19G8ev30dSRh7+PJ8OhQJIihsIQRCgUDxcCSE1qwCbjqZgUIiP1kWP7+YWwtneWiOIUf3Gbjg9YDccEZE8PnvyEUwRmeyzZ6A7Lqfn4ofnu2HT0RsIbuqE1zafwe1/p2U4tegxONlZAyib5byoVIlrGfmIXvIXOjVzweYp3Y16HyQPXb+/GZb0gGGJiMi8dGjqjA5NnTG2qx8++fMSfj+TioY2lsgrKpv24LtnI7D5+A28Eh0E14ZlE3zeuJ+PHu/uhoejLfa92ge2Vpyo09xxzFIdwBhLRGQYp25k4dSNLHxz8OH6fOVBCQBGrChbQ/TG/Qf4cEQIbmUWYObGEwCAOzmFmPxVIq7dzcOXsWFo6emo6vJLuZcP5wbWcLKzRlGJEjZW6t15giCguFTQ2E6mjS1LemColqVHP9qrGtBIRESmaWBwYxy4koFxEf74ZOclAEBMO29sO5uK2dGtMbVPSwBA8t089H5/DwAgYW5fNHa21zjX3dxC2FpbwsHWCnmFJVzLz8DYDWdE7IYjIiJtotp44s/z6aL7pvZpgfHdmuNQ0l1EBDRC6L+zs785uB3m/3QW//ef9niyi58xq1uvMCwZEVuWiIiotuytLfFAZKmYHS/1QmGJEoFeDhix4iBS7uXjx+e74cUNxzEoxAfP9AyAUinAwkIBpbLsK93CQoGSUiWf6qsCxywRERGZEbGgBACPfvwXAMDR1go5hSUAgMgP9gAATt7IgpO9NRb/fBarYjtj8S9ncSE1B+8N7YBXfjgFH2c7/P1qX1goAIVCgVM3MvFD4g289Ggr7Ll4B24NbdCrlYdR7s+csWVJD9iyREREpirQ0wGX0nMxMswXG4+maOw//0YM/r50Bz0C3XHuVjYy84sRHuCGD7dfRIivC/7TqYnafFV1CVuWiIiISPVLt1hQAoA2C7YBAPq398bvZ1LVdyYko7hUifv5xRgY3Bi2VhY4cOUuott544Vvj0MQBKyKDUNuYQkc/523qtzNzAfwdLSFdR3oCmTLkh6wZYmIiOqryNYe2HPxDgZ39MEjzVyx8OezeLFfoOrJwEPz+iGnoBjezvZwsLVCenYBPJ3scPTaPWQ9KEa/Nl6y1Z0DvI2IYYmIiKhqj7b1wo5zaZjet6VqkeUVT4Xi012XMKlnAAZ18EFuUQmc7KxxM/MBztzMQmRrD4NNAMqwZEQMS0RERLUX7u+Gw9fuoVuLRjhw5S4AYHw3fyx6op1Brqfr97f5dyQSERFRnXD42j0AUAUlAFhz4Boy84vkqhIAhiUiIiIycR3f2CHr9RmWiIiIiCQwLBERERFJYFgyYRx5T0REJD+GJSIiIiIJDEtEREREEhiWTFjdXImHiIjIvDAsmTCOWSIiIpIfwxIRERGRBIYlIiIiIgkMSyaMY5aIiIjkx7BkwjhmiYiISH4MS0REREQSGJaIiIiIJDAsEREREUlgWCIiIiKSwLBEREREJIFhiYiIiEgCw5IJEwROHkBERCQ3hiUiIiIiCQxLJkyh4BzeREREcmNYIiIiIpLAsGTCOGaJiIhIfgxLRERERBIYloiIiIgkMCwRERERSWBYIiIiIpLAsEREREQkgWGJiIiISALDEhEREZEEhiUiIiIiCQxLRERERBIYloiIiIgkMCyZMC52QkREJD+GJSIiIiIJDEsmTCF3BYiIiIhhyZSxG46IiEh+DEtEREREEhiWiIiIiCQwLJkwjlkiIiKSH8OSCeOYJSIiIvkxLBERERFJYFgiIiIiksCwRERERCSBYcmEcYA3ERGR/BiWTBgHeBMREcmPYYmIiIhIAsMSERERkQSGJSIiIiIJDEtEREREEhiWiIiIiCTUKCxdv34dhYWFGtuVSiWuX79e60oRERERmYoahSV/f3888sgjuHLlitr2O3fuoHnz5nqpmDbLli2Dv78/7Ozs0KVLFxw+fFiy/KZNmxAUFAQ7OzsEBwdj69atavsFQcCCBQvQuHFj2NvbIyoqCpcuXTLkLRAREZEZqXE3XJs2bRAeHo6dO3eqbRcEw80OtHHjRsycORMLFy7EsWPHEBISgujoaKSnp4uWP3DgAEaPHo2JEyfi+PHjGDJkCIYMGYIzZ86oyrz33ntYunQpli9fjkOHDqFhw4aIjo5GQUGBwe6DiIiIzIdCqEG6sbS0xO3bt7Fu3TrMnTsX7733HqZPn460tDT4+PigtLTUEHVFly5d0LlzZ/zvf/8DUNbt5+vrixdeeAFz5szRKD9y5Ejk5eXh119/VW3r2rUrOnbsiOXLl0MQBPj4+GDWrFl4+eWXAQBZWVnw8vLCmjVrMGrUKJ3qlZ2dDWdnZ2RlZcHJyUkPd1qm74d7cPVOnt7OR0REZK6uvTNQ7+fU9fu7Ri1L5fnqpZdewubNm7FgwQJMmjQJRUVFNautDoqKipCYmIioqCjVNgsLC0RFRSEhIUH0mISEBLXyABAdHa0qn5SUhNTUVLUyzs7O6NKli9ZzAkBhYSGys7PVXkRERFQ31fppuP79++PAgQPYvXs3Hn/8cX3USVRGRgZKS0vh5eWltt3Lywupqamix6SmpkqWL/9vdc4JAHFxcXB2dla9fH19q30/REREZB5qFJZ69+4NGxsb1fu2bdvi4MGDcHFxMeiYJVMxd+5cZGVlqV4pKSlyV4mIiIgMxKo6hcu7m3766Se19wBgY2ODX375RY9VU+fu7g5LS0ukpaWpbU9LS4O3t7foMd7e3pLly/+blpaGxo0bq5Xp2LGj1rrY2trC1ta2JrdBREREZqZaLUsuLi5wdXWt8mUINjY2CA0NVXv6TqlUYufOnYiIiBA9JiIiQuNpvR07dqjKN2/eHN7e3mplsrOzcejQIa3nJCIiovqlWi1Lu3fvVv0sCAIGDBiAVatWoUmTJnqvmJiZM2ciNjYWYWFhCA8Px5IlS5CXl4cJEyYAAMaNG4cmTZogLi4OAPDiiy+id+/e+PDDDzFw4EBs2LABR48excqVKwEACoUCM2bMwFtvvYXAwEA0b94c8+fPh4+PD4YMGWKUeyIiIiLTVq2w1Lt3b7X3lpaW6Nq1KwICAvRaKW1GjhyJO3fuYMGCBUhNTUXHjh2xbds21QDt69evw8LiYWNZt27dsH79erz++uuYN28eAgMDsWXLFrRv315V5pVXXkFeXh4mT56MzMxM9OjRA9u2bYOdnZ1R7omIiIhMW43mWSrn6OiIkydPGi0smSrOs0RERGRYZjfPEhEREVF9UeuwpFAo9FEPIiIiIpNUrTFL//3vf9XeFxQU4LnnnkPDhg3Vtv/444+1rxkRERGRCahWWHJ2dlZ7P3bsWL1WhoiIiMjUVCssxcfHG6oeRERERCaJA7yJiIiIJDAsEREREUlgWCIiIiKSwLBEREREJIFhiYiIiEgCwxIRERGRBIYlIiIiIgkMS0REREQSGJaIiIiIJDAsEREREUlgWCIiIiKSwLBEREREJIFhiYiIiEgCwxIRERGRBIYlIiIiIgkMS0RERGTyBEGQ7doMS0REREQSGJZMmELuChAREZkIGRuWGJaIiIjI9MmYlRiWiIiIyPRxzBIRERGRiWJYIiIiIpPHbjgiIiIiCRzgTURERGSiGJaIiIjI5AkydsQxLBEREZHJYzccERERkYliWDJhCgXn8CYiIpIbw5IJk3MCLiIiIlPCbjgiIiIiCRzgTaLYDUdERFSGLUtEREREJophiYiIiEwelzshIiIikpCWXSDbtRmWiIiIyOTlFZbIdm2GJSIiIiIJDEtERERk8hSQ7wlxhiUTxokDiIiI5MewZMI4fzcREZH8GJZM2OX0XLmrQEREZBLknKeZYYmIiIhMHmfwJiIiIpLAliUiIiIiCRYypiWGJSIiIjJ5FjImFoYlIiIiMnmuDWxkuzbDEhEREZkMB1srjW3uDrbwcrKToTZlNGtEREREZCADgr2x9XQqACC4iTNO38zCm4Pb4YmQJriakYt2Ps6Ysi4RXQMaYUinJvj70h30b99Y1jozLBEREVGteDnZYkinJriXW4Q+QZ6Ysu4YAGBIRx9sOXELX08Mx/V7+WjiYo9egR641C8XrbwcoKg0aLtTM1cAwKrYzqpt/+nU1Hg3ogXDEhEREUna/XIkTqZkoqWnA+7nF+GpLw9jUs/mcGlggz/OpeGLp0Lh+W83mSAIWPdMFwR6OcDDwRbzH2+LRg62audr7e0ox23UmEIQ5JzmqW7Izs6Gs7MzsrKy4OTkpLfz+s/5TW/nIiKi+qtfkCd2XkjXuv+Pl3rBxd4ahSVKnL2Vjee+ScR7QztgRGdfFJUoYWNVN4c46/r9zZYlIiIiM7d3diS+SkiGpYUCK/+6qto+JbIF9l/OwP/GPIJ/0nLg36ghcotK8NupWxj6SFO4NLCBhQJq3WG+bg1w7Z2Bqvd1NShVB1uW9IAtS0REZAiNGtrAyd4aXz0djlnfncSocF/M/O4kAOClqFYY0bkpXBvYwM7aUnXM7awHeOu383i6uz9C/dzkqrpZYMsSERGRiXgixAc/n7ylsb17y0bo5OuKmPbe+GTnJbzQtyWe+N9+AMD0vi0x87HWEAQBCoUC3z0XAQAI9HTEoaS7mNC9OSwtNGe1buxsj2VjHjHsDdUzDEtEREQ11NjZDu4OtricnosHxaVq+0J8XbBsTCc0cbFHdkEJmrja45Fmrvhy31UcvHoPGyd3RZeARqryX4wLAwBce2cg0rML4OFYNii68hNjwU2dEdzU2cB3RhUxLBEREdXAlqnd0dHXBQBQqhSw9fRttGnshC3Hb+Jw0j0sHd0J3s5lT4g521vj1ZggAGWDrQtKStHARvtXsKeMEzCSJoYlIiKq05q62uPG/Qca25/p0RxtGjuhd2sPhL31p8b+ST2bY2qflrCytEB+YQm+PpiMkZ198VVCMmwsLVRBCQAsLRQYFOIDAHg5urVkfSwsFJJBiUwPB3jrAQd4ExGZntOLHoODrRUUCgU6vvEHMvOL1fYfm/8o3BqWrTdWqhRw6OpdBHo5QoCAvRfvYFCIj9rAaap7OMCbiIhMWpC3Iy6k5tT4+PNvxOBBcSncGtqo/XLZp7UHnuziB0c7a9W2H5/vhvWHrmNyrwAcu34fhSVKVVACylqGurV0V70fHuZb43pR3cOwREREstg2oxceFJXiy31X8cEf/2jsP/dGNM7fzoGXky16vLsbALBwUFtsOnoD7Zs4wd7GEvY2ZS0/UW088ef5dJxc8BicG1hrnCvAwwGvP94WABAj8zpjZH7YDacH7IYjIlL3ZWwYvjuagu1n00T3t2nshN9f7AkAeFBUijYLtqn2/TW7D5q62sOi0mPxhSWlsLUS7xYTBAGCAI1jiKSwG46IiAyqsbMdbmcVaGy/8vYAWFoo0L2lOz7ddQnO9tZ4e+sFAEBkaw9M69MSYf4PJ0u0t7HExB7N8eW+JLwS0xrNGjUQvZ62oASUPV6vYE4iAzGbOczv3buHJ598Ek5OTnBxccHEiRORm5sreUxBQQGmTp2KRo0awcHBAUOHDkVamvpvOWX/g6m/NmzYYMhbISKSXdcA7TM721tb4ttJXRHdzkt0fxMXe0zq2Rw/T+uBpaM7YXR4M9W+FU+FqiZKtLO2xOzoIEzu1QL/95/26NTMBe8N66AWlMrNf7wtrrw9AFMiW9byzoj0z2y64fr374/bt29jxYoVKC4uxoQJE9C5c2esX79e6zHPP/88fvvtN6xZswbOzs6YNm0aLCwssH//flUZhUKB+Ph4xMTEqLa5uLjAzk73OS7YDUdEpmZYaFN8n3hDY/trA9pgUIgPvJ3tsOrvq3jrt/MaZa6+PUDVnXXk2j2cTMlUldsytTtCmjqrTZR4J6cQnf+v7NH7imuKEZk6Xb+/zSIsnT9/Hm3btsWRI0cQFlY2w+m2bdswYMAA3LhxAz4+PhrHZGVlwcPDA+vXr8ewYcMAABcuXECbNm2QkJCArl27AigLS5s3b8aQIUNqXD+GJSLSN09HW6TnFGpsd7C1Qm5hieSx194ZiDM3s/D4p/s09q0aF4aotg9bjDLzi7D2QDI+/rNsgPWE7v5YOKidxnF5hSVIzS5ACw8H0Wseu34fDrZWaOXlKFk3IlOi6/e3WXTDJSQkwMXFRRWUACAqKgoWFhY4dOiQ6DGJiYkoLi5GVFSUaltQUBCaNWuGhIQEtbJTp06Fu7s7wsPDsXr1aphBfiSiOuz//tMe7wwNFt239unOOPp6FL6MDRPdb2dd9s96Ox/xf/j7tfFUe+/SwAY9Ah8uuTF/YFvR4xraWmkNSgDwSDNXBiWqs8xigHdqaio8PdX/B7eysoKbmxtSU1O1HmNjYwMXFxe17V5eXmrHvPHGG+jbty8aNGiAP/74A1OmTEFubi6mT5+utT6FhYUoLHz4G192dnYN7oqI6qNtM3pi8c/nkHD1ruj+f97qDxsrC62/tCkUCrg72KJfGy8sHxuKI9fuwa2hDd7ffhEAsPiJdqpyB+f2wyc7L2Hf5TtIufcAUW08NdYZA4BQPzcsGtQWzT0c+DQZkQhZw9KcOXPw7rvvSpY5f16zP12f5s+fr/q5U6dOyMvLw/vvvy8ZluLi4rB48WKD1svcrRoXhme+Oip3NYj07sKbMQiav63qglr4N2qIbyd3Rb8P9+DKnTyN/TZWZS1DYqEGAFp6PmzdiWnvjZj23gCAxzs0hoVCAV+3h0+SeTvbIe6/wcgpKMbO8+karUoVje/evEb3Q1QfyNoNN2vWLJw/f17yFRAQAG9vb6Snp6sdW1JSgnv37sHb21v03N7e3igqKkJmZqba9rS0NK3HAECXLl1w48YNtZajyubOnYusrCzVKyUlRfebrics+dspmaF1z3SpsoydtSXGdGmmdf/6Z7rgi3FhmNwrQGOfk52VavmMtU+HV3mtUZ0fziL9+sA22PdqHzjZaU64CAB+jRqqBaWKHO2sMaRTE7UZrYlId7K2LHl4eMDDw6PKchEREcjMzERiYiJCQ0MBALt27YJSqUSXLuL/uIWGhsLa2ho7d+7E0KFDAQAXL17E9evXERERofVaJ06cgKurK2xtbbWWsbW1ldxPAJiVyAx1b+mOMV2aYf2h66L7OzVzAVC2gryYfkGeqiUzEpPva+yf+Wgr1c9NXR8GmyEdfXAhNQdx/1Ufp/TG4PYY3LEJOjVz4RplRDIyiwHebdq0QUxMDCZNmoTDhw9j//79mDZtGkaNGqV6Eu7mzZsICgrC4cOHAQDOzs6YOHEiZs6cid27dyMxMRETJkxARESE6km4X375BatWrcKZM2dw+fJlfP7553j77bfxwgsvyHavRPVVTDvtLb7l+revukxtTejmr3VfExd7AMDw0KYa+3bN6o0VT4Wq3keJdHmNi1A/97DQpvB1s8fb/w3Gthm90KmZq9p+GysLRLRoxKBEJDOzGOANAOvWrcO0adPQr18/WFhYYOjQoVi6dKlqf3FxMS5evIj8/HzVto8//lhVtrCwENHR0fjss89U+62trbFs2TK89NJLEAQBLVu2xEcffYRJkyYZ9d6ICOgf7I12Pk74cIfmGmHlott54/cz4g91fP7kI9j7zx1sOCLdLb5kZEfM2HhCY/vGyWW/RAV6OeLY/Ecx98dTGkt1WPw7jijAwwGvDWiD/9v6cExlQKUnxcL83bBtRk/4uNgjPbtQdPmOD4aHQBAEreOTiMg0mE1YcnNzk5yA0t/fX+PpETs7OyxbtgzLli0TPSYmJkZtMkoiktewsKaSYUmhKJsUcciy/Rr7+gc3Rkx7b61hafnYRxDo5YgWHg54vENjtHztd9W+75+LUJtV2q2hDRraav7zWHGs0qReAbiakYdvD1/H7OjWotcM8i57fF/bOKOye2JQIjJ1ZtENR0Sm74kQzclhq0OhUKCqKc7Cm7vB01H7eEGFQoH3hnUQ3RfTvrFqniArS/V/+gJF5gd6NSZI9XPvVh44MKcvugY0UisT999gJMUNwNQ+XKKDqC5jWCIiSe4ONmjh0VCyTLi/G5aO7lSr6zzW1gtSWcm1gTUaO9tDWUWiGhHmi/NvVK/FWOzhTS8nO3wZG4YeLd3xztBg+Pw7XqkytgwR1X1m0w1HZK7mDQhSrbhuygaF+OCXk7dE9igQ6ucqOidQuSWjOkqee0ZUIB5t64VXvj+Fs7fEJ3GVGsT8fGQLjIvwAwA0dtYMLZXzir2NJf6c2QtKAbiQmoO2jaVnlrbQEnj6tfFCvzbii8kSUf3BliUyCHP4XXvv7EhEVOpWMQSFGXwanf1d8amWliGFomxFeCnaWl3K+TdqiHY+zvh4ZEfJVipts1a/GhOkCkmWFgpc/r/+avu3Tu+pcUxLT0e08nLEEyE+aOkpHZbExicREZVjWCKDMIfV9fwaNVSto2VIcvfSNKkiyADSgU4B6DyZoY+znej28klKW3k5YuesSDSwEW9F0nVZxspjjto0rv4C1r9N74EpkS1wetFj1T6WiOoXhiUyDHNISzCP8SbLx4ZWXUiCh6Mt/n6lj3QhiY9hYIfGAIB9r1ZxDgBLRom3Tj3aVr0rq3Io+npi2WzWXk7iYUtM/PjOOpcV087HGa/EBHFWayKqEsMSGYRgLmnJDMTUciJGCwW0LoNRzkGiG6r8qbCmrg2qDF1hfq4a204ueExjPFLlvx89A8tm8rexssDZxdH446VeeHNIewDAc71biF6LEzUSkbGwo56oFv54qRce+/gvyTKuDWwMWocZUYFo29gJOQUlmLXppMZ+XVrPyleqF1MxlFQVuiwsFLC0UKBUWRaGZke3hnMDzZabxs72SMooGzA+sYf6Aq4Nba3QyqtsvFF0Oy94OIhPFdDZ3xUhTZ01JoMkItI3tiyRhvDmblUXqoKuY0/MXSuR+XkqG9yxdvMPVeXpHs3xWDtvDBVZggN42MMWKtLqU66qEFQd2gZpV/TFuDDVz94SXW+ejnZaw56VpQV+mtYDH4/sWO06EhFVB8MSaVgzoXZjQYD6E5YA4O3/BEvurzwYuSJLsQl+qqniGSb1bK6xv/yx+EH/jj2qTKoLriaUOvzZt/R0wOzo1gjxdVGbFZuIyBQxLJGanoHuaGCj25dn+ZgSMcbISro85WWM6wwNbVLjc198MwYhvi41Ph5QnyNIrBWmQ1NnAOJ/Jl+MC8Oul3ur3uvSqtijpbvk/opjjKSC2NQ+LfHT1O58bJ+ITB7DEqmxtdL9r8RTXf207tOlK+bo61E6X0sbqaUv9OHL2DAEVDF7tS6e7RUgut3K0gKrY8Pw5pD2aN+k+o+/l53jYUCq/Lk3drbDzMda/btP89hH23rB0/FhN9ggHZYs+erpcJx7I1r1ft6AILX9s6NbY1CID7q1aISRnX11ugciIlPGsEQG0auVR5Vl3LUM3K0OXbp8amrmo60kZ29urGVOITGzHhNfaBUAGjnY4qmufvju2QitZZztNQdJ9wvyxCejOsLW6uEA7MqBaN0zXVQthRV39Q3yxIqnRKYk0CHkWlgo1FofK/9ZW1oo8OnoTlg/qSufWCOiOoFhqR55vENjONkZp8vDWF+Sj7b1NNi5qxpNVB5u9DVDt73EZ/bjlG4a2+YOCMLgjupdgJWjTsUnxSrWcvX4zohupzklQcXjB4X4YN0zXbTWacdLvfDV0+EI8q5ZixgRkblgWKpHLC0UVY4l0nVgtruDYR+H14UgCFUuw1Eb5cN/tH0m1XmCrKZzX5Yv49HCwwF7Xo6sfFaN8hXrWvnPaFhYUzR1tUdshFT36cOfPx3dCd0lxicFejnq1IJIRGTuOLKyHtHnXNVSXUbGpOtgdG2kxlbpOru3IScB93V7OLjc31197JRYK6H6ZI/qFXOys8bfr/SRvK+q1ngjIqqPGJbqEX0O72mkh/FGtaWPpUp0+UwMNRv5T1O7q70Xux+pe/QUmZ9I25prupwPAKLaeGJ2dGsEN3GWLEdEVJ+wG66+0cP3vo+zHRxN4HFvQy/rVlU3nKqcLucS2dbSs+qZp7WdW9t0BpN7PXxsvyafj0KhwNQ+Ldm9RkRUAcNSPaKvbPHXK31goYfJFE2BVBAqH7j9xmDtS4FURWp2ajEv//uYv6oO1fyYxZ6aIyKi2mFYqkf01ZkkNSM1AAR5V70EiD7oo2VJl8+kpafm/cSIPElW2bO9A7DpuX+fmNOxstP6Bqq9r82TdnUjzhIRyY9hqQ6oTjip8mm42lUFAPD5WJH5eyr54XnNR+Grq6ogYW1Zu7hQMd+srDQnUaMKT5pp+8zm9m8j+cSchQ4BSlsRC4n/c2dElQWutyRmWCciIt3JP/CEas0Qy0UoFDVf381ShxCgj/XIpC7z/XMR8HdviNSsAuy5mI4P/vhHtJzU03D/7fRwDqM2jbXPJVTTSKat/m8OaY/5W85IHiu1BMuMqFaY1DOAy4gQEekJW5bqgMrfuQODxRdMBXRbhgQA5vVvU+P6GOrpscqGPdJU674wfze4O9iifRNnja6tivwaabb8PNXVDxfejFF72kwp8blZWVpg1qOtEOrnqrVMdQJVdNuHs4ZXbn3aMLkrHmvrhQ9HdJQ8B4MSEZH+MCzVQcuefKTW5zBW4BFdckNHz0e2qLpQFWZHB2lss1BUfwbyF/oF4ofnuyHAXXwdObFPU1vLkqeTHeYNCMIbg9vBptJafV0DGmHluDCjLSJMREQMS3VCdQY6z+mvGQ70rTqDksWW3NCVtoHmk3o21/kcYk+PiQ3G1rVLUlsLlNgnIjVmaXKvFhgX4a/bRYmIyKAYluqZp6r4Ai7vpqvpeCV96dLcDcvHhmJBNZczCfJ2xGsDqz5mdrT2hW0NwcJCoXbNKZEtYF3FU4VERGQaOLCB1OhnVuzaJa2GNpb4eGRH1dIbfo0a4O9LGVhz4FqVx66ZEF6ra2vTTMd14KTufGqflngqwg+OtlZ6+ZyJiMg4+KttHaDPL97yM8nZsPTpmE5qa5T1a+Ol8/QI3s7VmwRSjNjHaWGhUBuPpO3zqepPwsnOmkGJiMjMMCzVAbp+9eqja61fkGeVZWozkaK2440Z3nSpv7YJzD8Z1QmuDazx7tBgPdeKiIjkwm64ekSXBo2q1kObO6DqKQWq2w3XM9Adf1/KqFAJkXMaMS1p+5wqVkFboArxdcGx+Y+y9YiIqA5hy1I9Up2vb0c7w+boioHqsQrzCgHyL9MR1cZLdHvFOaqkshCDEhFR3cKwVAfo+t2s25d4WZnhYeITPlYnB2ibc6iyyo1GjZ015xCq7aDxX1/oofZkXcX7iPtvMIK8HbF9Ri/8+kIPRLRoVGU9dVmqhIiI6gaGpTpAn11U5RnA1kp8UsbqXGvt0+GY0N1f/DoS7UetRQZzV77ulGpOSNm+iTOe7vFw/qWK1x8d3gzbZvRCa29HtG/iXK3zEhFR3cewVEc93kFzyRNjt4X4ujXAwkHtRPdVbCmqSb1eiand5Jo1aRiqGNjEJrMkIqK6iWGpPtEhIPRo6S59Cpl6n/Q9vlvb02zSdXhYi0m9AvRYGyIiMmUMS3WAPgPM2K5+0tfS36VkpeskkxVVbFly4EK1RET1BsNSHaDrOCJd5g+yrEmTizFI3OR/H2mi82nWP9MFr8S0rtGadHIvAUNERPJgWDJzfStNEtmrlYfWsu6ONrW+nlyPxUvllMqfgZRuLd0xJbIlH+8nIiKdMSyZOQuFejec1PxI0/q0rPX15IoYvq4Pu81C/VzV9hmrxad8SgFDz0FFRESmhf/q1yOOdrV/gkuXBhldwkt1l0SJbO2BcRF+OH0zC5+PfaRax+rLwkFtEejpgAHBmk8aEhFR3cWwRNVS23XfxOjSMKRQKPDG4PY1Pl4fHO2s8Wzv6s3vRERE5o/dcHWAMQceN7AVn6yyouqsQacPAkdeExGRATEs1QFiUcFQA5jdHWwNct7a0DbbOBERkT6wG87MGbNRJUhkGRIx1a1Tbe8hqo0nerfyQIivS+1OREREJIJhqR4a27UZ9v5zByn3HlTrOA9H/bUq6bPdy8rSAmufDtfjGYmIiB5iN5yZUyig3g+nQyvNW0OC8dfsPtW+1jtDO+hepwoqP+pfuQzHHBERkSljWDJzNc0ZNRnT1MTFXqdylev0ZWwYPhgeor18tWtCRERkPAxLdYBg4nHDpYENhoU2rbSVM2gTEZF5YFiqA9Racswkg1RcyLZi/bkKCRERmRqGpTpA0PpGHlUFHkdbK9hYPfyrV3HtXmYlIiIyNQxLdcCsx1rJdu01EzprbKtqlm9ba/V5kYaF+eq1TkRERPrEsFQHdGvhXqPjott51fraka09q32Mu4ON2nsH24czWBhqMk0iIqKaYliqxwz1xL62vPPV0+EI83PF/8bIsxAuERFRTTAs1VGm2D7Tq5UHvn++G1p6Omjsm9s/CADwocQUA0RERHLgDN5mrjaNQ4YaC16TnrRne7fAk1391LrkiIiITAFblsxIRzNZ+6ym444YlIiIyBQxLJmwx9qqD8AOcG+IA3P6omfgwwHdlWNJdSaorGrM0n87NdH5XBVZmGIfIBERUQ0xLJmw5WNDcXheP7VtPi72sKvw6H1tutLa+jhJ7n93mG5rwVXm7WRXo+OIiIhMEfs9TJiFhQKeFYOHDi02Vc1xVNGUyBawVCiwen8Ssh4Ua+y3tqx+lm7iYs/H/4mIqE5hy5I50fOIbDtrS7wYFYh2VbQwERER1WcMS3XNv4061WncMdR8S0RERHUBw1IdJVcAYg8cERHVNQxL5qQ6rUWGq4Wk2dGtZboyERGRYTAsmZHywdtSrUY1adipznQDUgZ2aIzBHWs23QAREZGpYlgyS/ptN9JXl11N52UiIiIyZQxLZkRsPJCgJelU3t6tRSNDVImIiKjOY1gyI+VZqWIOqjynUfn7ilGpgY0l4id0NmzlwMHdRERUN5lNWLp37x6efPJJODk5wcXFBRMnTkRubq7kMStXrkRkZCScnJygUCiQmZmpl/PKrbq9Zm0bO8HWylLrfn116lVnQkwiIiJzYTZh6cknn8TZs2exY8cO/Prrr/jrr78wefJkyWPy8/MRExODefPm6fW8chFrudFHPPF1baCHsxAREdVNZrHcyfnz57Ft2zYcOXIEYWFhAIBPP/0UAwYMwAcffAAfHx/R42bMmAEA2LNnj17PK5eHT8NpbwtShacKRUL9XCXP+9rANihVKjEizLeWNSQiIqp7zKJlKSEhAS4uLqpAAwBRUVGwsLDAoUOHjH7ewsJCZGdnq72MoX2TsmVJpLrNxFqfZkS1kjyvW0MbLBnVCd1aumst0zNQ+76HF6+6CBERkbkxi7CUmpoKT09PtW1WVlZwc3NDamqq0c8bFxcHZ2dn1cvX17AtMr+/2BMLB7XF6PBmACoP8FYvG9LUReN4exvt45V09VzvFlWWYVYiIqK6SNawNGfOHCgUCsnXhQsX5KyiqLlz5yIrK0v1SklJMej12jR2woTuzWFlWfbH9R+R+Yx2vNQLbwxuh3ERfgD0N9FkddhZ1z6UERERmRpZxyzNmjUL48ePlywTEBAAb29vpKenq20vKSnBvXv34O3tXePr1/S8tra2sLW1rfF1a2twRx/M2HhCbVuglyMCvRxV7/W9NpxUq9HMR1vhyp1cdGnupt+LEhERmQBZw5KHhwc8PDyqLBcREYHMzEwkJiYiNDQUALBr1y4olUp06dKlxtc31HkNTX1uJfk7v6b3C5S7CkRERAZjFmOW2rRpg5iYGEyaNAmHDx/G/v37MW3aNIwaNUr1xNrNmzcRFBSEw4cPq45LTU3FiRMncPnyZQDA6dOnceLECdy7d0/n85o6TgRJRERkWGYRlgBg3bp1CAoKQr9+/TBgwAD06NEDK1euVO0vLi7GxYsXkZ+fr9q2fPlydOrUCZMmTQIA9OrVC506dcLPP/+s83nNlb674UygAYuIiEgWZjHPEgC4ublh/fr1Wvf7+/trzD+0aNEiLFq0qFbnNVfO9tZ6PR9n5yYiovrKbMISidMWYWbHtMa1u3kYFc6JJomIiGqDYamOcnewxcZnI+SuBhERkdkzmzFLJC8OJCciovqKYcnMMcQQEREZFsOSmePAayIiIsNiWDJTw0KbAgCej6x6zTZ9YCQjIqL6igO8zdT7wzpg0RPt4GBrnD9CSwvGJSIiqp8YlsyUQqEwSlAaEdYU1zLy0amZq8GvRUREZIoYlkjSe8NC5K4CERGRrDhmiYiIiEgCwxIRERGRBIYlIiIiIgkMS0REREQSGJaIiIiIJDAsEREREUlgWCIiIiKSwLBEREREJIFhiYiIiEgCwxIRERGRBIYlIiIiIgkMS0REREQSGJaIiIiIJDAsEREREUmwkrsCdYEgCACA7OxsmWtCREREuir/3i7/HteGYUkPcnJyAAC+vr4y14SIiIiqKycnB87Ozlr3K4Sq4hRVSalU4tatW3B0dIRCoZAsm52dDV9fX6SkpMDJyclINTRd/Dw08TPRxM9EHT8PTfxM1PHz0CT2mQiCgJycHPj4+MDCQvvIJLYs6YGFhQWaNm1arWOcnJz4F7gCfh6a+Jlo4meijp+HJn4m6vh5aKr8mUi1KJXjAG8iIiIiCQxLRERERBIYlozM1tYWCxcuhK2trdxVMQn8PDTxM9HEz0QdPw9N/EzU8fPQVJvPhAO8iYiIiCSwZYmIiIhIAsMSERERkQSGJSIiIiIJDEtEREREEhiWjGjZsmXw9/eHnZ0dunTpgsOHD8tdJdn89ddfGDRoEHx8fKBQKLBlyxa5qyS7uLg4dO7cGY6OjvD09MSQIUNw8eJFuaslm88//xwdOnRQTSAXERGB33//Xe5qmYx33nkHCoUCM2bMkLsqslm0aBEUCoXaKygoSO5qye7mzZsYO3YsGjVqBHt7ewQHB+Po0aNyV0s2/v7+Gn9PFAoFpk6dqvM5GJaMZOPGjZg5cyYWLlyIY8eOISQkBNHR0UhPT5e7arLIy8tDSEgIli1bJndVTMbevXsxdepUHDx4EDt27EBxcTEee+wx5OXlyV01WTRt2hTvvPMOEhMTcfToUfTt2xeDBw/G2bNn5a6a7I4cOYIVK1agQ4cOcldFdu3atcPt27dVr3379sldJVndv38f3bt3h7W1NX7//XecO3cOH374IVxdXeWummyOHDmi9ndkx44dAIDhw4frfhKBjCI8PFyYOnWq6n1paang4+MjxMXFyVgr0wBA2Lx5s9zVMDnp6ekCAGHv3r1yV8VkuLq6CqtWrZK7GrLKyckRAgMDhR07dgi9e/cWXnzxRbmrJJuFCxcKISEhclfDpLz66qtCjx495K6GSXvxxReFFi1aCEqlUudj2LJkBEVFRUhMTERUVJRqm4WFBaKiopCQkCBjzciUZWVlAQDc3Nxkron8SktLsWHDBuTl5SEiIkLu6shq6tSpGDhwoNq/J/XZpUuX4OPjg4CAADz55JO4fv263FWS1c8//4ywsDAMHz4cnp6e6NSpE7744gu5q2UyioqK8M033+Dpp5+ucuH7ihiWjCAjIwOlpaXw8vJS2+7l5YXU1FSZakWmTKlUYsaMGejevTvat28vd3Vkc/r0aTg4OMDW1hbPPfccNm/ejLZt28pdLdls2LABx44dQ1xcnNxVMQldunTBmjVrsG3bNnz++edISkpCz549kZOTI3fVZHP16lV8/vnnCAwMxPbt2/H8889j+vTpWLt2rdxVMwlbtmxBZmYmxo8fX63jrAxTHSKqjalTp+LMmTP1fvxF69atceLECWRlZeH7779HbGws9u7dWy8DU0pKCl588UXs2LEDdnZ2clfHJPTv31/1c4cOHdClSxf4+fnhu+++w8SJE2WsmXyUSiXCwsLw9ttvAwA6deqEM2fOYPny5YiNjZW5dvL78ssv0b9/f/j4+FTrOLYsGYG7uzssLS2Rlpamtj0tLQ3e3t4y1YpM1bRp0/Drr79i9+7daNq0qdzVkZWNjQ1atmyJ0NBQxMXFISQkBJ988onc1ZJFYmIi0tPT8cgjj8DKygpWVlbYu3cvli5dCisrK5SWlspdRdm5uLigVatWuHz5stxVkU3jxo01fplo06ZNve+eBIDk5GT8+eefeOaZZ6p9LMOSEdjY2CA0NBQ7d+5UbVMqldi5c2e9H39BDwmCgGnTpmHz5s3YtWsXmjdvLneVTI5SqURhYaHc1ZBFv379cPr0aZw4cUL1CgsLw5NPPokTJ07A0tJS7irKLjc3F1euXEHjxo3lropsunfvrjHlyD///AM/Pz+ZamQ64uPj4enpiYEDB1b7WHbDGcnMmTMRGxuLsLAwhIeHY8mSJcjLy8OECRPkrposcnNz1X77S0pKwokTJ+Dm5oZmzZrJWDP5TJ06FevXr8dPP/0ER0dH1Xg2Z2dn2Nvby1w745s7dy769++PZs2aIScnB+vXr8eePXuwfft2uasmC0dHR43xaw0bNkSjRo3q7bi2l19+GYMGDYKfnx9u3bqFhQsXwtLSEqNHj5a7arJ56aWX0K1bN7z99tsYMWIEDh8+jJUrV2LlypVyV01WSqUS8fHxiI2NhZVVDaKP4R7Oo8o+/fRToVmzZoKNjY0QHh4uHDx4UO4qyWb37t0CAI1XbGys3FWTjdjnAUCIj4+Xu2qyePrppwU/Pz/BxsZG8PDwEPr16yf88ccfclfLpNT3qQNGjhwpNG7cWLCxsRGaNGkijBw5Urh8+bLc1ZLdL7/8IrRv316wtbUVgoKChJUrV8pdJdlt375dACBcvHixRscrBEEQ9JPbiIiIiOoejlkiIiIiksCwRERERCSBYYmIiIhIAsMSERERkQSGJSIiIiIJDEtEREREEhiWiIiIiCQwLBEREZFe/PXXXxg0aBB8fHygUCiwZcsWWa9XXFyMV199FcHBwWjYsCF8fHwwbtw43Lp1q1rXYVgiItIiMjISM2bMkLsaRGYjLy8PISEhWLZsmUlcLz8/H8eOHcP8+fNx7Ngx/Pjjj7h48SKeeOKJal2Ha8MRERGRXvTv3x/9+/fXur+wsBCvvfYavv32W2RmZqJ9+/Z49913ERkZaZDrOTs7Y8eOHWrb/ve//yE8PBzXr1/XeS1StiwREYkYP3489u7di08++QQKhQIKhQLXrl2Tu1pEZm3atGlISEjAhg0bcOrUKQwfPhwxMTG4dOmS0eqQlZUFhUIBFxcXnY9hWCIiEvHJJ58gIiICkyZNwu3bt3H79m34+vrKXS0is3X9+nXEx8dj06ZN6NmzJ1q0aIGXX34ZPXr0QHx8vFHqUFBQgFdffRWjR4+Gk5OTzscxLBERiXB2doaNjQ0aNGgAb29veHt7w9LSUu5qEZmt06dPo7S0FK1atYKDg4PqtXfvXly5cgUAcOHCBVVLrrbXnDlzanT94uJijBgxAoIg4PPPP6/WsRyzRERERAaXm5sLS0tLJCYmavzi4eDgAAAICAjA+fPnJc/TqFGjal+7PCglJydj165d1WpVAhiWiIiIyAg6deqE0tJSpKeno2fPnqJlbGxsEBQUpNfrlgelS5cuYffu3TUKWwxLRERa2NjYoLS0VO5qEJmN3NxcXL58WfU+KSkJJ06cgJubG1q1aoUnn3wS48aNw4cffohOnTrhzp072LlzJzp06ICBAwfq9XrNmjVDcXExhg0bhmPHjuHXX39FaWkpUlNTAQBubm6wsbHR6ToKQRCEateOiKgemDx5Mk6cOIHvvvsODg4OcHNzg4UFh3oSabNnzx706dNHY3tsbCzWrFmD4uJivPXWW/jqq69w8+ZNuLu7o2vXrli8eDGCg4P1fr1r166hefPmosfu3r1b5ykLGJaIiLT4559/EBsbi5MnT+LBgwdISkqCv7+/3NUiIiNjWCIiIiKSwPZkIiIiIgkMS0REREQSGJaIiIiIJDAsEREREUlgWCIiIiKSwLBEREREJIFhiYiIiEgCwxIRERGRBIYlIiIiIgkMS0REREQSGJaIiIiIJDAsEREREUn4f3PILDv8Rlb+AAAAAElFTkSuQmCC", "text/plain": [ - "\u001b[2;36m \u001b[0m\u001b[2;36m \u001b[0mView task using web UI at \u001b]8;id=473836;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=931871;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#190\u001b\\\u001b[2m190\u001b[0m\u001b]8;;\u001b\\\n", - "\u001b[2;36m \u001b[0m\u001b]8;id=493444;https://tidy3d.simulation.cloud/workbench?taskId=fdve-67eac14f-7a6d-41f9-852f-98a33d6ba772v1\u001b\\\u001b[32m'https://tidy3d.simulation.cloud/workbench?\u001b[0m\u001b]8;;\u001b\\\u001b]8;id=202191;https://tidy3d.simulation.cloud/workbench?taskId=fdve-67eac14f-7a6d-41f9-852f-98a33d6ba772v1\u001b\\\u001b[32mtaskId\u001b[0m\u001b]8;;\u001b\\\u001b]8;id=493444;https://tidy3d.simulation.cloud/workbench?taskId=fdve-67eac14f-7a6d-41f9-852f-98a33d6ba772v1\u001b\\\u001b[32m=\u001b[0m\u001b]8;;\u001b\\\u001b]8;id=432127;https://tidy3d.simulation.cloud/workbench?taskId=fdve-67eac14f-7a6d-41f9-852f-98a33d6ba772v1\u001b\\\u001b[32mfdve\u001b[0m\u001b]8;;\u001b\\\u001b]8;id=493444;https://tidy3d.simulation.cloud/workbench?taskId=fdve-67eac14f-7a6d-41f9-852f-98a33d6ba772v1\u001b\\\u001b[32m-\u001b[0m\u001b]8;;\u001b\\ \u001b[2m \u001b[0m\n", - "\u001b[2;36m \u001b[0m\u001b]8;id=493444;https://tidy3d.simulation.cloud/workbench?taskId=fdve-67eac14f-7a6d-41f9-852f-98a33d6ba772v1\u001b\\\u001b[32m67eac14f-7a6d-41f9-852f-98a33d6ba772v1'\u001b[0m\u001b]8;;\u001b\\. \u001b[2m \u001b[0m\n" + "
" ] }, "metadata": {}, "output_type": "display_data" - }, + } + ], + "source": [ + "plt.plot(\n", + " batch_data[\"sim_1\"].monitor_data[\"monitor_time_0\"].Hz.t,\n", + " np.real(batch_data[\"sim_1\"].monitor_data[\"monitor_time_0\"].Hz.squeeze()),\n", + ")\n", + "plt.title(\"FieldTimeMonitor data\")\n", + "plt.xlabel(\"t\")\n", + "plt.ylabel(\"Hz\")\n", + "plt.show()\n" + ] + }, + { + "cell_type": "markdown", + "id": "21bc59dc-0163-432b-9cf0-5c2d2617ef35", + "metadata": {}, + "source": [ + "We see that the source has mostly decayed by the time we switch on the monitors, and the remaining data shows decay and oscillation due to the resonances inside the system.\n", + "\n", + "Looking at the Fourier transform of this data, we can see resonances at the band frequencies." + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "e1b95adb-1ea6-40cb-ba63-ef5ac60de470", + "metadata": { + "execution": { + "iopub.execute_input": "2023-08-18T17:08:29.392606Z", + "iopub.status.busy": "2023-08-18T17:08:29.392364Z", + "iopub.status.idle": "2023-08-18T17:08:29.689950Z", + "shell.execute_reply": "2023-08-18T17:08:29.689484Z" + } + }, + "outputs": [ { "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "b5c73d1cafd644f38fb2cabc481c8aa1", - "version_major": 2, - "version_minor": 0 - }, + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjsAAAHHCAYAAABZbpmkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAABSW0lEQVR4nO3dd1xV9f8H8Ne9F7hsEOEyFBVx5ciBiqioKYpm5irT/CqoaRlmakt/laOh5VfL3KWl9q3cTXORO8WFI1cO3AMUkS3r3s/vj8s93ssF5CJw8fh6PuKR96z7PgfxvviMcxRCCAEiIiIimVJauwAiIiKi8sSwQ0RERLLGsENERESyxrBDREREssawQ0RERLLGsENERESyxrBDREREssawQ0RERLLGsENERESyxrBDRI8dhUKBqVOnlut7LF++HAqFApcvXy7X9yGi8sewQ0+EEydO4IUXXkDNmjVhb2+PatWqoWvXrpg3b561S0NmZiamTp2KnTt3WruUcrFx48ZyDyYkDzdv3sTUqVNx7Ngxa5dCMsOwQ7K3b98+tGzZEsePH8fIkSMxf/58vPLKK1Aqlfjqq6+sXR4yMzMxbdo0WYedadOmlekx79+/jw8++KBMj0nWd/PmTUybNo1hh8qcjbULICpvn376Kdzc3HDo0CG4u7ubrLt9+7Z1inoEGRkZcHJysnYZVmVvb2/tEugxwp8ZYssOyV5cXBwaNWpkFnQAQKPRmLxWKBQYM2YMfvzxR9SvXx/29vYICgrC7t27zfa9ceMGhg8fDm9vb6jVajRq1Ajfffed2XZZWVmYOnUq6tWrB3t7e/j6+qJfv36Ii4vD5cuX4eXlBQCYNm0aFAqFyXiUyMhIODs7Iy4uDs8++yxcXFwwePBgAECtWrUQGRlp9n6dOnVCp06dpNc7d+6EQqHAmjVrMG3aNFSrVg0uLi544YUXkJKSguzsbIwbNw4ajQbOzs4YNmwYsrOzH3pd9+zZgxdffBE1atSAWq2Gv78/xo8fj/v370vbREZGYsGCBdK1NXwV5/DhwwgPD4enpyccHBwQEBCA4cOHm2xTcMzO1KlToVAocOHCBURGRsLd3R1ubm4YNmwYMjMzTfa9f/8+xo4dC09PT7i4uOD555/HjRs3SjwOaNOmTQgNDYWTkxNcXFzQs2dPnDp1qth9kpOToVKpMHfuXGlZYmIilEolqlatCiGEtHz06NHw8fGRXpfkOs+aNQsKhQJXrlwxe+9JkybBzs4O9+7dk5YdOHAA3bt3h5ubGxwdHdGxY0fs3btXWr9u3TooFArs2rXL7Hhff/01FAoFTp48KS37999/8cILL8DDwwP29vZo2bIlfv/990Kvw/jx41GrVi2o1WpUr14dQ4cORWJiInbu3IlWrVoBAIYNGyb9XVm+fLm0/9q1axEUFAQHBwd4enriP//5D27cuGHyHsX9zNCTiy07JHs1a9ZETEwMTp48icaNGz90+127dmH16tUYO3Ys1Go1Fi5ciO7du+PgwYPS/gkJCWjTpo0Ujry8vLBp0yaMGDECqampGDduHABAq9Xiueeew7Zt2zBw4EC8+eabSEtLQ3R0NE6ePImwsDAsWrQIo0ePRt++fdGvXz8AwNNPPy3Vk5eXh/DwcLRv3x6zZs2Co6Njqa7DjBkz4ODggIkTJ+LChQuYN28ebG1toVQqce/ePUydOhX79+/H8uXLERAQgMmTJxd7vLVr1yIzMxOjR49G1apVcfDgQcybNw/Xr1/H2rVrAQCvvvoqbt68iejoaPzvf/97aI23b99Gt27d4OXlhYkTJ8Ld3R2XL1/Gzz//XKJzHDBgAAICAjBjxgwcOXIES5cuhUajweeffy5tExkZiTVr1mDIkCFo06YNdu3ahZ49e5bo+P/73/8QERGB8PBwfP7558jMzMSiRYvQvn17HD16FLVq1Sp0P3d3dzRu3Bi7d+/G2LFjAQB///03FAoFkpKScPr0aTRq1AiAPtyEhoZK+5bkOg8YMADvvvsu1qxZg3feecfkvdesWYNu3bqhSpUqAIDt27ejR48eCAoKwpQpU6BUKrFs2TJ07twZe/bsQevWrdGzZ084OztjzZo16Nixo8nxVq9ejUaNGkk/C6dOnUK7du1QrVo1TJw4EU5OTlizZg369OmD9evXo2/fvgCA9PR0hIaG4syZMxg+fDhatGiBxMRE/P7777h+/TqeeuopfPTRR5g8eTJGjRolXYO2bdsC0A8YHzZsGFq1aoUZM2YgISEBX331Ffbu3YujR4+a/DJTVj8zJCOCSOa2bt0qVCqVUKlUIiQkRLz77rtiy5YtIicnx2xbAAKAOHz4sLTsypUrwt7eXvTt21daNmLECOHr6ysSExNN9h84cKBwc3MTmZmZQgghvvvuOwFAfPHFF2bvpdPphBBC3LlzRwAQU6ZMMdsmIiJCABATJ040W1ezZk0RERFhtrxjx46iY8eO0usdO3YIAKJx48Ym5zxo0CChUChEjx49TPYPCQkRNWvWNDtuQYZzNDZjxgyhUCjElStXpGVRUVGipP/U/PLLLwKAOHToULHbFbxeU6ZMEQDE8OHDTbbr27evqFq1qvQ6NjZWABDjxo0z2S4yMtLsmMuWLRMAxKVLl4QQQqSlpQl3d3cxcuRIk33j4+OFm5ub2fKCoqKihLe3t/R6woQJokOHDkKj0YhFixYJIYS4e/euUCgU4quvvpK2K+l1DgkJEUFBQSbbHTx4UAAQ33//vRBC/3eubt26Ijw8XPr7Z3iPgIAA0bVrV2nZoEGDhEajEXl5edKyW7duCaVSKT766CNpWZcuXUSTJk1EVlaWtEyn04m2bduKunXrSssmT54sAIiff/7Z7HwMtRw6dEgAEMuWLTNZn5OTIzQajWjcuLG4f/++tHzDhg0CgJg8ebK0rLifGXpysRuLZK9r166IiYnB888/j+PHj2PmzJkIDw9HtWrVCm1qDwkJQVBQkPS6Ro0a6N27N7Zs2QKtVgshBNavX49evXpBCIHExETpKzw8HCkpKThy5AgAYP369fD09MQbb7xh9j4P684xNnr06FKcuamhQ4fC1tZWeh0cHAwhhFkXUXBwMK5du4a8vLxij+fg4CD9OSMjA4mJiWjbti2EEDh69GipajT8dr5hwwbk5uZavP9rr71m8jo0NBR3795FamoqAGDz5s0AgNdff91ku8K+PwVFR0cjOTkZgwYNMvmeq1QqBAcHY8eOHcXuHxoaioSEBJw9exaAvgWnQ4cOCA0NxZ49ewDoW3uEECYtOyW9zi+99BJiY2MRFxcnLVu9ejXUajV69+4NADh27BjOnz+Pl19+GXfv3pXOISMjA126dMHu3buh0+mk492+fdtk4Py6deug0+nw0ksvAQCSkpKwfft2DBgwAGlpadLx7t69i/DwcJw/f17qZlq/fj2aNm0qtfQYK0nX5u3bt/H666+bjNfq2bMnGjRogD///NNsn7L4mSH5YNihJ0KrVq3w888/4969ezh48CAmTZqEtLQ0vPDCCzh9+rTJtnXr1jXbv169esjMzMSdO3dw584dJCcn45tvvoGXl5fJ17BhwwA8GPgcFxeH+vXrw8am9D3GNjY2qF69eqn3N6hRo4bJazc3NwCAv7+/2XKdToeUlJRij3f16lVERkbCw8MDzs7O8PLykro8HrZvUTp27Ij+/ftj2rRp8PT0RO/evbFs2bISjSECzM/R0HVjGK9y5coVKJVKBAQEmGxXp06dhx77/PnzAIDOnTubfd+3bt360MHuhgCzZ88eZGRk4OjRowgNDUWHDh2ksLNnzx64urqiadOm0n4lvc4vvvgilEolVq9eDQAQQmDt2rXo0aMHXF1dTc4hIiLC7ByWLl2K7Oxs6ZiGMT2G4wH68NSsWTPUq1cPAHDhwgUIIfDhhx+aHW/KlCkATH8WStKNXBjDWKT69eubrWvQoIHZWKWy+pkh+eCYHXqi2NnZoVWrVmjVqhXq1auHYcOGYe3atdI/zCVh+M33P//5DyIiIgrdxnjMzaNSq9VQKs1/Lynqt2GtVguVSmW2vLBlxS0XRoNmC3uPrl27IikpCe+99x4aNGgAJycn3LhxA5GRkdI1spRCocC6deuwf/9+/PHHH9iyZQuGDx+O2bNnY//+/XB2di52/9KcS0kZzul///ufyQBig4cFWj8/PwQEBGD37t2oVasWhBAICQmBl5cX3nzzTVy5cgV79uxB27Ztpe+3JdfZz88PoaGhWLNmDf7v//4P+/fvx9WrV03GKxm2/+9//4tmzZoVWqfhGqvVavTp0we//PILFi5ciISEBOzduxfTp083O97bb7+N8PDwQo9XkiBZ1or6maEnF8MOPbFatmwJALh165bJcsNvv8bOnTsHR0dHaeaUi4sLtFotwsLCin2PwMBAHDhwALm5uSZdSMYs6c4yVqVKFSQnJ5stv3LlCmrXrl2qY5bUiRMncO7cOaxYsQJDhw6VlkdHR5ttW5rza9OmDdq0aYNPP/0UP/30EwYPHoxVq1bhlVdeeaS6a9asCZ1Oh0uXLpm04F24cOGh+wYGBgLQz+B72Pe9KKGhodi9ezcCAgLQrFkzuLi4oGnTpnBzc8PmzZtx5MgRk3sSWXKdAX3X0+uvv46zZ89i9erVcHR0RK9evczOwdXVtUTn8NJLL2HFihXYtm0bzpw5AyGE1IUFQPp7ZmtrW6KfBeMZXIUp6u9KzZo1AQBnz55F586dTdadPXtWWk9UFEZfkr0dO3YU+pv9xo0bAZg3jcfExEhjbgDg2rVr+O2339CtWzeoVCqoVCr0798f69evL/Qf7zt37kh/7t+/PxITEzF//nyz7Qw1GWaKFBZcihMYGIj9+/cjJydHWrZhwwZcu3bNouOUhqEFxfi6CiEKvUmj4f4mJTm/e/fumX2vDC0QJe3KKo6h9WHhwoUmy0tyJ+3w8HC4urpi+vTphY4nMv6+FyU0NBSXL1/G6tWrpW4tpVKJtm3b4osvvkBubq7JeB1LrjOg//umUqmwcuVKrF27Fs8995zJ/WWCgoIQGBiIWbNmIT09/aHnEBYWBg8PD6xevRqrV69G69atTboANRoNOnXqhK+//trsl4aCx+vfvz+OHz+OX375xWw7w/kV9XelZcuW0Gg0WLx4scnfg02bNuHMmTMlnk1HTy627JDsvfHGG8jMzETfvn3RoEED5OTkYN++fVi9ejVq1aoljbMxaNy4McLDw02mngMw+Y37s88+w44dOxAcHIyRI0eiYcOGSEpKwpEjR/DXX38hKSkJgH5Q8Pfff48JEybg4MGDCA0NRUZGBv766y+8/vrr6N27NxwcHNCwYUOsXr0a9erVg4eHBxo3bvzQ8Q2vvPIK1q1bh+7du2PAgAGIi4vDDz/8IP32Xp4aNGiAwMBAvP3227hx4wZcXV2xfv16k3u5GBgGe48dOxbh4eFQqVQYOHBgocddsWIFFi5ciL59+yIwMBBpaWlYsmQJXF1d8eyzzz5y3UFBQejfvz/mzJmDu3fvSlPPz507B6D4VihXV1csWrQIQ4YMQYsWLTBw4EB4eXnh6tWr+PPPP9GuXbtCQ60xQ5A5e/asSXdQhw4dsGnTJqjVauleM4Bl1xnQh49nnnkGX3zxBdLS0kxaYQB9sFq6dCl69OiBRo0aYdiwYahWrRpu3LiBHTt2wNXVFX/88Ye0va2tLfr164dVq1YhIyMDs2bNMnvPBQsWoH379mjSpAlGjhyJ2rVrIyEhATExMbh+/TqOHz8OAHjnnXewbt06vPjiixg+fDiCgoKQlJSE33//HYsXL0bTpk0RGBgId3d3LF68GC4uLnByckJwcDACAgLw+eefY9iwYejYsSMGDRokTT2vVasWxo8fX+x1J+LUc5K9TZs2ieHDh4sGDRoIZ2dnYWdnJ+rUqSPeeOMNkZCQYLItABEVFSV++OEHUbduXaFWq0Xz5s3Fjh07zI6bkJAgoqKihL+/v7C1tRU+Pj6iS5cu4ptvvjHZLjMzU7z//vsiICBA2u6FF14QcXFx0jb79u0TQUFBws7OzmQKdEREhHByciry3GbPni2qVasm1Gq1aNeunTh8+HCRU8/Xrl1rsq9hanXBad6Gadx37twp7rKK06dPi7CwMOHs7Cw8PT3FyJEjxfHjx82mDufl5Yk33nhDeHl5CYVCUew09CNHjohBgwaJGjVqCLVaLTQajXjuuedMbgUgRNFTzwvWXHD6uBBCZGRkiKioKOHh4SGcnZ1Fnz59xNmzZwUA8dlnnxW7rxD66xkeHi7c3NyEvb29CAwMFJGRkWY1FkWj0QgAJn/3/v77bwFAhIaGmm1f0utssGTJEgFAuLi4mEzTNnb06FHRr18/UbVqVaFWq0XNmjXFgAEDxLZt28y2jY6OFgCEQqEQ165dK/R4cXFxYujQocLHx0fY2tqKatWqieeee06sW7fOZLu7d++KMWPGiGrVqgk7OztRvXp1ERERYXILh99++000bNhQ2NjYmJ3j6tWrRfPmzYVarRYeHh5i8ODB4vr16ybv8bCfGXoyKYQog5F7RDKhUCgQFRX10N/QSV6OHTuG5s2b44cffuDddolkiGN2iOiJYvyYBYM5c+ZAqVSiQ4cOVqiIiMobx+wQ0RNl5syZiI2NxTPPPAMbGxts2rQJmzZtwqhRo8zuOURE8sCwQ0RPlLZt2yI6Ohoff/wx0tPTUaNGDUydOhXvv/++tUsjonLCMTtEREQkaxyzQ0RERLLGsENERESyxjE70D/f5ebNm3BxcSn1rfuJiIioYgkhkJaWBj8/v2Kfh8awA+DmzZuchUFERPSYunbtWrFPumfYgf6hjoD+Yrm6ulq5GiIiIiqJ1NRU+Pv7S5/jRWHYwYPn4bi6ujLsEBERPWYeNgSFA5SJiIhI1hh2iIiISNYYdoiIiEjWGHaIiIhI1hh2iIiISNYYdoiIiEjWGHaIiIhI1hh2iIiISNYYdoiIiEjWGHaIiIhI1hh2iIiISNYYdoiIiEjWGHaIiEhW7udorV0CVTIMO0REJBv/3fIvnpq8GfviEq1dClUiDDtERCQbC3bEAQA+2XDGypVQZcKwQ0RERLLGsENERESyxrBDRESyI6xdAFUqDDtEREQkaww7REREJGsMO0REJDtCsCOLHmDYISIiIllj2CEiIiJZY9ghIiIiWWPYISIiIllj2CEiIiJZY9ghIiIiWWPYISIiIllj2CEiIiJZY9ghIiIiWWPYISIi2eENlMkYww4RERHJGsMOERHJjkJh7QqoMmHYISIi2WE3FhmzatjRarX48MMPERAQAAcHBwQGBuLjjz82eVqtEAKTJ0+Gr68vHBwcEBYWhvPnz5scJykpCYMHD4arqyvc3d0xYsQIpKenV/TpEBERUSVk1bDz+eefY9GiRZg/fz7OnDmDzz//HDNnzsS8efOkbWbOnIm5c+di8eLFOHDgAJycnBAeHo6srCxpm8GDB+PUqVOIjo7Ghg0bsHv3bowaNcoap0RERESVjI0133zfvn3o3bs3evbsCQCoVasWVq5ciYMHDwLQt+rMmTMHH3zwAXr37g0A+P777+Ht7Y1ff/0VAwcOxJkzZ7B582YcOnQILVu2BADMmzcPzz77LGbNmgU/Pz/rnBwREVmNAPux6AGrtuy0bdsW27Ztw7lz5wAAx48fx99//40ePXoAAC5duoT4+HiEhYVJ+7i5uSE4OBgxMTEAgJiYGLi7u0tBBwDCwsKgVCpx4MCBQt83OzsbqampJl9EREQkT1Zt2Zk4cSJSU1PRoEEDqFQqaLVafPrppxg8eDAAID4+HgDg7e1tsp+3t7e0Lj4+HhqNxmS9jY0NPDw8pG0KmjFjBqZNm1bWp0NERESVkFVbdtasWYMff/wRP/30E44cOYIVK1Zg1qxZWLFiRbm+76RJk5CSkiJ9Xbt2rVzfj4iIKhZnY5Exq7bsvPPOO5g4cSIGDhwIAGjSpAmuXLmCGTNmICIiAj4+PgCAhIQE+Pr6SvslJCSgWbNmAAAfHx/cvn3b5Lh5eXlISkqS9i9IrVZDrVaXwxkRERFRZWPVlp3MzEwolaYlqFQq6HQ6AEBAQAB8fHywbds2aX1qaioOHDiAkJAQAEBISAiSk5MRGxsrbbN9+3bodDoEBwdXwFkQEVFlw5sKkjGrtuz06tULn376KWrUqIFGjRrh6NGj+OKLLzB8+HAAgEKhwLhx4/DJJ5+gbt26CAgIwIcffgg/Pz/06dMHAPDUU0+he/fuGDlyJBYvXozc3FyMGTMGAwcO5EwsIqInFLuxyJhVw868efPw4Ycf4vXXX8ft27fh5+eHV199FZMnT5a2effdd5GRkYFRo0YhOTkZ7du3x+bNm2Fvby9t8+OPP2LMmDHo0qULlEol+vfvj7lz51rjlIiIiKiSUQjB/Juamgo3NzekpKTA1dXV2uUQEVEp1Zr4JwCgrsYZ0RM6WrkaKm8l/fzms7GIiIhI1hh2iIhIdp74LgsywbBDREREssawQ0RERLLGsENERESyxrBDREREssawQ0RERLLGsENERLLDW8iRMYYdIiIikjWGHSIiIpI1hh0iIpIddmKRMYYdIiIikjWGHSIiIpI1hh0iIiKSNYYdIiIikjWGHSIiIpI1hh0iIiKSNYYdIiKSH849JyMMO0RERCRrDDtEREQkaww7REREJGsMO0RERCRrDDtEREQkaww7REQkO5yMRcYYdoiIiEjWGHaIiIhI1hh2iIhIdoRgRxY9wLBDREREssawQ0RERLLGsENERESyxrBDREREssawQ0RERLLGsENERLLDuVhkjGGHiIiIZI1hh4iIiGSNYYeIiIhkjWGHiIhkhzdQJmMMO0RERCRrDDtERCQ7CoW1K6DKhGGHiIhkh91YZIxhh4iIiGSNYYeIiIhkjWGHiIhkR/AeymSEYYeIiIhkjWGHiIiIZI1hh4iIZIezscgYww4RERHJGsMOERHJDm8qSMYYdoiISHbYjUXGGHaIiIhI1hh2iIiISNYYdoiIiEjWGHaIiEh2OGaHjDHsEBERkawx7BAREZGsMewQERGRrDHsEBERkawx7BAREZGsMewQERGRrDHsEBERkawx7BAREZGsMewQEZHsCN5VkIww7BAREZGsMewQERGRrDHsEBERkawx7BAREZGsMewQERGRrFk97Ny4cQP/+c9/ULVqVTg4OKBJkyY4fPiwtF4IgcmTJ8PX1xcODg4ICwvD+fPnTY6RlJSEwYMHw9XVFe7u7hgxYgTS09Mr+lSIiIioErJq2Ll37x7atWsHW1tbbNq0CadPn8bs2bNRpUoVaZuZM2di7ty5WLx4MQ4cOAAnJyeEh4cjKytL2mbw4ME4deoUoqOjsWHDBuzevRujRo2yxikREVElwInnZEwhrHgzgokTJ2Lv3r3Ys2dPoeuFEPDz88Nbb72Ft99+GwCQkpICb29vLF++HAMHDsSZM2fQsGFDHDp0CC1btgQAbN68Gc8++yyuX78OPz+/h9aRmpoKNzc3pKSkwNXVtexOkIiIKlStiX8CAHzd7BEzqYuVq6HyVtLPb6u27Pz+++9o2bIlXnzxRWg0GjRv3hxLliyR1l+6dAnx8fEICwuTlrm5uSE4OBgxMTEAgJiYGLi7u0tBBwDCwsKgVCpx4MCBQt83OzsbqampJl9EREQkT1YNOxcvXsSiRYtQt25dbNmyBaNHj8bYsWOxYsUKAEB8fDwAwNvb22Q/b29vaV18fDw0Go3JehsbG3h4eEjbFDRjxgy4ublJX/7+/mV9akREZEW8gTIZs2rY0el0aNGiBaZPn47mzZtj1KhRGDlyJBYvXlyu7ztp0iSkpKRIX9euXSvX9yMiIiLrsWrY8fX1RcOGDU2WPfXUU7h69SoAwMfHBwCQkJBgsk1CQoK0zsfHB7dv3zZZn5eXh6SkJGmbgtRqNVxdXU2+iIhIPhQKa1dAlYlVw067du1w9uxZk2Xnzp1DzZo1AQABAQHw8fHBtm3bpPWpqak4cOAAQkJCAAAhISFITk5GbGystM327duh0+kQHBxcAWdBRESVDbuxyJiNNd98/PjxaNu2LaZPn44BAwbg4MGD+Oabb/DNN98AABQKBcaNG4dPPvkEdevWRUBAAD788EP4+fmhT58+APQtQd27d5e6v3JzczFmzBgMHDiwRDOxiIiISN6sGnZatWqFX375BZMmTcJHH32EgIAAzJkzB4MHD5a2effdd5GRkYFRo0YhOTkZ7du3x+bNm2Fvby9t8+OPP2LMmDHo0qULlEol+vfvj7lz51rjlIiIiKiSsep9dioL3meHiEgeDPfZ8XZV48D/hT1ka3rcPRb32SEiIiIqbww7REREJGsMO0RERCRrDDtEREQkaww7REREJGsMO0RERCRrDDtERCQ7vKkKGWPYISIiIllj2CEiIiJZY9ghIiLZYS8WGWPYISIiIllj2CEiIlngox6pKAw7REREJGsMO0REJAts2KGiMOwQEZEsMOtQURh2iIhIdtjKQ8YYdoiISBY4QJmKwrBDRESywKhDRWHYISIiGWL0oQcYdoiISBbYi0VFYdghIiJZECatOQqr1UGVD8MOERHJgmnLDpt56AGGHSIiIpI1hh0iIiKSNYYdIiKSBQ5QpqIw7BARkeww+JCxUoWd5ORkLF26FJMmTUJSUhIA4MiRI7hx40aZFkdERFRSgoOSqQg2lu7wzz//ICwsDG5ubrh8+TJGjhwJDw8P/Pzzz7h69Sq+//778qiTiIioWGzNoaJY3LIzYcIEREZG4vz587C3t5eWP/vss9i9e3eZFkdERET0qCwOO4cOHcKrr75qtrxatWqIj48vk6KIiIgsxYYdKorFYUetViM1NdVs+blz5+Dl5VUmRREREVmKTz2nolgcdp5//nl89NFHyM3NBQAoFApcvXoV7733Hvr371/mBRIREVmKsYeMWRx2Zs+ejfT0dGg0Gty/fx8dO3ZEnTp14OLigk8//bQ8aiQiInooBhwqisWzsdzc3BAdHY2///4b//zzD9LT09GiRQuEhYWVR31EREQlwl4sKorFYcegffv2aN++fVnWQkREVCY4foeMlSjszJ07t8QHHDt2bKmLISIiKjXmGypCicLOl19+afL6zp07yMzMhLu7OwD9HZUdHR2h0WgYdoiIyCp4B2UqSokGKF+6dEn6+vTTT9GsWTOcOXMGSUlJSEpKwpkzZ9CiRQt8/PHH5V0vERERkUUsno314YcfYt68eahfv760rH79+vjyyy/xwQcflGlxREREJcVhOlQUi8POrVu3kJeXZ7Zcq9UiISGhTIoiIiKyFLMOFcXisNOlSxe8+uqrOHLkiLQsNjYWo0eP5vRzIiKyGs7AoqJYHHa+++47+Pj4oGXLllCr1VCr1WjdujW8vb2xdOnS8qiRiIjIIow9ZMzi++x4eXlh48aNOHfuHP79918AQIMGDVCvXr0yL46IiKikjAMOG3nIWKlvKlivXj0GHCIiqjSMAw67tMiYxWFn+PDhxa7/7rvvSl0MERFRWWDUIWMWh5179+6ZvM7NzcXJkyeRnJyMzp07l1lhREREluBNBakoFoedX375xWyZTqfD6NGjERgYWCZFERERWUwU8Wd64lk8G6vQgyiVmDBhgtljJYiIiKyBWYeMlUnYAYC4uLhCbzZIRERUEUxnYzHu0AMWd2NNmDDB5LUQArdu3cKff/6JiIiIMiuMiIjIEiazsaxXBlVCFoedo0ePmrxWKpXw8vLC7NmzHzpTi4iIqCKwYYeMWRx2duzYUR51EBERPRLj2VicmUXGLB6z07lzZyQnJ5stT01N5dRzIiKyGtObClqvDqp8LA47O3fuRE5OjtnyrKws7Nmzp0yKIiIiehTMOmSsxN1Y//zzj/Tn06dPIz4+Xnqt1WqxefNmVKtWrWyrIyIiKiEGHCpKicNOs2bNoFAooFAoCu2ucnBwwLx588q0OCIiopISnI5FRShx2Ll06RKEEKhduzYOHjwILy8vaZ2dnR00Gg1UKlW5FElERPQwplmHaYceKHHYqVmzJgD9oyGIiIgqMw5QJmMlCju///47evToAVtbW/z+++/Fbvv888+XSWFERESlxaxDxkoUdvr06YP4+HhoNBr06dOnyO0UCgW0Wm1Z1UZERFRiplPPGXfogRKFHeOuK3ZjERFRZceoQ8bK7EGgRERE1mRyB2WmHTJSopaduXPnlviAY8eOLXUxREREpcWAQ0UpUdj58ssvS3QwhULBsENERESVSonCzqVLl8q7DiIiokdSsGFHCAGFQmGVWqhyeaQxO0IIjngnIqJKoeDnET+eyKBUYefbb79F48aNYW9vD3t7ezRu3BhLly4t69qIiIhKjVmHDCwOO5MnT8abb76JXr16Ye3atVi7di169eqF8ePHY/LkyaUu5LPPPoNCocC4ceOkZVlZWYiKikLVqlXh7OyM/v37IyEhwWS/q1evomfPnnB0dIRGo8E777yDvLy8UtdBRESPp8K6sYgACx4XYbBo0SIsWbIEgwYNkpY9//zzePrpp/HGG2/go48+sriIQ4cO4euvv8bTTz9tsnz8+PH4888/sXbtWri5uWHMmDHo168f9u7dC0D/tPWePXvCx8cH+/btw61btzB06FDY2tpi+vTpFtdBRESPr4LZhlGHDCxu2cnNzUXLli3NlgcFBZWqRSU9PR2DBw/GkiVLUKVKFWl5SkoKvv32W3zxxRfo3LkzgoKCsGzZMuzbtw/79+8HAGzduhWnT5/GDz/8gGbNmqFHjx74+OOPsWDBAuTk5FhcCxERyQcbdsjA4rAzZMgQLFq0yGz5N998g8GDB1tcQFRUFHr27ImwsDCT5bGxscjNzTVZ3qBBA9SoUQMxMTEAgJiYGDRp0gTe3t7SNuHh4UhNTcWpU6eKfM/s7GykpqaafBER0eOuwABltu1QPou7sQD9AOWtW7eiTZs2AIADBw7g6tWrGDp0KCZMmCBt98UXXxR7nFWrVuHIkSM4dOiQ2br4+HjY2dnB3d3dZLm3tzfi4+OlbYyDjmG9YV1RZsyYgWnTphVbGxERPV7YkkNFsTjsnDx5Ei1atAAAxMXFAQA8PT3h6emJkydPSts97N4G165dw5tvvono6GjY29tbWsYjmTRpkkkoS01Nhb+/f4XWQEREZct8gLJVyqBKyOKws2PHjjJ549jYWNy+fVsKToB+wPHu3bsxf/58bNmyBTk5OUhOTjZp3UlISICPjw8AwMfHBwcPHjQ5rmG2lmGbwqjVaqjV6jI5DyIiIqrcrPYg0C5duuDEiRM4duyY9NWyZUsMHjxY+rOtrS22bdsm7XP27FlcvXoVISEhAICQkBCcOHECt2/flraJjo6Gq6srGjZsWOHnRERE1mM2G4stO5TP4padrKwszJs3Dzt27MDt27eh0+lM1h85cqREx3FxcUHjxo1Nljk5OaFq1arS8hEjRmDChAnw8PCAq6sr3njjDYSEhEhjhbp164aGDRtiyJAhmDlzJuLj4/HBBx8gKiqKLTdERE+YggOSOUCZDCwOOyNGjMDWrVvxwgsvoHXr1uX63JEvv/wSSqUS/fv3R3Z2NsLDw7Fw4UJpvUqlwoYNGzB69GiEhITAyckJERERpbrXDxERyQtbdshAISy8xaSbmxs2btyIdu3alVdNFS41NRVubm5ISUmBq6urtcshIqJSOHMrFT2+2iO9PjktHM7qUk06psdEST+/LR6zU61aNbi4uDxScURERGXNfMwOm3ZIz+KwM3v2bLz33nu4cuVKedRDREREVKYsbt9r2bIlsrKyULt2bTg6OsLW1tZkfVJSUpkVR0REVFLmA5SJ9CwOO4MGDcKNGzcwffp0eHt7l+sAZSIiopLi1HMqisVhZ9++fYiJiUHTpk3Lox4iIqKywbBD+Swes9OgQQPcv3+/PGohIiIqM7zPDhlYHHY+++wzvPXWW9i5cyfu3r3Lp4cTEVGlwG4sKorF3Vjdu3cHoH/cgzEhBBQKBbRabdlURkRE9AiYdcigTB8EeuLEiUcqhoiIqLTMZmOxaYfyWRx2OnbsaPI6LS0NK1euxNKlSxEbG4sxY8aUWXFEREQlZdaNZZ0yqBIq9VPPd+/ejYiICPj6+mLWrFno3Lkz9u/fX5a1ERERlRjDDRXFopad+Ph4LF++HN9++y1SU1MxYMAAZGdn49dff0XDhg3Lq0YiIiKLsReLDErcstOrVy/Ur18f//zzD+bMmYObN29i3rx55VkbERFRiRUco8Op52RQ4padTZs2YezYsRg9ejTq1q1bnjURERFZzCzaMOtQvhK37Pz9999IS0tDUFAQgoODMX/+fCQmJpZnbURERKXGrEMGJQ47bdq0wZIlS3Dr1i28+uqrWLVqFfz8/KDT6RAdHY20tLTyrJOIiKhYBcfo6Dhoh/JZPBvLyckJw4cPx99//40TJ07grbfewmeffQaNRoPnn3++PGokIiIqAdNwo2PWoXylnnoOAPXr18fMmTNx/fp1rFy5sqxqIiIiemQ6ph3K90hhx0ClUqFPnz74/fffy+JwREREFmM3FhWlTMIOERGRtRWMNmzYIQOGHSIikiUt0w7lY9ghIiJZMHs2FruxKB/DDhERyULBcMOGHTJg2CEiIlniAGUyYNghIiJZKBhtOGaHDBh2iIhIFszH7FinDqp8GHaIiEiW2I1FBgw7REQkC6JAR5aWYYfyMewQEZE8cOo5FYFhh4iIZIF3UKaiMOwQEZEscTYWGTDsEBGRLPBBoFQUhh0iIpKFggOUmXXIgGGHiIhkid1YZMCwQ0REssBuLCoKww4REclCwWjDrEMGDDtERCRLbNkhA4YdIiKShYI3EeSYHTJg2CEiIlngTQWpKAw7REQkS3xcBBkw7BARkTwUyDZ8ECgZMOwQEZEsFLypILuxyIBhh4iIZIndWGTAsENERLJQMNtwNhYZMOwQEZEsmN9B2Tp1UOXDsENERLJgPvWcaYf0GHaIiEiWdGzaoXwMO0REJAsFByQz65ABww4REckCu7GoKAw7REQkS5x6TgYMO0REJAucek5FYdghIiKZ4JgdKhzDDhERyRLH7JABww4REcmC+U0FGXZIj2GHiIhkwXw2llXKoEqIYYeIiGSJLTtkwLBDRESyYNaNxaYdysewQ0REsiA4G4uKwLBDRESyxG4sMmDYISIiWWA3FhWFYYeIiGSBs7GoKAw7REQkC+ZPPWfaIT2GHSIikiUtww7lY9ghIiJZYtYhA4YdIiKSBQ5QpqIw7BARkSwx65ABww4REcmC+U0FmXZIz6phZ8aMGWjVqhVcXFyg0WjQp08fnD171mSbrKwsREVFoWrVqnB2dkb//v2RkJBgss3Vq1fRs2dPODo6QqPR4J133kFeXl5FngoREVkZn3pORbFq2Nm1axeioqKwf/9+REdHIzc3F926dUNGRoa0zfjx4/HHH39g7dq12LVrF27evIl+/fpJ67VaLXr27ImcnBzs27cPK1aswPLlyzF58mRrnBIREVUSDDtkoBAFb0xgRXfu3IFGo8GuXbvQoUMHpKSkwMvLCz/99BNeeOEFAMC///6Lp556CjExMWjTpg02bdqE5557Djdv3oS3tzcAYPHixXjvvfdw584d2NnZPfR9U1NT4ebmhpSUFLi6upbrORIRUflYH3sdb609Lr0e1LoGZvRrYsWKqLyV9PO7Uo3ZSUlJAQB4eHgAAGJjY5Gbm4uwsDBpmwYNGqBGjRqIiYkBAMTExKBJkyZS0AGA8PBwpKam4tSpU4W+T3Z2NlJTU02+iIjo8VbwN/dK9Ls8WVmlCTs6nQ7jxo1Du3bt0LhxYwBAfHw87Ozs4O7ubrKtt7c34uPjpW2Mg45hvWFdYWbMmAE3Nzfpy9/fv4zPhoiIrI3dWGRQacJOVFQUTp48iVWrVpX7e02aNAkpKSnS17Vr18r9PYmIqHwVvK+OVmelQqjSsbF2AQAwZswYbNiwAbt370b16tWl5T4+PsjJyUFycrJJ605CQgJ8fHykbQ4ePGhyPMNsLcM2BanVaqjV6jI+CyIisqZcnWm6YTcWGVi1ZUcIgTFjxuCXX37B9u3bERAQYLI+KCgItra22LZtm7Ts7NmzuHr1KkJCQgAAISEhOHHiBG7fvi1tEx0dDVdXVzRs2LBiToSIiKwuT8v77FDhrNqyExUVhZ9++gm//fYbXFxcpDE2bm5ucHBwgJubG0aMGIEJEybAw8MDrq6ueOONNxASEoI2bdoAALp164aGDRtiyJAhmDlzJuLj4/HBBx8gKiqKrTdERE+Q3AL9VlpmHcpn1bCzaNEiAECnTp1Mli9btgyRkZEAgC+//BJKpRL9+/dHdnY2wsPDsXDhQmlblUqFDRs2YPTo0QgJCYGTkxMiIiLw0UcfVdRpEBFRJZDLlh0qglXDTkn6U+3t7bFgwQIsWLCgyG1q1qyJjRs3lmVpRET0mMnTcswOFa7SzMYiIiJ6FLn5s7GUCv1rHWdjUT6GHSIikgVDy47aRgUA0LJlh/Ix7BARkSwYBiirbfUfbezGIgOGHSIikgXDAGU7lf6jTcesQ/kYdoiISBbydKYtO1qmHcrHsENERLKQZ9ayw7BDegw7REQkC1I3Vv4AZWYdMmDYISIiWZAGKNuwG4tMMewQEZEsSGN2bNiNRaYYdoiISBYedGMZpp5bsxqqTBh2iIhIFvIKdmMx7VA+hh0iIpIFQ8uO4Q7K7MYiA4YdIiKShYIDlDk+mQwYdoiISBby8tPNg5sK8kmgpMewQ0REsmAYs+NoZwMAyMlj2CE9hh0iIpKFnPwxO85qfdjJZtihfAw7REQkC4aWHRd7fdjJytVasxyqRBh2iIhIFgxjdtiyQwUx7BARkSwYZmM5qdmyQ6YYdoiISBYMYcfZ/kHLjuC9dggMO0REJBN5+QOUXfJbdoQAcrTsyiKGHSIikomCLTsAx+2QHsMOERHJgmGAsqOtDRQK/TKO2yGAYYeIiGTC0I1lo1JIj4zIzmXLDjHsEBGRDAghpPE5tiol7G31DwNlNxYBDDtERCQDWqOnftoateywG4sAhh0iIpKBPKOwY8OWHSqAYYeIiB57uUZTzG2UxmN22LJDDDtERCQDxi04dmzZoQIYdoiI6LGXnpUHAHCyU0Gp5JgdMsWwQ0REj7307Pywk3/3ZLbskDGGHSIieuxl5Icdw92T2bJDxhh2iIjosWdo2XHOb9lRs2WHjDDsEBHRY0/qxrJjyw6ZY9ghIqJS+WH/FRy4eNfaZQAAMrL1ocbQjeWQ37KTmcOwQ4DNwzchIiIyFRN3Fx/8ehIAcPmznlauBkjPzgXwoBvLzcEWAJCalWu1mqjyYMsOERFZ7GJiurVLMJGe37LjpNa36Lg76sNOcibDDjHsEBHRIxJCPHyjcma4z46zWh9y3B3sAADJmTlWq4kqD4YdIiKymHG+qQwznqSp5wVbdu6zZYcYdoiIqBSMW3MqwyDg9BzTqefujoaWHYYdYtghIqJSuG80pdvQqmJN0uMipLBjGLPDbixi2CEiolIwDAgGKkfLTlr+rCsXe9Owk3I/Fzqd9ccUkXUx7BARkcWMW3MycqzfsnMnPRsA4OmsBvBg6rlOAGlZ1q+PrIthh4iILGYcdjKzrduyI4RAQqo+7Hi72gMA1DYqONrpBysn32dX1pOOYYeIiCyWXoladlLv5yEnf0aYl4taWl7VWT9I+XZatlXqosqDYYeIiCxm0rJj5bBzOy0LAOBqbwP7/MdEAEA1dwcAwI17961SF1UeDDtERGSxDKNByelW7sYytNxo8ruwDKpXcQQA3Ehm2HnSMewQEZHFTMfsWLdlJyFV37KjMerCAoDqVfQtO9fvZVZ4TVS5MOwQEZHFTGdjWbdlJz4/7HgX0bJznd1YTzyGHSIislhqVuVp2bl4JwMAUKuqk8lyw5idq0ls2XnSMewQEZFFtDphcmfi1CzrPpLhwm39E9jraJxNlhteX03KrBR3eSbrYdghIiKLpN7PhfFNie9Z8flTQgjE3dGHnUCNacuOl4saGhc1hAD+jU+1RnnlLidPJ909morGsENERBa5m2F6kz5rPn/qTlo20rLyoFSYd2MBQONqbgCAUzflGXYGLdmPtp9t5zPAHoJhh4iILHKvwAdrUob1PmiPXksGAAR6OZvcY8egsZ+rfruryRVYVcXI1eoQe+Ue0rLy8NeZ29Yup1Jj2CEiIosYwo1T/uMYrNmNFXvlHgCgZS2PQte3CawKANhzPhFClP8DQYUQmLj+Hzw9dQvmbTtfru91x+jO0EkZvEt0cRh2iIjIIoawE5g/ADg5M8dqTxY/eCkJANCqVpVC1wfVrAIHWxUS07Nx+lb5d2VdSszAqkPXkJqVhx8OXCnXgHUrJUv68/mE9HJ7Hzlg2CEiIosYwk5tT/0YGZ2wzoys22lZOH49GQAQkt+CU5DaRoX2dT0BAH8cv1XuNe0+d0f6c0Jqdrne48dwM0UAOJuQVm7vIwcMO0REZBFD2PF2tYeL2sZkWUXaeioBQgBN/d3h6+ZQ5Hb9W1QDAPxy9Lr0wNDyssso7AAPutnKg3HLzuXEjHJ7Hzlg2CEiIosYPlh93exRxUn/ZPGCg5bLmxACKw9eBQD0bOJT7LbPNNBA46JGQmo2fjl6vdxqysrVYv9Ffbdauzr6lqbDV5LK7f3iUx60GqVm5XFGVjEYdoiIyCL/xuu7TJ7ydZWeR1XRj2SIibuLUzdTobZR4sUg/2K3VduoMKpDbQDA7K3nyu2+NIcv38P9XC00LmoMDq4pLSsvBa857xRdNIYdIiIqsZT7udJTxBv4uKK+jwuABwGoIuRpdZix6V8AwEut/KXWpeL8p01N1KrqiNtp2Ziw5ni5DKj+9dgNAMAz9TVomT9g+mxCWrmNZzLcTNHgyl2GnaIw7BARUYmdupkCQP/cKTdHWzTw1d/H5t8KmOlkMG/7BZy4kQIXtQ3e6Fy3RPvY26owZ2Bz2NkoEX06AR9tOF2mgeduejY2/HMTADCgVXVoXOxRw8MRQpTPPX60OoHLifpw0zp/2j1bdorGsENERCW29VQCACA4QP8B+1R+y86ZW2kVch+bNYev4av8+9dMfb4RvPK70Uqimb87ZvRtAgBYvu8yXvshFnfTy+b+NP/dchZZuTo0qeaGFjX0rTota+r/H3u57MftXL+XiRytDmobJTrW9wIAHM+/wSKZY9ghIqISycrVYsM/+unbzzX1BaAft2Nno0R8ala5dmXpdAJzt53Hu+v+AQCM7hSI/kHVLT5O/6DqmPNSM9iplNh6OgGdZ+/Cwp0XkHK/dF1NQggs3XMRqw5dAwB80PMpKBQKAA9udHiwHMLOufz76gR4OqF9Hf3U+piLd5GnLd/ZZo8rhh0iIiqRr3ddRGJ6Nvzc7NG+jr41wUltg0719H82jFkpa7FXktBv0T58EX0OABDZthbeDa9f6uP1aV4N60aH4ClfV6Tcz8XMzWfR6pO/8MqKQ1h18CrOJ6Q9tIsrT6vD7nN38PKSA/jkzzMAgPFh9RBc+8H9fgwzsg5cSsK1Mu5i2nVO/3iIFjWroHE1N7ja2yAtKw8HLpXf7K/HmY21CyAiospNCIF1sdfx1TZ92Hi3ewPY2Tz4Xblfi+rYejoB/4u5gsi2tYq9501JpWblYtsZ/TGP5I95cVbbYHKvhhjQsvjZVyXxdHV3/DGmHX47dhNL9lzEv/Fp+OvMbekZU2obJapXcUD1Ko5wdbCFrUoBlUKBlPu5uJ2WjbPxabifq5W2fbtbfbwSGmDyHjWr6ltd/r6QiG92X8THfRo/ct2APmj9dVpfZ9eG3lApFejV1A8/HriKhTsvoG1gVal1ifQUoiI6WSu51NRUuLm5ISUlBa6urtYuh4ioUtDqBPZeSMSSPRex53wiAGBQ6xqY3rexyYepEAL9Fu3D0avJaODjgm+GtESNqo4WvVfK/VycupmCQ5fu4dDlJBy8lISc/C4ZO5USfZr74a1u9eHtal92J2jkXEIa/vznFvZfvIt/rqdIQaY4Hk52eLaJD17tEAh/j8LPd19cIl5ecgBKBfDDK8FoG+j5yLX+eOAK3v/lJDyc7LBvYmfY26pw9W4munyxE7lagbGd62B813pPROAp6ee3bMLOggUL8N///hfx8fFo2rQp5s2bh9atW5doX4YdInqSCSGQej8PV5IycClR/3XiegoOXk5CWlYeAMDORokxz9TBmGfqQKk0/xC9ejcT/RbtRWJ6DlRKBcIbeaNN7arwdXOAh5MthABytDrcz9HiTlo2bqdlIyE1C5fvZuB8Qjpup5kPFA70ckKvpn54ObgGNC7lE3IKk6fV4WZyFq7fy8T1e/eRnp2HXK0OeToBVwdbeDrZoa63MwI8naEq5FoUNGHNMfx85AYcbFX4rH8TPN/Ur9RBZO+FRIxYcQhZuTpMfq4hhrd/0Jr0v5jL+PC3UwD0g7Ff7xSIjvW9oLYxfxq8XDxRYWf16tUYOnQoFi9ejODgYMyZMwdr167F2bNnodFoHro/ww4RVWY6nUCuTodcrUBung65Wh1ytPmvtTrk5C8zfp2Zo0VGTh4ys/OQmatFZrb+9f0cLdKz85CcmYu7GTlIyshGUkYOcrWFfxS4Odji+aZ+eCU0ADWrOhVb57WkTPzfLyekViBL+bnZI6iWB1rXqoKQwKqoo3Ep1XEqm6xcLUZ+f1i6Li1rVsHgNjXQqZ6mRPcIysrV4sClJKw5dA1/ntAPEO9YzwvfRrSEjcp06O0P+69g+sYzyMx50MXWuJobGvu5wt/DEf4ejvBxtUcVRzu4OdrC1d7msW4BeqLCTnBwMFq1aoX58+cDAHQ6Hfz9/fHGG29g4sSJD92/vMJOQmoWcvObYYu7ysbrBEQx6wruJwpdZ/5eosh1Re1XbB1mxyj6+EUeo7KcZ4ENizu+Sc1lcR1ND1HkeZq/VzHnWQ7XUUj/F0avhdF6AZ3uwXKRfwjT7c33F+LB9kUd13h/nbSu6OPC6Hg6k2OL/JqK3h/I36eQWrU6Aa1Ov16rE9AJIf1Zq8vfxmid/v/6kKIVwuj/D46hzX8v/TEK7CcE8ozCS14FPVHcy0WNgKpOqOXpiHreLmgd4IGGvq5mH6gPc/JGCv46k4AT11OQmJ6NpMwcqBQK2KqUUNsq4eWshsbFHhpXNWp4OKKOxhmBGme42tuW05lZn1Yn8NVf57B410Wpew4A/D0cUE/jAm83e1RxtIWNUgkhBFLu5+JOejYu3snAxTsZJvsMbOWPqc83gr1t4S02t1OzsGTPRfxx/BbijR4WWhiVUgF3B1s4qW3gYKuCvZ0KDrZKONiq4GCngr2t/stOpYSNUgFbGyVslQrYqJSwVSlhq9J/X23y/2+rUsBG+WCdTf5+NkoFnq7uDge7sm1lemLCTk5ODhwdHbFu3Tr06dNHWh4REYHk5GT89ttvZvtkZ2cjO/tBk2lqair8/f3LPOx0nr0TF+/w4WxEVLZUSoX0IWNn+NCxMX3tYKeCk50KjmobONqq4KS2gaOdSvpQc3e0hYeTHao6qeHhbIeqTnZFfnhS2UlIzcKP+69g86l4afp4SXi7qhH2lDcGB9dEQ7+SfU4JIXApMQPHriXjXEI6riVl4tq9TCSmZeNeZm6JxiWVpW1vdUSgl3OZHrOkYeexn42VmJgIrVYLb29vk+Xe3t74999/C91nxowZmDZtWrnXprZRwd72wW9ECjxoKizYamj8smCToqLIF0XvV9rjK4p5M+N1BRs9TdeVbL/imk7N6i/i+GVxHc3PRVHMusLrKKyWktRRFudZcGWxxy+iroeep/4/KBT61wpFwT8rjNabvoZhm/zXSoVC2heFbG/8GvnbKc3ez/y4CpPXikKWmR/XrK78kzc+pkqp30+l1M/GUSoVUCkApVIBpdFyhUIfQlRGy5X5x1UpFQ+2VyigVAKq/OWmx36wvUqpeBBkVPrfqA2vSzJOhConb1d7TOhWHxO61UdKpn5Q9qW7Gbidmo2U+7nQ6gQUCn33obujHWp7OqGOxhnVqzhY3N2kUChQ28sZtYsIGFm5WqTcz8W9zBxk5miRlaPF/dz8rxwtsqQ/53eT6nTIzRPI0xm1OhZogdR3p+qXGdZpdfp91DbWu9vNYx92SmPSpEmYMGGC9NrQslPWNr0ZWubHJCIieXBztEXbOp5oW+fRZ2iVhqGLqrxmuFUmj33Y8fT0hEqlQkJCgsnyhIQE+Pj4FLqPWq2GWl3yW4wTERHR4+uxv4OynZ0dgoKCsG3bNmmZTqfDtm3bEBISYsXKiIiIqDJ47Ft2AGDChAmIiIhAy5Yt0bp1a8yZMwcZGRkYNmyYtUsjIiIiK5NF2HnppZdw584dTJ48GfHx8WjWrBk2b95sNmiZiIiInjyP/dTzssCbChIRET1+Svr5/diP2SEiIiIqDsMOERERyRrDDhEREckaww4RERHJGsMOERERyRrDDhEREckaww4RERHJGsMOERERyRrDDhEREcmaLB4X8agMN5FOTU21ciVERERUUobP7Yc9DIJhB0BaWhoAwN/f38qVEBERkaXS0tLg5uZW5Ho+GwuATqfDzZs34eLiAoVCYe1yrC41NRX+/v64du0anxVWznitKxavd8Xhta44T/K1FkIgLS0Nfn5+UCqLHpnDlh0ASqUS1atXt3YZlY6rq+sT94NjLbzWFYvXu+LwWlecJ/VaF9eiY8ABykRERCRrDDtEREQkaww7ZEatVmPKlClQq9XWLkX2eK0rFq93xeG1rji81g/HAcpEREQka2zZISIiIllj2CEiIiJZY9ghIiIiWWPYISIiIllj2HlCLViwALVq1YK9vT2Cg4Nx8ODBEu23atUqKBQK9OnTp3wLlBFLr3VycjKioqLg6+sLtVqNevXqYePGjRVU7ePN0ms9Z84c1K9fHw4ODvD398f48eORlZVVQdU+vnbv3o1evXrBz88PCoUCv/7660P32blzJ1q0aAG1Wo06depg+fLl5V6nXFh6vX/++Wd07doVXl5ecHV1RUhICLZs2VIxxVZSDDtPoNWrV2PChAmYMmUKjhw5gqZNmyI8PBy3b98udr/Lly/j7bffRmhoaAVV+viz9Frn5OSga9euuHz5MtatW4ezZ89iyZIlqFatWgVX/vix9Fr/9NNPmDhxIqZMmYIzZ87g22+/xerVq/F///d/FVz54ycjIwNNmzbFggULSrT9pUuX0LNnTzzzzDM4duwYxo0bh1deeeWJ/wAuKUuv9+7du9G1a1ds3LgRsbGxeOaZZ9CrVy8cPXq0nCutxAQ9cVq3bi2ioqKk11qtVvj5+YkZM2YUuU9eXp5o27atWLp0qYiIiBC9e/eugEoff5Ze60WLFonatWuLnJyciipRNiy91lFRUaJz584myyZMmCDatWtXrnXKDQDxyy+/FLvNu+++Kxo1amSy7KWXXhLh4eHlWJk8leR6F6Zhw4Zi2rRpZV/QY4ItO0+YnJwcxMbGIiwsTFqmVCoRFhaGmJiYIvf76KOPoNFoMGLEiIooUxZKc61///13hISEICoqCt7e3mjcuDGmT58OrVZbUWU/lkpzrdu2bYvY2Fipq+vixYvYuHEjnn322Qqp+UkSExNj8r0BgPDw8GL/zaGyo9PpkJaWBg8PD2uXYjV8EOgTJjExEVqtFt7e3ibLvb298e+//xa6z99//41vv/0Wx44dq4AK5aM01/rixYvYvn07Bg8ejI0bN+LChQt4/fXXkZubiylTplRE2Y+l0lzrl19+GYmJiWjfvj2EEMjLy8Nrr73GbqxyEB8fX+j3JjU1Fffv34eDg4OVKnsyzJo1C+np6RgwYIC1S7EatuxQsdLS0jBkyBAsWbIEnp6e1i5H9nQ6HTQaDb755hsEBQXhpZdewvvvv4/FixdbuzTZ2blzJ6ZPn46FCxfiyJEj+Pnnn/Hnn3/i448/tnZpRGXmp59+wrRp07BmzRpoNBprl2M1bNl5wnh6ekKlUiEhIcFkeUJCAnx8fMy2j4uLw+XLl9GrVy9pmU6nAwDY2Njg7NmzCAwMLN+iH1OWXmsA8PX1ha2tLVQqlbTsqaeeQnx8PHJycmBnZ1euNT+uSnOtP/zwQwwZMgSvvPIKAKBJkybIyMjAqFGj8P7770Op5O+CZcXHx6fQ742rqytbdcrRqlWr8Morr2Dt2rVm3YhPGv40P2Hs7OwQFBSEbdu2Sct0Oh22bduGkJAQs+0bNGiAEydO4NixY9LX888/L82q8Pf3r8jyHyuWXmsAaNeuHS5cuCAFSgA4d+4cfH19GXSKUZprnZmZaRZoDCFT8JGBZSokJMTkewMA0dHRRX5v6NGtXLkSw4YNw8qVK9GzZ09rl2N91h4hTRVv1apVQq1Wi+XLl4vTp0+LUaNGCXd3dxEfHy+EEGLIkCFi4sSJRe7P2VglZ+m1vnr1qnBxcRFjxowRZ8+eFRs2bBAajUZ88skn1jqFx4al13rKlCnCxcVFrFy5Uly8eFFs3bpVBAYGigEDBljrFB4baWlp4ujRo+Lo0aMCgPjiiy/E0aNHxZUrV4QQQkycOFEMGTJE2v7ixYvC0dFRvPPOO+LMmTNiwYIFQqVSic2bN1vrFB4rll7vH3/8UdjY2IgFCxaIW7duSV/JycnWOgWrY9h5Qs2bN0/UqFFD2NnZidatW4v9+/dL6zp27CgiIiKK3JdhxzKWXut9+/aJ4OBgoVarRe3atcWnn34q8vLyKrjqx5Ml1zo3N1dMnTpVBAYGCnt7e+Hv7y9ef/11ce/evYov/DGzY8cOAcDsy3B9IyIiRMeOHc32adasmbCzsxO1a9cWy5Ytq/C6H1eWXu+OHTsWu/2TSCEE22uJiIhIvjhmh4iIiGSNYYeIiIhkjWGHiIiIZI1hh4iIiGSNYYeIiIhkjWGHiIiIZI1hh4iIiGSNYYeIqAzk5OSgTp062LdvX5ked/PmzWjWrJnJI0SIKoPdu3ejV69e8PPzg0KhwK+//mrR/llZWYiMjESTJk1gY2ODPn36FLv93r17YWNjg2bNmllcK8MOEZmJjIyEQqEw+7pw4YK1S6u0Fi9ejICAALRt21ZaVtQHQGRk5EP/YTfo3r07bG1t8eOPP5ZRpURlIyMjA02bNsWCBQtKtb9Wq4WDgwPGjh370AeVJicnY+jQoejSpUup3othh4gK1b17d9y6dcvkKyAgwGy7nJwcK1RXuQghMH/+fIwYMaJcjh8ZGYm5c+eWy7GJSqtHjx745JNP0Ldv30LXZ2dn4+2330a1atXg5OSE4OBg7Ny5U1rv5OSERYsWYeTIkfDx8Sn2vV577TW8/PLLpX54LMMOERVKrVbDx8fH5EulUqFTp04YM2YMxo0bB09PT4SHhwMATp48iR49esDZ2Rne3t4YMmQIEhMTpeNlZGRg6NChcHZ2hq+vL2bPno1OnTph3Lhx0jaFtYS4u7tj+fLl0utr165hwIABcHd3h4eHB3r37o3Lly9L6w2tJrNmzYKvry+qVq2KqKgo5ObmSttkZ2fjvffeg7+/P9RqNerUqYNvv/0WQgjUqVMHs2bNMqnh2LFjxbZsxcbGIi4urlRPl758+XKhrWidOnWStunVqxcOHz6MuLg4i49PZC1jxoxBTEwMVq1ahX/++QcvvvgiunfvjvPnz1t0nGXLluHixYuYMmVKqWth2CEii61YsQJ2dnbYu3cvFi9ejOTkZHTu3BnNmzfH4cOHsXnzZiQkJGDAgAHSPu+88w527dqF3377DVu3bsXOnTtx5MgRi943NzcX4eHhcHFxwZ49e7B37144Ozuje/fuJi1MO3bsQFxcHHbs2IEVK1Zg+fLlJoFp6NChWLlyJebOnYszZ87g66+/hrOzMxQKBYYPH45ly5aZvO+yZcvQoUMH1KlTp9C69uzZg3r16sHFxcWi8wEAf39/k9azo0ePomrVqujQoYO0TY0aNeDt7Y09e/ZYfHwia7h69SqWLVuGtWvXIjQ0FIGBgXj77bfRvn17s5+v4pw/fx4TJ07EDz/8ABsbm1LXU/o9iUjWNmzYAGdnZ+l1jx49sHbtWgBA3bp1MXPmTGndJ598gubNm2P69OnSsu+++w7+/v44d+4c/Pz88O233+KHH36Q+txXrFiB6tWrW1TT6tWrodPpsHTpUigUCgD6IOLu7o6dO3eiW7duAIAqVapg/vz5UKlUaNCgAXr27Ilt27Zh5MiROHfuHNasWYPo6GhpnEDt2rWl94iMjMTkyZNx8OBBtG7dGrm5ufjpp5/MWnuMXblyBX5+foWuGzRoEFQqlcmy7OxsqRVIpVJJTfhZWVno06cPQkJCMHXqVJN9/Pz8cOXKFQuuFpH1nDhxAlqtFvXq1TNZnp2djapVq5boGFqtFi+//DKmTZtmdhxLMewQUaGeeeYZLFq0SHrt5OQk/TkoKMhk2+PHj2PHjh0m4cggLi4O9+/fR05ODoKDg6XlHh4eqF+/vkU1HT9+HBcuXDBrQcnKyjLp4mnUqJFJwPD19cWJEycA6LukVCoVOnbsWOh7+Pn5oWfPnvjuu+/QunVr/PHHH8jOzsaLL75YZF3379+Hvb19oeu+/PJLs8GX7733HrRardm2w4cPR1paGqKjo6FUmja8Ozg4IDMzs8gaiCqT9PR0qFQqxMbGmoX9wv6dKExaWhoOHz6Mo0ePYsyYMQAAnU4HIQRsbGywdetWdO7cuUTHYtghokI5OTkV2W1jHHwA/T9svXr1wueff262ra+vb4lncSkUCgghTJYZj7VJT09HUFBQoTOTvLy8pD/b2tqaHdcwddvBweGhdbzyyisYMmQIvvzySyxbtgwvvfQSHB0di9ze09NTClMF+fj4mF1HFxcXJCcnmyz75JNPsGXLFhw8eLDQ7rCkpCSTcySqzJo3bw6tVovbt28jNDS0VMdwdXU1+7lauHAhtm/fjnXr1hU6YaIoDDtE9MhatGiB9evXo1atWoX2qwcGBsLW1hYHDhxAjRo1AAD37t3DuXPnTFpYvLy8cOvWLen1+fPnTVozWrRogdWrV0Oj0cDV1bVUtTZp0gQ6nQ67du0qcrrrs88+K80U2bx5M3bv3l3sMZs3b45FixZBCCF1r1li/fr1+Oijj7Bp0yYEBgaarTe0XDVv3tziYxOVl/T0dJNfZC5duoRjx47Bw8MD9erVw+DBgzF06FDMnj0bzZs3x507d7Bt2zY8/fTTUjfu6dOnkZOTg6SkJKSlpeHYsWMAgGbNmkGpVKJx48Ym76nRaGBvb2+2/GE4QJmIHllUVBSSkpIwaNAgHDp0CHFxcdiyZQuGDRsGrVYLZ2dnjBgxAu+88w62b9+OkydPIjIy0qyrpnPnzpg/fz6OHj2Kw4cP47XXXjNppRk8eDA8PT3Ru3dv7NmzB5cuXcLOnTsxduxYXL9+vUS11qpVCxERERg+fDh+/fVX6Rhr1qyRtlGpVIiMjMSkSZNQt27dh053feaZZ5Ceno5Tp05ZcNX0Tp48iaFDh+K9995Do0aNEB8fj/j4eCQlJUnb7N+/H2q1utTTbonKw+HDh9G8eXMphE+YMAHNmzfH5MmTAejH0w0dOhRvvfUW6tevjz59+uDQoUPSLzyA/heL5s2b448//sDOnTtNjleWGHaI6JH5+flh79690Gq16NatG5o0aYJx48bB3d1dCjT//e9/ERoail69eiEsLAzt27c3G/sze/Zs+Pv7IzQ0FC+//DLefvttk+4jR0dH7N69GzVq1EC/fv3w1FNPYcSIEcjKyrKopWfRokV44YUX8Prrr6NBgwYYOXIkMjIyTLYZMWIEcnJyMGzYsIcer2rVqujbt2+pbvx3+PBhZGZm4pNPPoGvr6/01a9fP2mblStXYvDgwcV2pRFVtE6dOkEIYfZlmPloa2uLadOm4dKlS8jJycHNmzfx888/o0mTJtIxLl++XOgxijJ16lSp9ccSClHcUYmIylGnTp3QrFkzzJkzx9qlmNmzZw+6dOmCa9euwdvb+6Hb//PPP+jatSvi4uJKPACzJBITE1G/fn0cPnzYojEKRPQAW3aIiIxkZ2fj+vXrmDp1Kl588cUSBR0AePrpp/H555/j0qVLZVrP5cuXsXDhQgYdokfAAcpEREZWrlyJESNGoFmzZvj+++8t2jcyMrLM62nZsiVatmxZ5sclepKwG4uIiIhkjd1YREREJGsMO0RERCRrDDtEREQkaww7REREJGsMO0RERCRrDDtEREQkaww7REREJGsMO0RERCRrDDtEREQka/8PDSQlgT3csb8AAAAASUVORK5CYII=", "text/plain": [ - "Output()" + "
" ] }, "metadata": {}, "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "
\n"
-      ],
-      "text/plain": []
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    },
-    {
-     "data": {
-      "text/html": [
-       "
\n",
-       "
\n" - ], - "text/plain": [ - "\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "
           Created task 'sim_6' with task_id                       webapi.py:188\n",
-       "           'fdve-851e04b1-79be-422b-b189-e4a81edb2b9fv1'.                       \n",
-       "
\n" - ], - "text/plain": [ - "\u001b[2;36m \u001b[0m\u001b[2;36m \u001b[0mCreated task \u001b[32m'sim_6'\u001b[0m with task_id \u001b]8;id=29451;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=578335;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#188\u001b\\\u001b[2m188\u001b[0m\u001b]8;;\u001b\\\n", - "\u001b[2;36m \u001b[0m\u001b[32m'fdve-851e04b1-79be-422b-b189-e4a81edb2b9fv1'\u001b[0m. \u001b[2m \u001b[0m\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "
           View task using web UI at                               webapi.py:190\n",
-       "           'https://tidy3d.simulation.cloud/workbench?taskId=fdve-              \n",
-       "           851e04b1-79be-422b-b189-e4a81edb2b9fv1'.                             \n",
-       "
\n" - ], - "text/plain": [ - "\u001b[2;36m \u001b[0m\u001b[2;36m \u001b[0mView task using web UI at \u001b]8;id=818130;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=791647;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#190\u001b\\\u001b[2m190\u001b[0m\u001b]8;;\u001b\\\n", - "\u001b[2;36m \u001b[0m\u001b]8;id=488800;https://tidy3d.simulation.cloud/workbench?taskId=fdve-851e04b1-79be-422b-b189-e4a81edb2b9fv1\u001b\\\u001b[32m'https://tidy3d.simulation.cloud/workbench?\u001b[0m\u001b]8;;\u001b\\\u001b]8;id=430420;https://tidy3d.simulation.cloud/workbench?taskId=fdve-851e04b1-79be-422b-b189-e4a81edb2b9fv1\u001b\\\u001b[32mtaskId\u001b[0m\u001b]8;;\u001b\\\u001b]8;id=488800;https://tidy3d.simulation.cloud/workbench?taskId=fdve-851e04b1-79be-422b-b189-e4a81edb2b9fv1\u001b\\\u001b[32m=\u001b[0m\u001b]8;;\u001b\\\u001b]8;id=931389;https://tidy3d.simulation.cloud/workbench?taskId=fdve-851e04b1-79be-422b-b189-e4a81edb2b9fv1\u001b\\\u001b[32mfdve\u001b[0m\u001b]8;;\u001b\\\u001b]8;id=488800;https://tidy3d.simulation.cloud/workbench?taskId=fdve-851e04b1-79be-422b-b189-e4a81edb2b9fv1\u001b\\\u001b[32m-\u001b[0m\u001b]8;;\u001b\\ \u001b[2m \u001b[0m\n", - "\u001b[2;36m \u001b[0m\u001b]8;id=488800;https://tidy3d.simulation.cloud/workbench?taskId=fdve-851e04b1-79be-422b-b189-e4a81edb2b9fv1\u001b\\\u001b[32m851e04b1-79be-422b-b189-e4a81edb2b9fv1'\u001b[0m\u001b]8;;\u001b\\. \u001b[2m \u001b[0m\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "3a139950faf840bd82e03ad745829d14", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "Output()" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "
\n"
-      ],
-      "text/plain": []
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    },
-    {
-     "data": {
-      "text/html": [
-       "
\n",
-       "
\n" - ], - "text/plain": [ - "\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "
[10:06:25] Created task 'sim_7' with task_id                       webapi.py:188\n",
-       "           'fdve-ff7e28fd-8551-465e-97ac-2852c05b2308v1'.                       \n",
-       "
\n" - ], - "text/plain": [ - "\u001b[2;36m[10:06:25]\u001b[0m\u001b[2;36m \u001b[0mCreated task \u001b[32m'sim_7'\u001b[0m with task_id \u001b]8;id=259782;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=668619;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#188\u001b\\\u001b[2m188\u001b[0m\u001b]8;;\u001b\\\n", - "\u001b[2;36m \u001b[0m\u001b[32m'fdve-ff7e28fd-8551-465e-97ac-2852c05b2308v1'\u001b[0m. \u001b[2m \u001b[0m\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "
           View task using web UI at                               webapi.py:190\n",
-       "           'https://tidy3d.simulation.cloud/workbench?taskId=fdve-              \n",
-       "           ff7e28fd-8551-465e-97ac-2852c05b2308v1'.                             \n",
-       "
\n" - ], - "text/plain": [ - "\u001b[2;36m \u001b[0m\u001b[2;36m \u001b[0mView task using web UI at \u001b]8;id=522726;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=994955;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#190\u001b\\\u001b[2m190\u001b[0m\u001b]8;;\u001b\\\n", - "\u001b[2;36m \u001b[0m\u001b]8;id=940284;https://tidy3d.simulation.cloud/workbench?taskId=fdve-ff7e28fd-8551-465e-97ac-2852c05b2308v1\u001b\\\u001b[32m'https://tidy3d.simulation.cloud/workbench?\u001b[0m\u001b]8;;\u001b\\\u001b]8;id=559069;https://tidy3d.simulation.cloud/workbench?taskId=fdve-ff7e28fd-8551-465e-97ac-2852c05b2308v1\u001b\\\u001b[32mtaskId\u001b[0m\u001b]8;;\u001b\\\u001b]8;id=940284;https://tidy3d.simulation.cloud/workbench?taskId=fdve-ff7e28fd-8551-465e-97ac-2852c05b2308v1\u001b\\\u001b[32m=\u001b[0m\u001b]8;;\u001b\\\u001b]8;id=823;https://tidy3d.simulation.cloud/workbench?taskId=fdve-ff7e28fd-8551-465e-97ac-2852c05b2308v1\u001b\\\u001b[32mfdve\u001b[0m\u001b]8;;\u001b\\\u001b]8;id=940284;https://tidy3d.simulation.cloud/workbench?taskId=fdve-ff7e28fd-8551-465e-97ac-2852c05b2308v1\u001b\\\u001b[32m-\u001b[0m\u001b]8;;\u001b\\ \u001b[2m \u001b[0m\n", - "\u001b[2;36m \u001b[0m\u001b]8;id=940284;https://tidy3d.simulation.cloud/workbench?taskId=fdve-ff7e28fd-8551-465e-97ac-2852c05b2308v1\u001b\\\u001b[32mff7e28fd-8551-465e-97ac-2852c05b2308v1'\u001b[0m\u001b]8;;\u001b\\. \u001b[2m \u001b[0m\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "c45489897dcd4353bbc9a3dc60822b41", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "Output()" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "
\n"
-      ],
-      "text/plain": []
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    },
-    {
-     "data": {
-      "text/html": [
-       "
\n",
-       "
\n" - ], - "text/plain": [ - "\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "
           Created task 'sim_8' with task_id                       webapi.py:188\n",
-       "           'fdve-473cf792-77fe-449f-9762-850b97cf88e5v1'.                       \n",
-       "
\n" - ], - "text/plain": [ - "\u001b[2;36m \u001b[0m\u001b[2;36m \u001b[0mCreated task \u001b[32m'sim_8'\u001b[0m with task_id \u001b]8;id=362428;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=416946;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#188\u001b\\\u001b[2m188\u001b[0m\u001b]8;;\u001b\\\n", - "\u001b[2;36m \u001b[0m\u001b[32m'fdve-473cf792-77fe-449f-9762-850b97cf88e5v1'\u001b[0m. \u001b[2m \u001b[0m\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "
           View task using web UI at                               webapi.py:190\n",
-       "           'https://tidy3d.simulation.cloud/workbench?taskId=fdve-              \n",
-       "           473cf792-77fe-449f-9762-850b97cf88e5v1'.                             \n",
-       "
\n" - ], - "text/plain": [ - "\u001b[2;36m \u001b[0m\u001b[2;36m \u001b[0mView task using web UI at \u001b]8;id=292978;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=836151;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#190\u001b\\\u001b[2m190\u001b[0m\u001b]8;;\u001b\\\n", - "\u001b[2;36m \u001b[0m\u001b]8;id=629524;https://tidy3d.simulation.cloud/workbench?taskId=fdve-473cf792-77fe-449f-9762-850b97cf88e5v1\u001b\\\u001b[32m'https://tidy3d.simulation.cloud/workbench?\u001b[0m\u001b]8;;\u001b\\\u001b]8;id=266172;https://tidy3d.simulation.cloud/workbench?taskId=fdve-473cf792-77fe-449f-9762-850b97cf88e5v1\u001b\\\u001b[32mtaskId\u001b[0m\u001b]8;;\u001b\\\u001b]8;id=629524;https://tidy3d.simulation.cloud/workbench?taskId=fdve-473cf792-77fe-449f-9762-850b97cf88e5v1\u001b\\\u001b[32m=\u001b[0m\u001b]8;;\u001b\\\u001b]8;id=367437;https://tidy3d.simulation.cloud/workbench?taskId=fdve-473cf792-77fe-449f-9762-850b97cf88e5v1\u001b\\\u001b[32mfdve\u001b[0m\u001b]8;;\u001b\\\u001b]8;id=629524;https://tidy3d.simulation.cloud/workbench?taskId=fdve-473cf792-77fe-449f-9762-850b97cf88e5v1\u001b\\\u001b[32m-\u001b[0m\u001b]8;;\u001b\\ \u001b[2m \u001b[0m\n", - "\u001b[2;36m \u001b[0m\u001b]8;id=629524;https://tidy3d.simulation.cloud/workbench?taskId=fdve-473cf792-77fe-449f-9762-850b97cf88e5v1\u001b\\\u001b[32m473cf792-77fe-449f-9762-850b97cf88e5v1'\u001b[0m\u001b]8;;\u001b\\. \u001b[2m \u001b[0m\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "d50eb6f59f304e77b6364ab136552d36", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "Output()" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "
\n"
-      ],
-      "text/plain": []
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    },
-    {
-     "data": {
-      "text/html": [
-       "
\n",
-       "
\n" - ], - "text/plain": [ - "\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "
[10:06:26] Created task 'sim_9' with task_id                       webapi.py:188\n",
-       "           'fdve-bcf3f7cd-ebb4-486e-bd64-e2076c4d6953v1'.                       \n",
-       "
\n" - ], - "text/plain": [ - "\u001b[2;36m[10:06:26]\u001b[0m\u001b[2;36m \u001b[0mCreated task \u001b[32m'sim_9'\u001b[0m with task_id \u001b]8;id=28786;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=760287;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#188\u001b\\\u001b[2m188\u001b[0m\u001b]8;;\u001b\\\n", - "\u001b[2;36m \u001b[0m\u001b[32m'fdve-bcf3f7cd-ebb4-486e-bd64-e2076c4d6953v1'\u001b[0m. \u001b[2m \u001b[0m\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "
           View task using web UI at                               webapi.py:190\n",
-       "           'https://tidy3d.simulation.cloud/workbench?taskId=fdve-              \n",
-       "           bcf3f7cd-ebb4-486e-bd64-e2076c4d6953v1'.                             \n",
-       "
\n" - ], - "text/plain": [ - "\u001b[2;36m \u001b[0m\u001b[2;36m \u001b[0mView task using web UI at \u001b]8;id=415524;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=409328;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#190\u001b\\\u001b[2m190\u001b[0m\u001b]8;;\u001b\\\n", - "\u001b[2;36m \u001b[0m\u001b]8;id=219591;https://tidy3d.simulation.cloud/workbench?taskId=fdve-bcf3f7cd-ebb4-486e-bd64-e2076c4d6953v1\u001b\\\u001b[32m'https://tidy3d.simulation.cloud/workbench?\u001b[0m\u001b]8;;\u001b\\\u001b]8;id=549760;https://tidy3d.simulation.cloud/workbench?taskId=fdve-bcf3f7cd-ebb4-486e-bd64-e2076c4d6953v1\u001b\\\u001b[32mtaskId\u001b[0m\u001b]8;;\u001b\\\u001b]8;id=219591;https://tidy3d.simulation.cloud/workbench?taskId=fdve-bcf3f7cd-ebb4-486e-bd64-e2076c4d6953v1\u001b\\\u001b[32m=\u001b[0m\u001b]8;;\u001b\\\u001b]8;id=402534;https://tidy3d.simulation.cloud/workbench?taskId=fdve-bcf3f7cd-ebb4-486e-bd64-e2076c4d6953v1\u001b\\\u001b[32mfdve\u001b[0m\u001b]8;;\u001b\\\u001b]8;id=219591;https://tidy3d.simulation.cloud/workbench?taskId=fdve-bcf3f7cd-ebb4-486e-bd64-e2076c4d6953v1\u001b\\\u001b[32m-\u001b[0m\u001b]8;;\u001b\\ \u001b[2m \u001b[0m\n", - "\u001b[2;36m \u001b[0m\u001b]8;id=219591;https://tidy3d.simulation.cloud/workbench?taskId=fdve-bcf3f7cd-ebb4-486e-bd64-e2076c4d6953v1\u001b\\\u001b[32mbcf3f7cd-ebb4-486e-bd64-e2076c4d6953v1'\u001b[0m\u001b]8;;\u001b\\. \u001b[2m \u001b[0m\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "d0d941f0b8754973ac8300dfa6558584", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "Output()" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "
\n"
-      ],
-      "text/plain": []
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    },
-    {
-     "data": {
-      "text/html": [
-       "
\n",
-       "
\n" - ], - "text/plain": [ - "\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "
           Created task 'sim_10' with task_id                      webapi.py:188\n",
-       "           'fdve-e78f4f92-4559-437a-8b51-529a62e6592bv1'.                       \n",
-       "
\n" - ], - "text/plain": [ - "\u001b[2;36m \u001b[0m\u001b[2;36m \u001b[0mCreated task \u001b[32m'sim_10'\u001b[0m with task_id \u001b]8;id=689984;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=870777;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#188\u001b\\\u001b[2m188\u001b[0m\u001b]8;;\u001b\\\n", - "\u001b[2;36m \u001b[0m\u001b[32m'fdve-e78f4f92-4559-437a-8b51-529a62e6592bv1'\u001b[0m. \u001b[2m \u001b[0m\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "
           View task using web UI at                               webapi.py:190\n",
-       "           'https://tidy3d.simulation.cloud/workbench?taskId=fdve-              \n",
-       "           e78f4f92-4559-437a-8b51-529a62e6592bv1'.                             \n",
-       "
\n" - ], - "text/plain": [ - "\u001b[2;36m \u001b[0m\u001b[2;36m \u001b[0mView task using web UI at \u001b]8;id=492652;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=816091;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#190\u001b\\\u001b[2m190\u001b[0m\u001b]8;;\u001b\\\n", - "\u001b[2;36m \u001b[0m\u001b]8;id=797095;https://tidy3d.simulation.cloud/workbench?taskId=fdve-e78f4f92-4559-437a-8b51-529a62e6592bv1\u001b\\\u001b[32m'https://tidy3d.simulation.cloud/workbench?\u001b[0m\u001b]8;;\u001b\\\u001b]8;id=391036;https://tidy3d.simulation.cloud/workbench?taskId=fdve-e78f4f92-4559-437a-8b51-529a62e6592bv1\u001b\\\u001b[32mtaskId\u001b[0m\u001b]8;;\u001b\\\u001b]8;id=797095;https://tidy3d.simulation.cloud/workbench?taskId=fdve-e78f4f92-4559-437a-8b51-529a62e6592bv1\u001b\\\u001b[32m=\u001b[0m\u001b]8;;\u001b\\\u001b]8;id=375727;https://tidy3d.simulation.cloud/workbench?taskId=fdve-e78f4f92-4559-437a-8b51-529a62e6592bv1\u001b\\\u001b[32mfdve\u001b[0m\u001b]8;;\u001b\\\u001b]8;id=797095;https://tidy3d.simulation.cloud/workbench?taskId=fdve-e78f4f92-4559-437a-8b51-529a62e6592bv1\u001b\\\u001b[32m-\u001b[0m\u001b]8;;\u001b\\ \u001b[2m \u001b[0m\n", - "\u001b[2;36m \u001b[0m\u001b]8;id=797095;https://tidy3d.simulation.cloud/workbench?taskId=fdve-e78f4f92-4559-437a-8b51-529a62e6592bv1\u001b\\\u001b[32me78f4f92-4559-437a-8b51-529a62e6592bv1'\u001b[0m\u001b]8;;\u001b\\. \u001b[2m \u001b[0m\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "9877398995dd45aabc6c6faf01e68de3", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "Output()" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "
\n"
-      ],
-      "text/plain": []
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    },
-    {
-     "data": {
-      "text/html": [
-       "
\n",
-       "
\n" - ], - "text/plain": [ - "\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "
[10:06:27] Created task 'sim_11' with task_id                      webapi.py:188\n",
-       "           'fdve-23b401f4-1be4-4c02-87c8-c01afbd4d5bfv1'.                       \n",
-       "
\n" - ], - "text/plain": [ - "\u001b[2;36m[10:06:27]\u001b[0m\u001b[2;36m \u001b[0mCreated task \u001b[32m'sim_11'\u001b[0m with task_id \u001b]8;id=279070;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=264806;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#188\u001b\\\u001b[2m188\u001b[0m\u001b]8;;\u001b\\\n", - "\u001b[2;36m \u001b[0m\u001b[32m'fdve-23b401f4-1be4-4c02-87c8-c01afbd4d5bfv1'\u001b[0m. \u001b[2m \u001b[0m\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "
           View task using web UI at                               webapi.py:190\n",
-       "           'https://tidy3d.simulation.cloud/workbench?taskId=fdve-              \n",
-       "           23b401f4-1be4-4c02-87c8-c01afbd4d5bfv1'.                             \n",
-       "
\n" - ], - "text/plain": [ - "\u001b[2;36m \u001b[0m\u001b[2;36m \u001b[0mView task using web UI at \u001b]8;id=703559;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=80035;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#190\u001b\\\u001b[2m190\u001b[0m\u001b]8;;\u001b\\\n", - "\u001b[2;36m \u001b[0m\u001b]8;id=324125;https://tidy3d.simulation.cloud/workbench?taskId=fdve-23b401f4-1be4-4c02-87c8-c01afbd4d5bfv1\u001b\\\u001b[32m'https://tidy3d.simulation.cloud/workbench?\u001b[0m\u001b]8;;\u001b\\\u001b]8;id=273839;https://tidy3d.simulation.cloud/workbench?taskId=fdve-23b401f4-1be4-4c02-87c8-c01afbd4d5bfv1\u001b\\\u001b[32mtaskId\u001b[0m\u001b]8;;\u001b\\\u001b]8;id=324125;https://tidy3d.simulation.cloud/workbench?taskId=fdve-23b401f4-1be4-4c02-87c8-c01afbd4d5bfv1\u001b\\\u001b[32m=\u001b[0m\u001b]8;;\u001b\\\u001b]8;id=248074;https://tidy3d.simulation.cloud/workbench?taskId=fdve-23b401f4-1be4-4c02-87c8-c01afbd4d5bfv1\u001b\\\u001b[32mfdve\u001b[0m\u001b]8;;\u001b\\\u001b]8;id=324125;https://tidy3d.simulation.cloud/workbench?taskId=fdve-23b401f4-1be4-4c02-87c8-c01afbd4d5bfv1\u001b\\\u001b[32m-\u001b[0m\u001b]8;;\u001b\\ \u001b[2m \u001b[0m\n", - "\u001b[2;36m \u001b[0m\u001b]8;id=324125;https://tidy3d.simulation.cloud/workbench?taskId=fdve-23b401f4-1be4-4c02-87c8-c01afbd4d5bfv1\u001b\\\u001b[32m23b401f4-1be4-4c02-87c8-c01afbd4d5bfv1'\u001b[0m\u001b]8;;\u001b\\. \u001b[2m \u001b[0m\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "b4c8f7d4d54e4650923db915e574c2e1", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "Output()" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "
\n"
-      ],
-      "text/plain": []
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    },
-    {
-     "data": {
-      "text/html": [
-       "
\n",
-       "
\n" - ], - "text/plain": [ - "\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "
[10:06:30] Started working on Batch.                            container.py:475\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[2;36m[10:06:30]\u001b[0m\u001b[2;36m \u001b[0mStarted working on Batch. \u001b]8;id=969184;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/container.py\u001b\\\u001b[2mcontainer.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=137689;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/container.py#475\u001b\\\u001b[2m475\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "
[10:08:24] Maximum FlexCredit cost: 0.300 for the whole batch.  container.py:479\n",
-       "           Use 'Batch.real_cost()' to get the billed FlexCredit                 \n",
-       "           cost after the Batch has completed.                                  \n",
-       "
\n" - ], - "text/plain": [ - "\u001b[2;36m[10:08:24]\u001b[0m\u001b[2;36m \u001b[0mMaximum FlexCredit cost: \u001b[1;36m0.300\u001b[0m for the whole batch. \u001b]8;id=370796;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/container.py\u001b\\\u001b[2mcontainer.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=875100;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/container.py#479\u001b\\\u001b[2m479\u001b[0m\u001b]8;;\u001b\\\n", - "\u001b[2;36m \u001b[0mUse \u001b[32m'Batch.real_cost\u001b[0m\u001b[32m(\u001b[0m\u001b[32m)\u001b[0m\u001b[32m'\u001b[0m to get the billed FlexCredit \u001b[2m \u001b[0m\n", - "\u001b[2;36m \u001b[0mcost after the Batch has completed. \u001b[2m \u001b[0m\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "209fea7661e14b49becd6b9de2a22e75", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "Output()" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "
[10:08:27] Batch complete.                                      container.py:522\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[2;36m[10:08:27]\u001b[0m\u001b[2;36m \u001b[0mBatch complete. \u001b]8;id=436098;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/container.py\u001b\\\u001b[2mcontainer.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=10788;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/container.py#522\u001b\\\u001b[2m522\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "
\n"
-      ],
-      "text/plain": []
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    },
-    {
-     "data": {
-      "text/html": [
-       "
\n",
-       "
\n" - ], - "text/plain": [ - "\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "# initialize a batch and run them all\n", - "batch = td.web.Batch(simulations=sims, verbose=True)\n", - "\n", - "# run the batch and store all of the data in the `data/` dir.\n", - "batch_data = batch.run(path_dir=\"data\")\n" - ] - }, - { - "cell_type": "markdown", - "id": "c865c155", - "metadata": {}, - "source": [ - "Now that the simulations are complete, we can analyze the data. Let's first look at one of the FieldTimeMonitors to make sure the source has decayed." - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "id": "4a97628f-c2d1-4e2f-82f2-ba97d88fe48e", - "metadata": { - "execution": { - "iopub.execute_input": "2023-08-18T17:08:28.235611Z", - "iopub.status.busy": "2023-08-18T17:08:28.235460Z", - "iopub.status.idle": "2023-08-18T17:08:29.381759Z", - "shell.execute_reply": "2023-08-18T17:08:29.381250Z" - } - }, - "outputs": [ - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "1b662d150abb4a04810f8eebde2e3b10", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "Output()" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "
\n"
-      ],
-      "text/plain": []
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    },
-    {
-     "data": {
-      "text/html": [
-       "
\n",
-       "
\n" - ], - "text/plain": [ - "\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "
[10:08:29] loading SimulationData from                             webapi.py:590\n",
-       "           data/fdve-11e84743-7c10-413e-a81b-cd6d73f958a9v1.hdf5                \n",
-       "
\n" - ], - "text/plain": [ - "\u001b[2;36m[10:08:29]\u001b[0m\u001b[2;36m \u001b[0mloading SimulationData from \u001b]8;id=904547;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=965037;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#590\u001b\\\u001b[2m590\u001b[0m\u001b]8;;\u001b\\\n", - "\u001b[2;36m \u001b[0mdata/fdve-\u001b[93m11e84743-7c10-413e-a81b-cd6d73f958a9\u001b[0mv1.hdf5 \u001b[2m \u001b[0m\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "
           loading SimulationData from                             webapi.py:590\n",
-       "           data/fdve-11e84743-7c10-413e-a81b-cd6d73f958a9v1.hdf5                \n",
-       "
\n" - ], - "text/plain": [ - "\u001b[2;36m \u001b[0m\u001b[2;36m \u001b[0mloading SimulationData from \u001b]8;id=950174;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=533550;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#590\u001b\\\u001b[2m590\u001b[0m\u001b]8;;\u001b\\\n", - "\u001b[2;36m \u001b[0mdata/fdve-\u001b[93m11e84743-7c10-413e-a81b-cd6d73f958a9\u001b[0mv1.hdf5 \u001b[2m \u001b[0m\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAksAAAHHCAYAAACvJxw8AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABaxklEQVR4nO3dd1xV5eMH8M+9bGSJMkQRxIUD0UAQJyk5syx3S/2aNrQ0LVNzNX5hZWWWaTawRZqVZlqW4ipFURD3TsUFiMYQZQjn9wdyvZd7zuFcuHAHn/frxSs44znPvZj34zNVgiAIICIiIiJRalNXgIiIiMicMSwRERERyWBYIiIiIpLBsEREREQkg2GJiIiISAbDEhEREZEMhiUiIiIiGQxLRERERDIYloiIiIhkMCwRWaHz589DpVJh5cqVBt+7fft2qFQqbN++vdJro6OjER0dbfAzVq5cCZVKhfPnzxt8rzUx5L02BZVKhQULFpi6GkQmx7BEZIHKw4bY18yZM01Sp+joaMk6aX+Z+sO3PKCoVCp89913otd069YNKpUK7du3r+XaAfHx8Vi8eHGtP9eYjh07hgULFtT5MEzWw9bUFSCiqnvjjTfQrFkznWPt27dHQEAAbt++DTs7u1qry2uvvYann35a8/O+ffuwZMkSzJ49G23atNEc79ChA9q1a4dRo0bBwcGh1upXkaOjI+Lj4/HEE0/oHD9//jx2794NR0fHGq9Dz549cfv2bdjb22uOxcfH48iRI5g6dWqNP7+mHDt2DK+//jqio6MRGBho6uoQVRvDEpEFGzBgAMLDw0XP1caHvbYHHnhA7/lLlizBAw88INpVZ2NjU0s1Ezdw4ECsX78eWVlZaNiwoeZ4fHw8fHx80LJlS/z33381Wge1Wl0rv6c7d+6gtLRUJ5QRkXLshiOyQlJjlk6cOIFhw4bB09MTjo6OCA8Px/r16xWVuWLFCjRv3hxOTk6IiIjA33//XeX6iY1ZCgwMxIMPPojt27cjPDwcTk5OCAkJ0Yzn+eWXXxASEgJHR0eEhYXhwIEDeuUa8voefvhhODg4YM2aNTrH4+PjMWLECNEwd+fOHbz55pto3rw5HBwcEBgYiNmzZ6OwsFDnuvLX8s8//yAiIgKOjo4ICgrCN998o3NdxTFL0dHR2LhxIy5cuKDpKtRumcnMzMT48ePh4+MDR0dHhIaG4uuvv9Yps/x3v2jRIixevFhT12PHjom+DwBQWFiIl156CV5eXnB1dcVDDz2ES5cu6V134cIFPP/882jdujWcnJzQoEEDDB8+XOf3uHLlSgwfPhwAcP/992teR/lr/PXXXzFo0CD4+fnBwcEBzZs3x5tvvomSkhLJ+hGZGluWiCxYTk4OsrKydI5pt5JoO3r0KLp164bGjRtj5syZqFevHn788UcMGTIEP//8Mx555BHJ53z55Zd45pln0LVrV0ydOhX//vsvHnroIXh6esLf399or+fMmTN47LHH8Mwzz+CJJ57AokWLMHjwYCxfvhyzZ8/G888/DwCIjY3FiBEjcPLkSajV6iq9PmdnZzz88MP44Ycf8NxzzwEADh48iKNHj+KLL77AoUOH9Or39NNP4+uvv8awYcMwffp07N27F7GxsTh+/DjWrl2r91qGDRuG8ePHY8yYMfjqq68wduxYhIWFoV27dqKv/7XXXkNOTg4uXbqEDz/8EADg4uICALh9+zaio6Nx5swZTJ48Gc2aNcOaNWswduxYZGdnY8qUKTplxcXFoaCgABMnToSDgwM8PT0l3/enn34a3333HR577DF07doVW7duxaBBg/Su27dvH3bv3o1Ro0ahSZMmOH/+PJYtW4bo6GgcO3YMzs7O6NmzJ1588UW9Ltjy/65cuRIuLi6YNm0aXFxcsHXrVsybNw+5ubl47733JOtIZFICEVmcuLg4AYDolyAIwrlz5wQAQlxcnOaePn36CCEhIUJBQYHmWGlpqdC1a1ehZcuWmmPbtm0TAAjbtm0TBEEQioqKBG9vb6Fjx45CYWGh5roVK1YIAIRevXqJ1nHNmjU65YjV/9y5c5pjAQEBAgBh9+7dmmN//vmnAEBwcnISLly4oDn+2Wef6ZVt6Otbs2aNsGHDBkGlUglpaWmCIAjCK6+8IgQFBQmCIAi9evUS2rVrp7kvNTVVACA8/fTTOq/l5ZdfFgAIW7du1XstO3fu1BzLzMwUHBwchOnTp+vVRft1DBo0SAgICNB7zxYvXiwAEL777jvNsaKiIiEqKkpwcXERcnNzBUG497t3c3MTMjMz9cqpqPx1Pf/88zrHH3vsMQGAMH/+fM2xW7du6d2fmJgoABC++eYbzTG5371YGc8884zg7Oys87sjMifshiOyYEuXLsXmzZt1vsTcuHEDW7duxYgRI5CXl4esrCxkZWXh+vXr6NevH06fPo3Lly+L3rt//35kZmbi2Wef1RnzMnbsWLi7uxv19bRt2xZRUVGanyMjIwEAvXv3RtOmTfWO//vvv9V6fX379oWnpydWrVoFQRCwatUqjB49WrRuv//+OwBg2rRpOsenT58OANi4caPea+nRo4fmZy8vL7Ru3VpTZ0P9/vvv8PX11amfnZ0dXnzxRdy8eRM7duzQuX7o0KHw8vJSVC4AvPjiizrHxQaYOzk5ab4vLi7G9evX0aJFC3h4eCAlJUXR69Auo/x31aNHD9y6dQsnTpxQVAZRbWM3HJEFi4iIkBzgre3MmTMQBAFz587F3LlzRa/JzMxE48aN9Y5fuHABANCyZUud43Z2dggKCqpCraVpByIAmjBWsauv/Hj5AOyqvj47OzsMHz4c8fHxiIiIwMWLF/HYY4+J3n/hwgWo1Wq0aNFC57ivry88PDw075PUawGA+vXrV3nQ+IULF9CyZUtNt2O58u6tis+vOEtSrly1Wo3mzZvrHG/durXetbdv30ZsbCzi4uJw+fJlCIKgOZeTk6PoeUePHsWcOXOwdetW5Obm6pxTWgZRbWNYIqoDSktLAQAvv/wy+vXrJ3pNxRBgClIz5KSOl39YV+f1PfbYY1i+fDkWLFiA0NBQtG3bVraOKpVK9rzSOtc07RYcY3nhhRcQFxeHqVOnIioqCu7u7lCpVBg1apTmdyAnOzsbvXr1gpubG9544w00b94cjo6OSElJwauvvqqoDCJTYFgiqgPKW4Ds7OwQExNj0L0BAQEAgNOnT6N3796a48XFxTh37hxCQ0ONV9Eqqs7r6969O5o2bYrt27fjnXfekbwuICAApaWlOH36tM66URkZGcjOzta8T9UlFcYCAgJw6NAhlJaW6rQulXddVfX55a/r7NmzOq1JJ0+e1Lv2p59+wpgxY/D+++9rjhUUFCA7O1vRa9i+fTuuX7+OX375BT179tQcP3fuXJXqTlRbOGaJqA7w9vZGdHQ0PvvsM1y9elXv/LVr1yTvDQ8Ph5eXF5YvX46ioiLN8ZUrV+p9SJpKdV6fSqXCkiVLMH/+fDz55JOS1w0cOBAA9FbX/uCDDwBAdPZYVdSrV0+0O2rgwIFIT0/H6tWrNcfu3LmDjz/+GC4uLujVq1eVnjdgwAAAwJIlS3SOi60ibmNjo9cy9vHHH+tN+69Xrx4A6P35KG9t0y6jqKgIn376aZXqTlRb2LJEVEcsXboU3bt3R0hICCZMmICgoCBkZGQgMTERly5dwsGDB0Xvs7Ozw1tvvYVnnnkGvXv3xsiRI3Hu3DnExcUZfcxSdVT19QFlay49/PDDsuWHhoZizJgxWLFihaY7KSkpCV9//TWGDBmC+++/3yivIywsDKtXr8a0adPQuXNnuLi4YPDgwZg4cSI+++wzjB07FsnJyQgMDMRPP/2EXbt2YfHixXB1da3S8zp27IjRo0fj008/RU5ODrp27YqEhAScOXNG79oHH3wQ3377Ldzd3dG2bVskJiZiy5YtaNCggV6ZNjY2eOedd5CTkwMHBwf07t0bXbt2Rf369TFmzBi8+OKLUKlU+Pbbb2uta5KoqhiWiOqItm3bYv/+/Xj99dexcuVKXL9+Hd7e3ujUqRPmzZsne+/EiRNRUlKC9957D6+88gpCQkKwfv16ycHUplCd16fUF198gaCgIKxcuRJr166Fr68vZs2ahfnz5xulfAB4/vnnkZqairi4OHz44YcICAjA4MGD4eTkhO3bt2PmzJn4+uuvkZubi9atWyMuLg5jx46t1jO/+uoreHl54fvvv8e6devQu3dvbNy4UW9g/UcffQQbGxt8//33KCgoQLdu3bBlyxa9cWK+vr5Yvnw5YmNjMX78eJSUlGDbtm2Ijo7Ghg0bMH36dMyZMwf169fHE088gT59+kiONSMyByqBkZ6IiIhIEscsEREREclgWCIiIiKSwbBEREREJINhiYiIiEgGwxIRERGRDIYlIiIiIhlcZ8kISktLceXKFbi6uireN4qIiIhMSxAE5OXlwc/PT2+Tam0MS0Zw5coVvcXbiIiIyDJcvHgRTZo0kTzPsGQE5dsMXLx4EW5ubiauDRERESmRm5sLf3//SrcLYlgygvKuNzc3N4YlIiIiC1PZEBoO8CYiIiKSwbBEREREJINhiYiIiEgGwxIRERGRDIYlIiIiIhkMS0REREQyGJaIiIiIZDAsEREREclgWCIiIiKSwbBEREREJINhiYiIiEgGwxIRERGRDIYlKyYIAgqKS0xdDSIiIovGsGTFxsTtQ/DcTcjMLTB1VYiIiCwWw5IV23nqGgBg/cErJq4JERGR5WJYslC7z2Th19TLpq4GERGR1bM1dQWoah77Yi8AoJ2fO1p4u5i4NkRERNaLLUsWLj2H45GIiIhqEsNSHSAIpq4BERGR5WJYsnACmISIiIhqEsMSERERkQyGpTqArU9ERERVx7Bk4TgeiYiIqGYxLFk4JVmJgYqIiKjqGJaIiIiIZDAs1QGxf5yo8r038osw46eDSL5ww4g1IiIishwWF5aWLl2KwMBAODo6IjIyEklJSZLXHj16FEOHDkVgYCBUKhUWL15c7TLNjVDDfWzz1x/Fj/svYeiyxBp9DhERkbmyqLC0evVqTJs2DfPnz0dKSgpCQ0PRr18/ZGZmil5/69YtBAUFYeHChfD19TVKmeampocjncu6WcNPICIiMm8WFZY++OADTJgwAePGjUPbtm2xfPlyODs746uvvhK9vnPnznjvvfcwatQoODg4GKVMc3Ppv9s1Wr4Kqhotn4iIyNxZTFgqKipCcnIyYmJiNMfUajViYmKQmFi1LqKaKLO2zV13RNF16w9ekTyXfOE/RL69BRsPXdU7p2JWIiKiOs5iwlJWVhZKSkrg4+Ojc9zHxwfp6em1WmZhYSFyc3N1vszdiz8ckDw3/ut9yMgtxKT4FL1zzEpERFTXWUxYMiexsbFwd3fXfPn7+5u6StVSfKfU1FUgIiIyWxYTlho2bAgbGxtkZGToHM/IyJAcvF1TZc6aNQs5OTmar4sXL1bp+ZURBAGpF7ORX3inRsovp2JfGxERkSSLCUv29vYICwtDQkKC5lhpaSkSEhIQFRVVq2U6ODjAzc1N56smrD94BUOW7sIjn+6qkfIVYZAiIqI6ztbUFTDEtGnTMGbMGISHhyMiIgKLFy9Gfn4+xo0bBwB46qmn0LhxY8TGxgIoG8B97NgxzfeXL19GamoqXFxc0KJFC0VlmtIvKZcBAKcyTDd9n1GJiIjqOosKSyNHjsS1a9cwb948pKeno2PHjti0aZNmgHZaWhrU6nuNZVeuXEGnTp00Py9atAiLFi1Cr169sH37dkVlmlJtNeowEBEREUmzqLAEAJMnT8bkyZNFz5UHoHKBgYGKVriWK9OUai3EaD3o4o1b8Pd0vndKYSVuF5XA0U7N8U9ERGR1LGbMEtWODRXWWlISfY5fzUWbeZvwyk+HaqZSREREJsSwZIFKSmtukxOhChuoLN9xFgDwU/IlY1eHiIjI5BiWzJhUl9b89cpW7Vb8HK3vK/ZapqRlG3Q/ERGRtWFYMmNSIeS7PWlVKq9UokVKKpQpXd+J45SIiMiaMSzVIbvOZhl0vdIOOUYlIiKyZgxLZszYDTYFxYZta8IQRERExLBk5owbV6SWUZAKZYrDGlMVERFZMYYl0hnUrWRdqopUTEtERGTFLG5RyrqkOt1we/69rnesYgy6nH0b3RZu1b1G6yKlIejnFC4ZQERE1ostS2asCo08GmO+Sqq0vCk/HJAtoyph7cL1fMNvIiIiMmMMS1ZKPGjpHjxfA8Gm13vbjV4mERGRKTEsWYj4vWm4XVQief6Dzafw0urUe2OORFqF9AOU/kXGWBs8PafACKUQERGZB4YlCzF77WEMWbpL8vyShNNYe+CyZsVtsR60ikHI0G62nFvFiq4rKJYOdURERJaGYcmCnMzIq/SawmoGFd2ZcbrnPtxySlkZ1aoBERGReWFYsjLlO5qItRpVDD+Gjt++lldYpToRERFZMoYlKyU27V+o0OYjGqhk2oVKFU7Pq8paTUREROaKYcnKyIUd/ZYl/bSkfaxiWX8cScemI+kK6kBERGQ9GJasjCDTDWcMz36XrLgORERE1oBhycKs2HlW9nzi3ZW7xbJSxQBVU4GKiIjImjAsmTX9Jpq3fz8he8ey7fJhSlvNZSXppqWNh67i853/1tiTiYiIjI17w1kplRGajaranSZ336T4FABA1xYN0M7PvWoPEJGS9h8KikrQtUVDo5VJREQEsGXJaimZkWaMQCX6bAXXXL9ZpHfscvbtKs2kEwQBj366G499sRdXsm8bfD8REZEchiWzVvuDioyRn5QUUTESfb7zX3RbuBULN8l3M1Ym5oMd1bqfiIioIoYls2baaWW1+fT/+/04AOCzHdUbz3RLZv88IiKiqmBYqkPE1lUyFWMuXKm0qDOZN7H37mxBIiIipRiW6hC5BSuNKSO38m1RqlKTW0V38G3ieVzNqdq4pJgPdmDkij04l5VfpfuJiKhuYlgio3viy72VX6SVlv4+fU33lERT0Vsbj2Pur0cxZOmu6lQPPydfqtb9RERUtzAsWSmxuGFoN5wxusre2XQCQ5ftRuGdEpy9dvNe2Vo1fPLLJJ17/jmTJVrWjpNloapiy5Whtfxk2xkD7yAiorqM6yxRjSpfJPOl1an4/fC9feXkcti5rHz0aOlV01UjIiJShC1LZqw6DTvmM5S7jHZQAuRfm9Q5bs9CRESmwLBEkmpyOHhVgo/UPcacWVcZQRBwOiMPJaXcLZiIqK5gWDJj1WlJscaPcnNY+uDzv//FAx/uxIyfDpm6KkREVEsYlsyY0gaThX8Ytup11s1CPP99Mi6LbA2iHUdqscFGR8WWottFJfh693nJrUyKSkpro1oAgI+2nAYA/JzCGXVERHUFB3hbgeU7zhp0/eu/HdMbQ1ROO6ZM//FgNWol73ax8pW239l0Ait3n5c8/8y3yUaokTL5XCGciKjOYctSHaR0s9ktxzNqrA6T4w8AAHJuF1d6rdRSAuX+Pi1/XsxPImstFRSX4Iu//8WmI1dF77l445bBzyEiIsvHliUzVlOzv+SKVbQJriBAZaTKzV57WL98BXUqKC6Bo51NlZ+76M+TGBbWRPPz5zv/1exPBwBrn++KTk3r69yTnltQ5ecREZHlYsuSGTPFmKETGXmVXrP91LVKr1FqVyWtRgBw/rr+9iRy3XIFCrr4Km79oh2UAODI5Ry9e4wRD3/cfxGLt5wyQklERFRbGJbqkPLGILlGoY2HxLugtP11VHy8k7GVlApYe+ASikv0U2N6jnQrz4ciYeRW0R2dn7Vn/ucV6HcFiq6AboS0NOOnQ1i85bRoGCMiIvPEbjgyWKkRJ5/J5Y9vEs/j9d+OGVzmgQvZesde/OGAzs/X8u5tmTJ77RFF5f6QdNHgukjJvlX5WC0iIjIPbFkig1XswjJ6+XeLTzieKXlN6d2LMvP0W5hKRfovt4iUlXa9bMC2WEuZWBeo2KDwqjp4KdtoZRERUc1iWLJSNTneSWnZ5WHE4PLv/leu26u8Dku3Vn1T3LzCYsnniAUuvWuqsYr3e3+erPK9RERUuxiW6qDqroRdohUk5Lb9GLcyqVrPkVMeZkpEQs3+C/8pKqP81qq+H+sPXhE9fj4rH4OW/I0Nh8TPV+b6zUKcVjDQnoiIagfDkhmzhC1LZv4sve3H2Wv6s9gMoWR5Aqmgc1vB4pGasCRSRMUMlisyCPxUhUBTWiog6dwNRC/ajqNXcjVrSRkq7K0teODDnTiXVb33j4iIjINhqS5S0JAitzmtdkBZU81xPHKBaKfMEgWV5SglK4SXj70SK6riq39DwUDzH/dfxIjPEiu9TqkUkRayqzm3se1kZq1uHkxEVNcxLJEoucHV5kCuVQjQHXP01T/nZMsQ8+aGYxiydBeK7pRN/Tt4MVv//go//5oq3+12SMGg7qXb7o3BEhs3FRW7FePi9uGvYzW3ujoREeliWDJjNbSAtyJrUy+b7NmGtJpIvUfaQeONDeKtQvcGkouXknoxG9tPZt69pvK6JP57Xfb8Q5/sqrQM7YHfFd8F7cU23/9LfoD4raI7SM8pYAsUEZERMCyZsep8zMlN7086d6PS+00Z1JS4t8CmRE0NePPkXqvcrDjtU0pWDTdUxcHzC/84ofn+VMZN/COxJ97GQ1fRdt6f6BKbUKV1qoiISBfDUh1iSACSG0v0c8ol7D9feeAypS8kut4MJTdjTjuQSmWqiiuHG2LWL7r75m06orse1BNf7tW7Z9ORq5gUn6L5WWxbmMzcgiov60BEVBcxLFkpsQ93JYOe790vb9hy4wxkrm4L1s1C8TCyYue/yusgt56T3DVaASlDYpPdT7edlSx7TyXddkDZMgTl1ArerC8VhMSItxPQ871tyJFZRXzPv9fxsxEX4SQismQMS3XItB8PKr7WGPugVdW7BizYaMxVtQ1VnpX2/Hsd0Yu2i15zOfu25P0VW47ERC/armmdqs5SCmIu/ifeurTx0FWMWrEH09ccxOFL3MOOiIhhyUrV9JYkNanoTinOZN6Uvea7PWm1Uhcl46O/3XNB8lz5mKc7Jfob6ildRyk1LRuAeIAtrliuASF39T7xve60u/GkAhURUV3CsGSFiktKUVBcvd1u1bXUtCT1mJgPdtT4s7O0NtOtjFirTvmRjYeuSt6Xe7usq0tqPapLd8PIwYvZCJy5UfQaua7ANft1yxXtLZRIfN/uuYDAmRtluwOluheJiOoShiUzVtVp37vPVj4WpjJKolL5GkRVVZ291QCRVpUKsm8VacKImKe/2V/pM1LSyhaGFHs//hTZgLeibSfLFtZcL7EGU+Hd91BssHY5uT8GN/J1A9/VHP1ws/HwvTD3m8gWLaNW7JEsX2423TeJ5/Hst8mifw4u3rgluxUOEZElYViyQnLT3TPzjNdS8Gs112KKT6peV9qrMlutAEDHNzaj+zvbKi0nt0B6xlr5gOljV3P1zp03YEaZ1BpM128WAQDyZOpQ3qVaUqL/e9X+VReXlCLthn6dtFuOXvjB8C1YfhTprispFTDv16PYdDRdrxvyt4NX0OPdbXj6632VBtrV+9Lw437x7kAiInPBsGTGlAzoFVPe9SMm4v8SFD688ksMmV0nZs66I8i6Gxaq4peU6i+cmX2r8ufniewLV+5GfvXuV7I9SqlQFoSuiLQavb/5lGZ1canfhyENPLvP6K/dNKNCKN16IgPNZ/+u+fnNCot+frazbAbgtpPX0PK1PxC3S3yGXs6tYrz682HM+OkQ8iVmNRIRmQOGJSs0ZVWqqatgMU5lyA8kB4BsmSn247/eV+n9T39deXefHEEQZAeDP7psNwDpfGtIb27FzYHLlW8kfDn7Nv63Uv/1aHcZV5yRJ9WVV3DnXrg7ka7fcqfExRu3FC2ySkRUHQxLZszct6ow8+opUt1x7AfuzlSTs7eSD3MlXaNyayyVjw2SboksO69k3SSpMspnJ76gNVNO22d317USBAGHL1e+3MC4uCREvn2vlXPoMv0WtoLiEly/KT8Iv8e72zDis0QcUfBMIqKqYlgiPUoHbh+7UrXWAHOiJCvV9MRAuYUry56vQmU1LbxTIhmoykPt9DXS62wlXygLdP9JdEuWl3H2mngLV/lWLFLdqqkVNiIuH/guV5/guZsQ9tYW9Hpvm+hkAO3WtkNcD4qIahDDkhmr6pil6pq//oii61bLDMwVW1fIHCla6LGGfw9iW5JoW/jHiUoD27eJF3A+S3zA+SqJ9ZS0LdteFtgWbzktcUV565V8OVLre208JD4bUMzRKzk6LU0Xrt/C53/rr8j+pNYMwvf+PKF3HihbmmHaj6k4ekU6TN0qulMje/sRkfVgWDJjpuqG+yHpYvV28QXwTaL0Qo3mREkOMvXg4+NXcyvtZnpr43EMXPJ3lZ9R2SDw8vNyb1dxSankCuLa5X+yVSqQlZkcrz9jL/YP/TB06b97q6P/JzGubFL8AfySchmDlvwjev5M5k20nfcn2szbVO2lLIjIejEsUY14Y4Nl7HavpM2o74c7a7welanuoP3Kti2p2E1W0c3CO/h0+xnJUAIAW09kVtoVCACL/jol+yypwezaa2ZtO5kpW8btohJ8m3heM1MQANJFZhOWL34qCECRSGtoSamA7/dewJlM8YHvRFQ3MCyROBPuDVebTNXVWdsGfyLeslLuRn4Rvk08L3l+XNw+vLtJfs++OyLrQJX7SmL5AG2VLWKZe7ushS/rZiHGxenPQrx4d40pQRDQZt4mzP31qM75+L0XRK+Xs2pfGl5bewQxH0gH5pzbxYrKIiLLxbBEok5c5b+k65qK4cJQAgTM/VV6vNsPSWnYf156ZuCqffKLlP51LB03C+9Ibgg94e6K7FKbF2dVWBOrx7u6C5YuSdDvHnxt7b3XI9Y6t+PUNYS+/hd6vLtNMjBl5Bbg/zYew3mFewESkflhWCJRYitWWyNzX57Bkuw6k4XfD0tvATPrl8MYtlx6Ec6v/jknu+L34i2n0X7+n9gnsRTDifQ83CkpRalEEfF707D37mrmYqHt0+33ZiXeKSnFzQpj1QZ/8o/euKYxXyVpvt9/QbxekW8n4PO/z2HY8t3iFSMis8ewRHVa+fpBVH0/JFVv25Kz1/IR/d72Sq+TWzl+99nrsuOZRq7YgwvX8yVD24G0/1B0pxQPfvwP2s//U++8duCpGLTnrtNvmbtw/V5rUtbNItFw/v3eC3jggx24ItEiRkSmx7BkxtjmUfNe+Ul+fzmqXVJdaEq9tfEY5q+X7078WWabnEc+3Y2XVqfiRLp4N3RKWjaOXM5B2vVbaDbrd51zNwvv6C1h8G+Fdak+3HxKp/Xsv/wivLb2CE5n3kTXhVtFnznrl0MInLkR3+2xjBmmRNbI4sLS0qVLERgYCEdHR0RGRiIpKUn2+jVr1iA4OBiOjo4ICQnB77/r/gU3duxYqFQqna/+/fvX5EsgohqiZPsasbFJ2jYevip7/o0NxzTjoypauu0s/reybPD5zcI7etct2XoGb2ht//LWxuM65+P3puGf07r785W32M1ZdwQXb9zSGwgvCAIyco23QTYR6bOosLR69WpMmzYN8+fPR0pKCkJDQ9GvXz9kZoo3u+/evRujR4/G+PHjceDAAQwZMgRDhgzBkSO6g1D79++Pq1evar5++OGH2ng5laob87SILEvSuRs4KbGHHlC2hELa9VtoP/9P3BGZ4fftngvIzCvAqz8dws8pulvQzF57GE9oLbZZUY93t+GZb5N1jn245TQi305A4MyNWH/wCr7fq98C9dU/57DthPxyC0QkTSVY0AjXyMhIdO7cGZ988gkAoLS0FP7+/njhhRcwc+ZMvetHjhyJ/Px8bNiwQXOsS5cu6NixI5YvXw6grGUpOzsb69atq3K9cnNz4e7ujpycHLi5uVW5nIrGxSVVui0EEVkeXzdHpMu0Bs0Z1AajIprifFY+HvxYf9mHg/P6wt3ZDgAQOHOj3vltL0ejWcN6Zd+fyMS4u61dH43qiPScAgwP94dnPXvN9aWlAtRqFc5k5uHQpRw80qlxnVlWg+o2pZ/ftrVYp2opKipCcnIyZs2apTmmVqsRExODxETxwZqJiYmYNm2azrF+/frpBaPt27fD29sb9evXR+/evfHWW2+hQYMGknUpLCxEYeG9DT5zc2tm5pjFpFgiMohcUALKuucqdtFpW/TXSbzxcDvJ8VdDlu7Cwfl9AUATlIB7i5v+fToL3z0dCaBse5mKK5zb2agxONRP8/Mfh68ir/AORoT7y9abyFpZTFjKyspCSUkJfHx8dI77+PjgxAnxfaHS09NFr09Pvze9uX///nj00UfRrFkznD17FrNnz8aAAQOQmJgIGxsb0XJjY2Px+uuvV/MVERFVzdoDl/GtzIDvnNvFEAQBBcXi6yj8cyYLyRduILfgDt7/S3+x0Rd+OKATlp77PgUA8NP+S0g6fwOfPRmGfu18RcvOulmIOyUCfN0dDXlJRGbNYsJSTRk1apTm+5CQEHTo0AHNmzfH9u3b0adPH9F7Zs2apdNilZubC39//ouLiGpHxTWgxFScrVeR9mbFclZrLRaadHd9qme+Tcb5hYM0x3eeuobpaw4ipLE7tt4dG3Xk9X5wcSj7iMkrKEZGbgGaNXTB278fR2QzT/SVCFtE5shiwlLDhg1hY2ODjIwMneMZGRnw9RX/n87X19eg6wEgKCgIDRs2xJkzZyTDkoODAxwcHAx8BUREliPmgx2y65D9cfgqbhbeQfeWDfHU3cU5t2oNIr/832209nUFUDYwPftWMexsVCguEfDlP+ewdXovBHm5aK6/kV+ErJuF6PvhTtSzt0Hy3AfgaCfeuk9U2yxmNpy9vT3CwsKQkJCgOVZaWoqEhARERUWJ3hMVFaVzPQBs3rxZ8noAuHTpEq5fv45GjRoZp+JERBaosgVbn/s+Ba/8dAhRseLrQ01dnYpl28/idEYesu9uwFystX/g01/vx438soU6p61OxX1vbtZsWp1fVCK6rpQgCJiy6gCe/HJvpXsJEhmTxbQsAcC0adMwZswYhIeHIyIiAosXL0Z+fj7GjRsHAHjqqafQuHFjxMbGAgCmTJmCXr164f3338egQYOwatUq7N+/HytWrAAA3Lx5E6+//jqGDh0KX19fnD17FjNmzECLFi3Qr18/k71OIiJLd/xqLo5fzcU7m8THlP6blY/73twsef+fR9NxOfs2+rfzhbuzHSZ9n4LwAE/8mnoFAPD898n47MlwzfXlM/p2nclC3K5zeHNIezRydxIt+1RGHhq5O8LV0a4ar5DqEosKSyNHjsS1a9cwb948pKeno2PHjti0aZNmEHdaWhrU6nuNZV27dkV8fDzmzJmD2bNno2XLlli3bh3at28PALCxscGhQ4fw9ddfIzs7G35+fujbty/efPNNs+hms5xFHYiIjGvf+f+w7/x/iNt1XnPsrNaK6H8ezUDgzI2YGtMST3YJQPj/bdH5O3PL8a1Y82wUHGzV6NDEA+k5BXCys8Fz3ydj99nrcHWwxeHX9f9RfPbaTSz84wRe6N0CHZp41OArJEtiUessmauaWmdpzFdJ2HGK6ywREVXH6Iim+CEpTe/4qM7+yCu8g3eGdsC7m07A1dEWn+88h6K7W9Kc/r8BKCgu0WuBunjjFuxt1fBx44w/S2d16yzVRVwTjoio+sSCEgCs2le2lcyp9DycFhmj1fK1PwAAyXNi8N+tIjT2cMbyHWfx0d0tc069NQD7L9zAfU3rawajl5YK2HYyEw62NujWooHo4p6lpQKKS0vhYMsB7JaCYYmIiOo0saCkLeytLaLHW80pC1MDQ3zxRJcAHEjLho+bI15ecxAAENPGG1uOZ+L1h9phVIQ/9vx7AxGBnhj9+R4cu5KLfXNikHTuBkKbuMObrVRmjd1wRsBuOCIiktM72FtnaQVtzvY2+HJMZ/x++CpeHRCMyfEpSL7wH75/OhKJZ69jaFgTNHTRHUdbUFzCpRWMQOnnN8OSETAsERFRTdo/JwaHL+cgLKA+3t54HKv2XcTSx+6Dh7MdfNwc0MLbVXNtSamAzccy0KmpB1Qq4OiVXES38uJ+fyI4ZskK8M81EREBQLhIV+Ck+BTN928NaY/FW06hW4uGmuUV1CqgfDmqxSM7wt3ZDn7uTriScxvzfz2KhY+GYO2By8gtKMbyJ8IYpmSwZckI2LJERESWbEKPZvD3dIa/pzNa+bjisc/34NlezeHuZIeE45l4tX9rqxxXxZYlIiIiUuTzv8/pHZv1y2HN9xsPX0H3Fl7IuV2EZU+E4fnvUtCsYT2M6NwEQ5clYs6gNhjbNRAn0vPQtpEbvtp1DvmFJZjYMwg/JV9E7zY+aOwhvkioJWDLkhGwZYmIiKjMi71bYMnWMwAAG7VKszXNe8M6YOXu8/j08fswasUeXM0pwC/Pd8WUVQfQJ9gHCx5qB0EQ9LoDi0tKYWdTM7uzcYB3LWJYIiIiqp6IZp5IOncDi4aHIvnCfzhyOQcfjeqI/h/9jQc7NMIHIzoa/ZkMS7WIYYmIiKhmnV84yOhlKv38rpl2LSIiIiIrwbBEREREJINhiYiIiEgGwxIRERGRDIYlIiIiIhkMS2aM0xSJiIhMj2GJiIiISAbDEhEREZEMhiUiIiIiGQxLRERERDIYloiIiIhkMCwRERERyWBYIiIiIpLBsEREREQkg2GJiIiISAbDkhkTBK7hTUREZGoMS0REREQyGJbMmEqlMnUViIiI6jyGJTPGbjgiIiLTY1giIiIiksGwRERERCSDYYmIiIhIBsMSERERkQyGJSIiIiIZDEtEREREMhiWiIiIiGQwLBERERHJYFgiIiIiksGwRERERCSDYYmIiIhIBsMSERERkQyGJSIiIiIZDEtEREREMhiWiIiIiGQwLBERERHJYFgiIiIiksGwRERERCSDYYmIiIhIBsMSERERkQyGJSIiIiIZDEtEREREMhiWiIiIiGQwLBERERHJYFgiIiIiksGwRERERCSDYYmIiIhIBsMSERERkQyGJSIiIiIZDEtm7O/TWaauAhERUZ3HsEREREQkg2GJiIiISAbDEhEREZGMKoWltLQ0FBYW6h0vLS1FWlpatStFREREZC6qFJYCAwNx33334ezZszrHr127hmbNmhmlYkRERETmoMrdcG3atEFERAQSEhJ0jguCUO1KEREREZmLKoUllUqFTz/9FHPmzMGgQYOwZMkSnXM1aenSpQgMDISjoyMiIyORlJQke/2aNWsQHBwMR0dHhISE4Pfff9c5LwgC5s2bh0aNGsHJyQkxMTE4ffp0Tb4EIiIisiBVCkvlrUcvvfQS1q5di3nz5mHChAkoKioyauUqWr16NaZNm4b58+cjJSUFoaGh6NevHzIzM0Wv3717N0aPHo3x48fjwIEDGDJkCIYMGYIjR45ornn33XexZMkSLF++HHv37kW9evXQr18/FBQU1OhrISIiIsugEqrQb6ZWq5Geng5vb28AwLFjx/DQQw+hXr16OHLkCEpKSoxeUQCIjIxE586d8cknnwAoG1Du7++PF154ATNnztS7fuTIkcjPz8eGDRs0x7p06YKOHTti+fLlEAQBfn5+mD59Ol5++WUAQE5ODnx8fLBy5UqMGjVKUb1yc3Ph7u6OnJwcuLm5GeGVlgmcudFoZREREVmy8wsHGb1MpZ/fVWpZ6tWrF+zt7TU/t23bFnv27IGHh0eNjVkqKipCcnIyYmJiNMfUajViYmKQmJgoek9iYqLO9QDQr18/zfXnzp1Denq6zjXu7u6IjIyULBMACgsLkZubq/NFRERE1smgsFQeDH799Veo1WqdsGBvb4/ffvsN2dnZNVLRrKwslJSUwMfHR+e4j48P0tPTRe9JT0+Xvb78v4aUCQCxsbFwd3fXfPn7+xv8eoiIiMgy2BpysYeHh6IB3DXVDWcuZs2ahWnTpml+zs3NZWAiIiKyUgaFpW3btmm+FwQBAwcOxBdffIHGjRsbvWIVNWzYEDY2NsjIyNA5npGRAV9fX9F7fH19Za8v/29GRgYaNWqkc03Hjh0l6+Lg4AAHB4eqvAwiIiKyMAaFpV69eun8bGNjgy5duiAoKMiolRJjb2+PsLAwJCQkYMiQIQDKBngnJCRg8uTJovdERUUhISEBU6dO1RzbvHkzoqKiAADNmjWDr68vEhISNOEoNzcXe/fuxXPPPVeTL4eIiIgshEFhydSmTZuGMWPGIDw8HBEREVi8eDHy8/Mxbtw4AMBTTz2Fxo0bIzY2FgAwZcoU9OrVC++//z4GDRqEVatWYf/+/VixYgWAsjWhpk6dirfeegstW7ZEs2bNMHfuXPj5+WkCGREREdVtFhWWRo4ciWvXrmHevHlIT09Hx44dsWnTJs0A7bS0NKjV98asd+3aFfHx8ZgzZw5mz56Nli1bYt26dWjfvr3mmhkzZiA/Px8TJ05EdnY2unfvjk2bNsHR0bHWXx8RERGJEwShxhe+llKldZbKubq64tChQ3V+Pzius0RERFSz/n17INRq44YlpZ/fBrUsPfroozo/FxQU4Nlnn0W9evV0jv/yyy+GFEtERERktgwKS+7u7jo/P/HEE0atDBEREZGYmlnyWhmDwlJcXFxN1YOIiIhIUtmoIdOMWarSdidEREREtcmULUsMS0REREQyGJaIiIjI7FV97n71MSwRERGR2RNM2BHHsEREREQkg2GJiIiIzB674YiIiIjMFMMSERERmT22LBERERGZKYYlIiIiMnucDUdEREQkg91wRERERGaKYYmIiIjMHveGIyIiIpIhmLAfjmGJiIiISAbDEhEREZk9dsMRERERyeBsOCIiIiI5DEtERERE5olhiYiIiMweV/AmIiIiksExS0RERERmimGJiIiIzB6XDiAiIiKSwRW8iYiIiGSwZYmIiIjITDEsERERkdnjbDgiIiIiGVxniYiIiMhMMSwRERGR+WM3HBEREZE0zoYjIiIiksEB3kRERERmimGJiIiIzB5nwxERERHJYDccERERkZliWCIiIiKzx9lwRERERDIEE/bDMSwRERGR2eOYJSIiIiIzxbBEREREJINhiYiIiMweu+GIiIiIzBTDEhEREZk9ruBNREREJIPdcEREREQyuCglERERkZliWCIiIiKzxxW8iYiIiGTY2Zgustia7MlERERECpz+vwEMS0RERESrJ3bBqn0XMa5bIEpKBTzy6W4sfDTEpEEJYFgiIiIiI4kb2xnjVu5D1+YNsPvsdQCAnY0KLbxdkVdQjPWTu+OtjcfQJagB6tnb4t0/T+DTx+9DfmEJ1CogPNATkUENNOWdXzjIVC9Fh0ow5YgpK5Gbmwt3d3fk5OTAzc3NaOUGztxotLKIiIiqYkhHP6xLvYLBoX74YEQoEo5noHOgJzYevoov/j6H1c90wd+ns9DaxxWh/h6a+wqKS/Br6mX0aOkFPw8n070AGUo/vxmWjIBhiYiILNVLMa3w4ZZTiH00BD1beeHYlVx0a9EAQ5clomvzBpj7YFtTV7HGKP38ZjccERGRBRgZ7o/V+y/qHX/7kRD8dvAK3hzSDp/vPIeDl7IxOqIp5q8/CgBY82wUbhWVoHuLhrBRq5CZVwAvFwc8+WUSSgUBL/RugSkxLTXlNb7bCvTHlB6188IsAFuWjIAtS0REVF2ujrbIK7ijd/zNIe1x+b/beLV/a6SkZeNGfhFcHW0xasUevPFwOzwVFah3T2mpgMR/r6Odnxs8nO1rofaWiS1LREREZqC1jyucHWzgX98Z6w9e0Tnn6miL1ROjkHWzEN1bNMS61MvwdnXEndJSLFh/FG8/GoKuzRtqrg8LqK/5Xm7ws1qtQrcWDSXPk2EYloiIiCoR3doL209e0zs+qrM/Zg9qA7VKhYs3bmHAR3+jbSM3HLuaC6BsPNCLfVpApVLhdlEJBob4oqN/fWw7mYlDl7Lx1pAQ2KhVmvIeva+J5vvtr3jX/AsjRdgNZwTshiMiskw2ahVKSgVMjWmJxVtO653/6dkotG/sDgdbNX47dBWf7/wXnzzWCXPWHYGdjRpfPBUOtVbYuVV0B052Nrj03238cyYLQ+9rAntbbpZhrjgbrhYxLBERmUbftj7461iG5Pmfn4vCvF+PYtoDrTD+6/1650//3wCoVSqoVUC3hVtxJacA0x9ohT+PpaN/O19M7t1SpFSyFhyzREREVm/FU+EQBAG/pFzG9DUHNcdt1CrMe7AtwgI8sfHFslldT3Rpiu/2pGH95G54be0RPNzRT2dl6N2z+kAQBKhUKrzQhyGJ7mHLkhGwZYmIqGra+bkhr+AO0m7c0jv3SKfGWDQ8FDZqFX5NvYwpq1IBAEPva4JfUy9j3aRuaN/YHUDZ7K/YP47j4o3beGdoB7g724k+rzwMEQHKP78tpiP1xo0bePzxx+Hm5gYPDw+MHz8eN2/elL2noKAAkyZNQoMGDeDi4oKhQ4ciI0O3uValUul9rVq1qiZfChFRnfD3jPsx6f7mCGpYT/T8zAHB+G1yd2x/ORruTvfCzbQHWmFEeBO8N6yDZvDzwx0bY8ML3fHb5O54f0Qozrw9UBOUgLLZX68NaovlT4ZJBiUADEpUJRbTsjRgwABcvXoVn332GYqLizFu3Dh07twZ8fHxkvc899xz2LhxI1auXAl3d3dMnjwZarUau3bt0lyjUqkQFxeH/v37a455eHjA0dFRcd3YskRE1qhJfSdc+u+25Pmjr/fDrjNZyMwrxJx1RzTHx0QFYHi4v06Y0f777Mz/DcCZazfR2sdVE14OXcrGxG+SMb1vKwwP96+BV0Okz6oGeB8/fhxt27bFvn37EB4eDgDYtGkTBg4ciEuXLsHPz0/vnpycHHh5eSE+Ph7Dhg0DAJw4cQJt2rRBYmIiunTpAqAsLK1duxZDhgypcv0YlojIEqlVQKnEJ0Bzr3r47ulIfLj5FG7kF2HL8UzNuZ2v3I8m9Z10ZoFVDEO2FXaJLyguwdBlu9GrlRdm9A827gshqiKr6oZLTEyEh4eHJigBQExMDNRqNfbu3St6T3JyMoqLixETE6M5FhwcjKZNmyIxMVHn2kmTJqFhw4aIiIjAV199hcryY2FhIXJzc3W+iIhqk5+7fOt33NjOkufeHx6KY2/0Q9JrMejb1gee9XRXeD7+Rn9sfqkXGrk74d1hoVj2RJjOvU0bOOsEJQDYPbM3Zg8MxsH5ffWCEgA42tlg44s9GJTIIllEWEpPT4e3t+7iXLa2tvD09ER6errkPfb29vDw8NA57uPjo3PPG2+8gR9//BGbN2/G0KFD8fzzz+Pjjz+WrU9sbCzc3d01X/7+bDImIuMa2zVQ9LiHsx0WPhqCP6b2lLz3/MJBuD/YG3/PuB++brqhysfNAUPDmsDZ3hYNXRyw4qlwbHs5WnN+ZLg/nOxtdMKQnY0avzzfFasndsHQsCYQ4+fhhIk9m+uMPSKyFiYNSzNnzhQdYK39deLEiRqtw9y5c9GtWzd06tQJr776KmbMmIH33ntP9p5Zs2YhJydH83Xxov7GhkREYoaHNcH5hYMQ00Z8debBoX6InxCJBQ+1Ez3fytsVoyKawt3JDsfe6KfXgrRg8L0d4v09nbFndh8s12oZ+mFCF70y3Z3s8EzPINSzt8Hk3i1En3tf0/qIDGpQ6esjskYmXWdp+vTpGDt2rOw1QUFB8PX1RWZmps7xO3fu4MaNG/D19RW9z9fXF0VFRcjOztZpXcrIyJC8BwAiIyPx5ptvorCwEA4ODqLXODg4SJ4jIus2f3BbONvb4NWfD4uef7FPSxTeKcFnO/4VPV8+6Fmqt//j0Z0036+e2AWz1x7G2Wv5mmMz+rfWfO9sb4v7g73x7fgIPPllEhrUs8eTIpuq9mvng4k9g9DOzw1BXi6iz501sA1m9A/W2XqDiMqYNCx5eXnBy8ur0uuioqKQnZ2N5ORkhIWV/Qtp69atKC0tRWRkpOg9YWFhsLOzQ0JCAoYOHQoAOHnyJNLS0hAVFSX5rNTUVNSvX59hiMhK+bk74kpOgeT5Rzs1RnLaf7hwXX/dHwB4KioQpzLyJO+f9kArAEBEoKfoitHl3Vgz+gcj4USm3nltkUENkDA9WmfwdHigp951PVp6yW6qqlKpMHtgG9lnAWBQIpJgEWOW2rRpg/79+2PChAlISkrCrl27MHnyZIwaNUozE+7y5csIDg5GUlISAMDd3R3jx4/HtGnTsG3bNiQnJ2PcuHGIiorSzIT77bff8MUXX+DIkSM4c+YMli1bhrfffhsvvPCCyV4rEdWs3bP64MEOjUTPBTRwxgcjO2LHK/eLng/yqgcbtQptGlU+6zU8QD/UAICLQ9m/UVv7uuqNS5Lqmvvn1fvRwtsF//dI+0qfS0TGZzHbnXz//feYPHky+vTpA7VajaFDh2LJkiWa88XFxTh58iRu3br3r8EPP/xQc21hYSH69euHTz/9VHPezs4OS5cuxUsvvQRBENCiRQt88MEHmDBhQq2+NiJS5qdno7Dj1DV8vPWM6PmD8/vC0U6N1nM2yZbj6ij+V99Pz3aVvc/Z3kbz/eiIpvghKU3n/J5ZfTTfuzvbIXlODPIK7iB60XYAwKT7m+tcv+ChdpjRvzWK7wg4nZmHsID6os9tUt8ZW6b1kq0bEdUci1hnydxZ2zpLMwcEY+EfNTuwnkjMQ6F+WH/wiuT5XTN741bhHTzw4U7R8+VdUVL/7zzTKwizBrRB1s1ChL+1RfJ+AJgcn4INh67qnA9p7I7fXugOACi8U4JRK/bgQFo2hoc1wf89EiK5u3zWzULk3C5GUMN6XEGayIxwI12qMluOWzA77Ru74chl817Py95WjaI7pdUqo3ewt2xYauzhpKic0CbuOHgpR+94jxZlYyQbulQ+JnHmgGBsPHxVZyD2tL6tNN872Npg7fPdFNWnoYuDomcSkXmyiDFLZHlCm7hXfpEZ6B0sPkbEnNR3tpOcOVVbnOxsENDAWfYatQqIbCY+Tgco68JqJLOQYty4zhjUoREc7cT/WmrudW9/Malryr05RH9sz3PRzdG9ZUPR60Mau+PHZ3QnfjSp74yTbw7A4QV9MSysCZaM7oT7W5v/nxciMj6GJaoRK8dFmLoKimhP0zZXKpVKcksKpeYMqnwmlBzPevaS6/6UWzQ8FEM6NRY990yvIBxe0A8/P9cV97cWnwHbs6UX7GzUOPHmANHz9RzuNYR//7T+LNh/Xr03KDugge7GrZum9sCrMitHr5/cDREiQc/eVg1XRzssGh6Kh0L1t1UiorqBYakOsVWrEOrvYepqmI2ghvV0PoDNlVqlqnQLHgBwkBgvAwCPRwZUev+j94kHHQDw83CstFXlwQ5+GCmxAeqsAW1go1bBz8MJcRJBWq7318vVAR+MCNX8HFZhptmi4aFoUv9ey5e7kx12zeyNv17qiXOxAxHsqz8WYf3kbhjXLRAH5/flOCIiksWwVIfYqFWYWUv7MlnTZ49YK0ZtUqkAN0f5LSS+GhuOrs3FV1f2cLaDk9YsLjHzB7dF37bSi7V+MKJjpfUEoLdfmCG0A4t2K4+boy32vRaDFt6ukvcOE9mCo7GHE1pp7WpfUYcmHpg/uB235yCiSjEs1TFREh+o2viv7Huc7GzQrYX4OJfaolYB7w7rIHtN72AfSLU9/Tqp8kHIj97XBH3b+kie9/csa7XxcK6ZYPFKv9Y6P4drTaGv2KVWrofE+CMiImNjWLJC1Z3MpvT2JRYw3qe6KnsvFw0Plb8AwCMS43gAoLWPa6VBqHsLLwQ2FA8M2ppLbGMhFTa0uTvZQa1W4e8Z+osxjom614WXNDsGbzysP3Zp7oNt9Y6VE2v1qWhCjyCdn7XHaC197D7Re74dH4kvx4QjYTrXHyKimsWwZIX+eql6Hx5Kw9ZDoX54pmeQ6DmVgsj1y/PyCwBWZqLEs42psla2oTLjfMpFSwxoLisfGBHuL/k+AsCCh6SDCABsmVa2+/xLD7SSvU7KfU09NN+XtyBpi9FqcbK3VeOpCnuPvRTTCuO7N9P8PHugblevnY3+XzN/TOmh+X7XzN566xON7RoIJzsbjI7wR1OZWXh92vhIhkQiImNhWKpDlE6oqq1uOOdKxtFURl1JPZeM7oSh91XeqiGnsndCyXslN4uq/P52jaWXWnCtZLxS+Vgel0oGq8+TaP2p7DVUFnxf7KO7S/1DoboBUnvKf7k2jdzw2ZNh+PTx+0TXTvJ1d8ThBX0R+6h8qxsRUW1gWCI9A9pLD/Q1JiWtT7L3V3J737Y+CPWv5npPRsiNcmGk/ExVF9Jf/kSY4mv/p9X6I1aHchXHD4XIBDlA//X5ujvi+eiybT0iAj31WqLK9Wvni4Eh4nu0AYCtSIsUEZEp8G+jOkTp5763m/TCgcZU3QYsJd2F1V3MsbpZybOevXz5dx9Q1Xr2NzDYzujfWu9YxXBUkbvIoO5VE7tU8pxgnF84CD8+GyW5BQgRkaXg32J1SI0sAi2TJpqKjH8xpqCG8mNVHO1sUFrNtKSkm+2doSGS59beHZf1+VPhoufb+ZWt/yPUzG9Hz/+66bYuxT4agsgg3RmSpVqjq6W2vukS1ADzHmyLb/5nGYuPEhFVB8MSifpqrPiHu1ICBDwX3Vz2muq22sjNMuscWDb1vLotS0pW+B7ZuankIG6fu610D0hMy39tUNk4otLqbammmKOdjWYrmukPtMLoiKZ612i/ZXJZ8X/dm6FnK+nB60RE1oJhqQ4xJJz0aFm9D8HqjkdSQskCiNVtWVIaBmzVVftfqXxBxMgg8T3VpBaalPLzc1GVXvPd05H4+n8RkmFWe+B9bfweiYjMHcNSHVKre7Eq/IwdLrEGT3Vbtsq7zx7qKD0Tzbjvh3hplc3YK9ekvjN2zeytN35IyTYl2u5rWl/n56gg/bDl6miHXq28JAdQaz+zlS+n5RMRMSxRtVSn5UGlku5K6x0svZq0orLv/tfbVXqwenmO+UJiPJEhekm0QMllpZXjOuv83NjDCfUqLKegff+ozuL7ruler8IQrYDo6SI/wFyMk70NNr7YHY92aoxljyufbUdEZK0YlqyQMZZJkisi1N8Dhxb0BSA9MFmlUta4VFOtXdrvwVqJxS+VtvoAQEwb/U1ktVeyfkyiBUj7GRW352jo4qB3fcX3Q3vz2qEKVsIGgPmD9VfYNlQ7P3d8MLKj6CKVRER1DcOSFarpUSY/PtOl0o1dldWh5mqq3eLVqULXVMWnKwlsr/TT34BYe/0gG4nxU9pHg311N4Jt08hN7/qKq11rb4CrveHr5PtbiG5NAgD1tZYr4IgjIqLqY1iyQsZYgVtpGVLdcLW1CrjU5q9KxlvfW+Oo8rhU1an92m+D9mMa1LMXDVhy+6i18nHFjP6tsWh4KF7u11q21eeJLmWz3Cb3biF5DRERKcOwVJfU4ghvJVGpSX2nKk/tf7BD2crPHz8mPrW/f3vplaHLVdYNp719SFXrqR0alUzJd7SzQUybsgBYHni0PR/dQtHGtG8NCcGJN/sj2Fe/9YqIiAzDsGSFjNGmI1eGMaaT29uo4WhnU+UWmw9GdAQAONjq7y/39iMheKzC+kHTRTaZfbhj2eBysRr4uTti96zemp+VhKVFw0MR1FB/HzSxMuRa3paM7oi4cZ0xV2IvN6Uc7aq39x4REZVhWLJCkp/DtTiAxc5GLRuDXB3LWm3EQkiAzC7z98qXfjE9WjaUHEOkbUKPZpJ1+H1KD51xWUpC3bCwJtj6crTm54qDwrXLkKuds70t7m/tLRoEiYio9jEsWSHJlh8DGnGqO+TI3lZd5a6r78ZHVuvZYnUXO3ZvnSH9ino46065N+S1lK9t9HgX3RlyAZxZRkRkkRiWrJCDnfyvtab386psl3ptYhlEyXR1uW4sQ0NadbdEqeib8RH4e8b9OtP+Ad3wJLX9CRERmR/byi8hS1O+H5meu/nCz0N6oUYllLY6Kem6UjITrTKP3tcYv6RcrnY5cjzrKV/c0c5GLRr47GzUSHqtD7adyMRDodL72hERkXlhy5KVEVvoUMOgbjiVZjNa+etkHlfNHOTmqCzL21YYnyRWJ7m6KKmmn4eTok11K+Pt6oiRnZvqrJ9ERETmjWHJ6hivT6m+s+FbZWiTq4mSWm6a2hOxj4YY/FyxLjq55ykNLoNDpfeZIyIi68WwVAcZss2HGMV3K1rsUZqfhxNGR+ivNWQM7wy9F8J6tfRCn2BvBDWshxn9W+Pn58S3RyEiorqJY5asQJ9gbyScyLz7U+VRplnDenigrQ82H8uo0vN0FlqsYveWIXFt9sBgvP37CennVHiQWNkVrwnyctF8r1ar8OXYziAiIhLDliUrIBZKHGVmxKlUKnz+VHiVn2eURS8N2JhtYs/mOBc7UPJ8xSJExyxVuMpXahB8JVaOKwtV2i1TRERk3RiWrE5ZKHhvWGiNPUFnvzORtFN+TMkAb6UreBuy15ySFcaVLE8gJrq1N84vHISRnWume5CIiMwPw5IVEIsGSlpXqvw8hcFFflmAsjKc7JT3BL82sI3EcyqUXMlsOLlWNyIioor4qWF1pIOMIa0zZdcruEgkD5W37PRt5wsACPZ1lSw7spmn4vqMjixrzam45lHFECg2u01nE9va3PeFiIgsHgd4WwFB5CexRh1DI4KSbrRSkYvKw4ufhxMOzu+LevY22H32Op76KkmvLmq1CjFtvLHleKZeORW5ONjiyOv9ZPeFA6Czp1u5J7sEYEnC6bJnMisREZEB2LJkBYyxCnZNcXeyg62NGj1beeGF3i00x7Vbrd4f3lFxeS4OtvobzGq9/FY+LhDj5XpvsU5DW9iIiKhuY1iyAmJRSelmsnKUXG9ITtO+VrsrzN1ZvyXIEOYbFYmIyBowLFkBpYHFGGN1WnrrttyEBehviSL1HGMNMK/I0IUr2bBERESGYFiyAjXVsiIWwgIa1NP5uX973yqVZ8zAEqFwkHh50OvXTnmdiYiIOMDbCigds2RoQFHSvSc2/kfqOboz0nS19nHFyYw8Q6pnsPgJXZBwPIN7vBERkUHYsmQFKk6ll1ITs+EMEdLYXfP9ohG6i2aO79HMKM+Q62r0cnXAqIimqOfAfyMQEZFy/NSwAmO7BuLX1Cs1ULJ+WqpO79mA9r54b1gHtPVzQzs/d51zzb3qSdxFRERkWgxLVkBsEUYxhk6ZF12rSUERUpeoVCoMD/cXPRcW4IkPR4aiWUPxqf9KcfA2EREZG8OSFVDrJATptDC9byuDyhVbcFKRKiaWRzo1qdrzdB7NtERERMbFMUtWQCcqqcqP6YeGcd10xwWNlGjlKSc2041bhRARUV3DsGQFqrpp7vBw/Zac6NZe986H6Yep6nTD1QZuZUJERMbGsGQFtLueDMkKYnFqyehOmu/VIslj2gOVd+U52Jruj1WbRm4mezYREVknjlmyAmLdcFUltgltuQNzH0B9BcsUxD4aUr1KVMGGF7pj3YHLeKFPy1p/NhERWTeGJSvQyN1J75iSsUWGjt+2tVGWxIK8qjejrSraN3ZH+8bulV9IRERkIHbDWTi1SvnSARUpXfm7HGeaERFRXcSwZOEqrt7N2WpERETGxbBkxr4dH6Hzc0hjd7TwFu/icr27hUeXIGWbygI1swHvFI4ZIiIiK8OwZMZCKozBsbNR4a+pPUUDycYXe+CVfq3xxpD2iss39t5vAPBAWx/jF0pERGRCHOBtQVQqFdRqleiMt6YNnDHp/hY1+/waLZ2IiMg8sWXJgqg0/zVNbOH4biIiqosYlsyYVDeZktW5FZVvYDkcPE5ERHURw5IZc7Sr2pIASrXzM2xdIrYsERFRXcSwZMac7G3w+VPhmp+NHVbcnexwYO4DRi2TgYqIiKwNw5KZE5tdZszuMCXblxAREdVlDEsWxNRjhpS0GgX7ciNbIiKyLgxLFkRsWxOpQeA10R1WWVjzcnWAjZr9cEREZF0YlizA+8NDEezrircMWHCyJlQWwBiTiIjIGnFRSgswNKwJhoY1Meiemlidm2GIiIjqIrYsWbjanH2mquRhnAlHRETWiGHJwhmjBWnB4LaKrqssC5l6ADoREVFNYFiyUoaszu3j5qjoOqmWowk9mgEAXhvURvEziYiILIXFhKUbN27g8ccfh5ubGzw8PDB+/HjcvHlT9p4VK1YgOjoabm5uUKlUyM7ONkq5lqBGxixJpKXZA9vgwNwHMDjUz/gPJSIiMjGLCUuPP/44jh49is2bN2PDhg3YuXMnJk6cKHvPrVu30L9/f8yePduo5ZqasfaGM0TnwPqS51QqFRe3JCIiq2URs+GOHz+OTZs2Yd++fQgPL9v+4+OPP8bAgQOxaNEi+PmJt2hMnToVALB9+3ajlmtqSlqNDIlTSq7leCQiIqqrLKJlKTExER4eHppAAwAxMTFQq9XYu3dvrZdbWFiI3NxcnS9LpiR8OTvU7Ka+RERE5soiwlJ6ejq8vb11jtna2sLT0xPp6em1Xm5sbCzc3d01X/7+/lWuQ1UoaQkSKiSgdZO6VelZH44MRdtGbnjzYdMuiElERGQqJg1LM2fOhEqlkv06ceKEKasoatasWcjJydF8Xbx4sXYroBWElHa3dfT3kC5OppRHOjXB71N6wN/TWeGTiIiIrItJxyxNnz4dY8eOlb0mKCgIvr6+yMzM1Dl+584d3LhxA76+vlV+flXLdXBwgIODQ5WfS0RERJbDpGHJy8sLXl5elV4XFRWF7OxsJCcnIywsDACwdetWlJaWIjIyssrPr6lya5p2O5DUsGtDlg6oiWUGiIiIrIVFjFlq06YN+vfvjwkTJiApKQm7du3C5MmTMWrUKM2MtcuXLyM4OBhJSUma+9LT05GamoozZ84AAA4fPozU1FTcuHFDcbnmyNjhJixAelkAIiKius4iwhIAfP/99wgODkafPn0wcOBAdO/eHStWrNCcLy4uxsmTJ3Hr1i3NseXLl6NTp06YMGECAKBnz57o1KkT1q9fr7hcc2TsdZb8PJzw94z7cXB+X6OWS0REZA0sYp0lAPD09ER8fLzk+cDAQL0ZYAsWLMCCBQuqVa458nK5N15KagsSQwMVB3ATERGJs5iWJbrnscgArZ/E0xLHIRERERkHw5IFsrflr42IiKi28FPXSvVoWfksQyIiIqocw5KFkxqz5OXKdaCIiIiMgWGJiIiISAbDEhEREZEMhiULJ7WCNwDEtPEBAAwONd8FNomIiMydxayzROIc7Wwkz300qiN2nrqGXq052JuIiKiq2LJkoZY+dh8CGjjj08fvk7ymnoMtBoQ0grM9MzEREVFV8VPUQg3q0AiDOjQydTWIiIisHluWiIiIiGQwLBERERHJYFgiIiIiksGwRERERCSDYYmIiIhIBsMSERERkQyGJSIiIiIZDEtEREREMhiWiIiIiGQwLBERERHJYFgiIiIiksGwRERERCSDYYmIiIhIBsMSERERkQxbU1fAGgiCAADIzc01cU2IiIhIqfLP7fLPcSkMS0aQl5cHAPD39zdxTYiIiMhQeXl5cHd3lzyvEiqLU1Sp0tJSXLlyBa6urlCpVLLX5ubmwt/fHxcvXoSbm1st1dB88f3Qx/dEH98TXXw/9PE90cX3Q5/YeyIIAvLy8uDn5we1WnpkEluWjECtVqNJkyYG3ePm5sY/wFr4fujje6KP74kuvh/6+J7o4vuhr+J7IteiVI4DvImIiIhkMCwRERERyWBYqmUODg6YP38+HBwcTF0Vs8D3Qx/fE318T3Tx/dDH90QX3w991XlPOMCbiIiISAZbloiIiIhkMCwRERERyWBYIiIiIpLBsEREREQkg2GpFi1duhSBgYFwdHREZGQkkpKSTF0lk9m5cycGDx4MPz8/qFQqrFu3ztRVMrnY2Fh07twZrq6u8Pb2xpAhQ3Dy5ElTV8tkli1bhg4dOmgWkIuKisIff/xh6mqZjYULF0KlUmHq1KmmrorJLFiwACqVSucrODjY1NUyucuXL+OJJ55AgwYN4OTkhJCQEOzfv9/U1TKZwMBAvT8nKpUKkyZNUlwGw1ItWb16NaZNm4b58+cjJSUFoaGh6NevHzIzM01dNZPIz89HaGgoli5dauqqmI0dO3Zg0qRJ2LNnDzZv3ozi4mL07dsX+fn5pq6aSTRp0gQLFy5EcnIy9u/fj969e+Phhx/G0aNHTV01k9u3bx8+++wzdOjQwdRVMbl27drh6tWrmq9//vnH1FUyqf/++w/dunWDnZ0d/vjjDxw7dgzvv/8+6tevb+qqmcy+fft0/oxs3rwZADB8+HDlhQhUKyIiIoRJkyZpfi4pKRH8/PyE2NhYE9bKPAAQ1q5da+pqmJ3MzEwBgLBjxw5TV8Vs1K9fX/jiiy9MXQ2TysvLE1q2bCls3rxZ6NWrlzBlyhRTV8lk5s+fL4SGhpq6Gmbl1VdfFbp3727qapi1KVOmCM2bNxdKS0sV38OWpVpQVFSE5ORkxMTEaI6p1WrExMQgMTHRhDUjc5aTkwMA8PT0NHFNTK+kpASrVq1Cfn4+oqKiTF0dk5o0aRIGDRqk8/dJXXb69Gn4+fkhKCgIjz/+ONLS0kxdJZNav349wsPDMXz4cHh7e6NTp074/PPPTV0ts1FUVITvvvsO//vf/yrd+F4bw1ItyMrKQklJCXx8fHSO+/j4ID093US1InNWWlqKqVOnolu3bmjfvr2pq2Myhw8fhouLCxwcHPDss89i7dq1aNu2ramrZTKrVq1CSkoKYmNjTV0VsxAZGYmVK1di06ZNWLZsGc6dO4cePXogLy/P1FUzmX///RfLli1Dy5Yt8eeff+K5557Diy++iK+//trUVTML69atQ3Z2NsaOHWvQfbY1Ux0iqo5JkybhyJEjdX78RevWrZGamoqcnBz89NNPGDNmDHbs2FEnA9PFixcxZcoUbN68GY6OjqaujlkYMGCA5vsOHTogMjISAQEB+PHHHzF+/HgT1sx0SktLER4ejrfffhsA0KlTJxw5cgTLly/HmDFjTFw70/vyyy8xYMAA+Pn5GXQfW5ZqQcOGDWFjY4OMjAyd4xkZGfD19TVRrchcTZ48GRs2bMC2bdvQpEkTU1fHpOzt7dGiRQuEhYUhNjYWoaGh+Oijj0xdLZNITk5GZmYm7rvvPtja2sLW1hY7duzAkiVLYGtri5KSElNX0eQ8PDzQqlUrnDlzxtRVMZlGjRrp/WOiTZs2db57EgAuXLiALVu24Omnnzb4XoalWmBvb4+wsDAkJCRojpWWliIhIaHOj7+gewRBwOTJk7F27Vps3boVzZo1M3WVzE5paSkKCwtNXQ2T6NOnDw4fPozU1FTNV3h4OB5//HGkpqbCxsbG1FU0uZs3b+Ls2bNo1KiRqatiMt26ddNbcuTUqVMICAgwUY3MR1xcHLy9vTFo0CCD72U3XC2ZNm0axowZg/DwcERERGDx4sXIz8/HuHHjTF01k7h586bOv/7OnTuH1NRUeHp6omnTpiasmelMmjQJ8fHx+PXXX+Hq6qoZz+bu7g4nJycT1672zZo1CwMGDEDTpk2Rl5eH+Ph4bN++HX/++aepq2YSrq6ueuPX6tWrhwYNGtTZcW0vv/wyBg8ejICAAFy5cgXz58+HjY0NRo8ebeqqmcxLL72Erl274u2338aIESOQlJSEFStWYMWKFaaumkmVlpYiLi4OY8aMga1tFaJPzU3Oo4o+/vhjoWnTpoK9vb0QEREh7Nmzx9RVMplt27YJAPS+xowZY+qqmYzY+wFAiIuLM3XVTOJ///ufEBAQINjb2wteXl5Cnz59hL/++svU1TIrdX3pgJEjRwqNGjUS7O3thcaNGwsjR44Uzpw5Y+pqmdxvv/0mtG/fXnBwcBCCg4OFFStWmLpKJvfnn38KAISTJ09W6X6VIAiCcXIbERERkfXhmCUiIiIiGQxLRERERDIYloiIiIhkMCwRERERyWBYIiIiIpLBsEREREQkg2GJiIiISAbDEhERERnFzp07MXjwYPj5+UGlUmHdunUmfV5xcTFeffVVhISEoF69evDz88NTTz2FK1euGPQchiUiIgnR0dGYOnWqqatBZDHy8/MRGhqKpUuXmsXzbt26hZSUFMydOxcpKSn45ZdfcPLkSTz00EMGPYd7wxEREZFRDBgwAAMGDJA8X1hYiNdeew0//PADsrOz0b59e7zzzjuIjo6ukee5u7tj8+bNOsc++eQTREREIC0tTfFepGxZIiISMXbsWOzYsQMfffQRVCoVVCoVzp8/b+pqEVm0yZMnIzExEatWrcKhQ4cwfPhw9O/fH6dPn661OuTk5EClUsHDw0PxPQxLREQiPvroI0RFRWHChAm4evUqrl69Cn9/f1NXi8hipaWlIS4uDmvWrEGPHj3QvHlzvPzyy+jevTvi4uJqpQ4FBQV49dVXMXr0aLi5uSm+j2GJiEiEu7s77O3t4ezsDF9fX/j6+sLGxsbU1SKyWIcPH0ZJSQlatWoFFxcXzdeOHTtw9uxZAMCJEyc0LblSXzNnzqzS84uLizFixAgIgoBly5YZdC/HLBEREVGNu3nzJmxsbJCcnKz3Dw8XFxcAQFBQEI4fPy5bToMGDQx+dnlQunDhArZu3WpQqxLAsERERES1oFOnTigpKUFmZiZ69Ogheo29vT2Cg4ON+tzyoHT69Gls27atSmGLYYmISIK9vT1KSkpMXQ0ii3Hz5k2cOXNG8/O5c+eQmpoKT09PtGrVCo8//jieeuopvP/+++jUqROuXbuGhIQEdOjQAYMGDTLq85o2bYri4mIMGzYMKSkp2LBhA0pKSpCeng4A8PT0hL29vaLnqARBEAyuHRFRHTBx4kSkpqbixx9/hIuLCzw9PaFWc6gnkZTt27fj/vvv1zs+ZswYrFy5EsXFxXjrrbfwzTff4PLly2jYsCG6dOmC119/HSEhIUZ/3vnz59GsWTPRe7dt26Z4yQKGJSIiCadOncKYMWNw8OBB3L59G+fOnUNgYKCpq0VEtYxhiYiIiEgG25OJiIiIZDAsEREREclgWCIiIiKSwbBEREREJINhiYiIiEgGwxIRERGRDIYlIiIiIhkMS0REREQyGJaIiIiIZDAsEREREclgWCIiIiKSwbBEREREJOP/Afpc6Gd0+UVpAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "plt.plot(\n", - " batch_data[\"sim_1\"].monitor_data[\"monitor_time_0\"].Hz.t,\n", - " np.real(batch_data[\"sim_1\"].monitor_data[\"monitor_time_0\"].Hz.squeeze()),\n", - ")\n", - "plt.title(\"FieldTimeMonitor data\")\n", - "plt.xlabel(\"t\")\n", - "plt.ylabel(\"Hz\")\n", - "plt.show()\n" - ] - }, - { - "cell_type": "markdown", - "id": "21bc59dc-0163-432b-9cf0-5c2d2617ef35", - "metadata": {}, - "source": [ - "We see that the source has mostly decayed by the time we switch on the monitors, and the remaining data shows decay and oscillation due to the resonances inside the system.\n", - "\n", - "Looking at the Fourier transform of this data, we can see resonances at the band frequencies." - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "id": "e1b95adb-1ea6-40cb-ba63-ef5ac60de470", - "metadata": { - "execution": { - "iopub.execute_input": "2023-08-18T17:08:29.392606Z", - "iopub.status.busy": "2023-08-18T17:08:29.392364Z", - "iopub.status.idle": "2023-08-18T17:08:29.689950Z", - "shell.execute_reply": "2023-08-18T17:08:29.689484Z" - } - }, - "outputs": [ - { - "data": { - "text/html": [ - "
           loading SimulationData from                             webapi.py:590\n",
-       "           data/fdve-11e84743-7c10-413e-a81b-cd6d73f958a9v1.hdf5                \n",
-       "
\n" - ], - "text/plain": [ - "\u001b[2;36m \u001b[0m\u001b[2;36m \u001b[0mloading SimulationData from \u001b]8;id=808637;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=386524;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#590\u001b\\\u001b[2m590\u001b[0m\u001b]8;;\u001b\\\n", - "\u001b[2;36m \u001b[0mdata/fdve-\u001b[93m11e84743-7c10-413e-a81b-cd6d73f958a9\u001b[0mv1.hdf5 \u001b[2m \u001b[0m\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "
           loading SimulationData from                             webapi.py:590\n",
-       "           data/fdve-11e84743-7c10-413e-a81b-cd6d73f958a9v1.hdf5                \n",
-       "
\n" - ], - "text/plain": [ - "\u001b[2;36m \u001b[0m\u001b[2;36m \u001b[0mloading SimulationData from \u001b]8;id=137926;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=679642;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#590\u001b\\\u001b[2m590\u001b[0m\u001b]8;;\u001b\\\n", - "\u001b[2;36m \u001b[0mdata/fdve-\u001b[93m11e84743-7c10-413e-a81b-cd6d73f958a9\u001b[0mv1.hdf5 \u001b[2m \u001b[0m\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkQAAAHHCAYAAABeLEexAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABcQklEQVR4nO3deVxUVeMG8GdmgGGRRWRXRETF3BUTMXFXNLMsy1JTUNMyzF9aveZbr6KVmpYtZvZWLvVmipqVmZpoKqa4obiHSiougCsMi2wz5/cHcuU6gIB3GEae7+czH2fuPffecy8gD+ece65KCCFAREREVIupzV0BIiIiInNjICIiIqJaj4GIiIiIaj0GIiIiIqr1GIiIiIio1mMgIiIiolqPgYiIiIhqPQYiIiIiqvUYiIiIiKjWYyAiooeSSqVCVFSUSY+xfPlyqFQqnD9/3qTHISLTYyAiuuPYsWN49tln4efnB1tbW9SvXx99+/bFwoULzV015OTkICoqCjt27DB3VUxi48aNJg8v9HC4cuUKoqKikJCQYO6q0EOGgYgIwJ49e9CxY0ccOXIE48aNwxdffIGXXnoJarUan332mbmrh5ycHMycOfOhDkQzZ85UdJ+3b9/Gu+++q+g+yfyuXLmCmTNnMhCR4qzMXQGimuCDDz6As7MzDhw4ABcXF9m6q1evmqdSDyA7OxsODg7mroZZ2dramrsKZEH4M0NsISICkJSUhJYtWxqFIQDw8PCQfVapVJg4cSJWrFiBwMBA2NraIigoCLGxsUbbXr58GWPGjIGnpye0Wi1atmyJpUuXGpXLzc1FVFQUmjVrBltbW3h7e+OZZ55BUlISzp8/D3d3dwDAzJkzoVKpZONjIiIiUKdOHSQlJeHxxx+Ho6MjRowYAQBo1KgRIiIijI7Xo0cP9OjRQ/q8Y8cOqFQqrF69GjNnzkT9+vXh6OiIZ599FhkZGcjLy8Prr78ODw8P1KlTB6NHj0ZeXt59r+uuXbvw3HPPoWHDhtBqtfD19cXkyZNx+/ZtqUxERAQWLVokXdviV3kOHjyIsLAwuLm5wc7ODv7+/hgzZoyszL1jiKKioqBSqXD27FlERETAxcUFzs7OGD16NHJycmTb3r59G5MmTYKbmxscHR3x5JNP4vLlyxUel7Rp0yaEhobCwcEBjo6OGDhwIE6cOFHuNunp6dBoNPj888+lZdevX4darUa9evUghJCWT5gwAV5eXtLnilznjz76CCqVChcuXDA69rRp02BjY4Nbt25Jy/bt24f+/fvD2dkZ9vb26N69O3bv3i2tX7t2LVQqFXbu3Gm0v//+979QqVQ4fvy4tOzvv//Gs88+C1dXV9ja2qJjx45Yv359qddh8uTJaNSoEbRaLRo0aIBRo0bh+vXr2LFjBx599FEAwOjRo6XvleXLl0vbr1mzBkFBQbCzs4ObmxtefPFFXL58WXaM8n5mqPZiCxERAD8/P8TFxeH48eNo1arVfcvv3LkT0dHRmDRpErRaLb788kv0798f+/fvl7ZPS0tD586dpQDl7u6OTZs2YezYsdDpdHj99dcBAHq9Hk888QS2bduGF154Af/3f/+HzMxMxMTE4Pjx4+jTpw8WL16MCRMm4Omnn8YzzzwDAGjTpo1Un8LCQoSFhaFr16746KOPYG9vX6XrMGfOHNjZ2eHtt9/G2bNnsXDhQlhbW0OtVuPWrVuIiorC3r17sXz5cvj7+2P69Onl7m/NmjXIycnBhAkTUK9ePezfvx8LFy7EpUuXsGbNGgDAyy+/jCtXriAmJgb/+9//7lvHq1evol+/fnB3d8fbb78NFxcXnD9/HuvWravQOQ4dOhT+/v6YM2cODh06hG+//RYeHh748MMPpTIRERFYvXo1Ro4cic6dO2Pnzp0YOHBghfb/v//9D+Hh4QgLC8OHH36InJwcLF68GF27dsXhw4fRqFGjUrdzcXFBq1atEBsbi0mTJgEA/vrrL6hUKty8eRMnT55Ey5YtARQFoNDQUGnbilznoUOH4l//+hdWr16Nt956S3bs1atXo1+/fqhbty4A4M8//8SAAQMQFBSEGTNmQK1WY9myZejVqxd27dqFTp06YeDAgahTpw5Wr16N7t27y/YXHR2Nli1bSj8LJ06cwGOPPYb69evj7bffhoODA1avXo3Bgwfjp59+wtNPPw0AyMrKQmhoKE6dOoUxY8agQ4cOuH79OtavX49Lly7hkUcewaxZszB9+nSMHz9eugZdunQBUDTIffTo0Xj00UcxZ84cpKWl4bPPPsPu3btx+PBh2R88Sv3M0ENEEJHYsmWL0Gg0QqPRiJCQEPGvf/1L/PHHHyI/P9+oLAABQBw8eFBaduHCBWFrayuefvppadnYsWOFt7e3uH79umz7F154QTg7O4ucnBwhhBBLly4VAMSCBQuMjmUwGIQQQly7dk0AEDNmzDAqEx4eLgCIt99+22idn5+fCA8PN1revXt30b17d+nz9u3bBQDRqlUr2TkPGzZMqFQqMWDAANn2ISEhws/Pz2i/9yo+x5LmzJkjVCqVuHDhgrQsMjJSVPS/o59//lkAEAcOHCi33L3Xa8aMGQKAGDNmjKzc008/LerVqyd9jo+PFwDE66+/LisXERFhtM9ly5YJAOLcuXNCCCEyMzOFi4uLGDdunGzb1NRU4ezsbLT8XpGRkcLT01P6PGXKFNGtWzfh4eEhFi9eLIQQ4saNG0KlUonPPvtMKlfR6xwSEiKCgoJk5fbv3y8AiO+//14IUfQ917RpUxEWFiZ9/xUfw9/fX/Tt21daNmzYMOHh4SEKCwulZSkpKUKtVotZs2ZJy3r37i1at24tcnNzpWUGg0F06dJFNG3aVFo2ffp0AUCsW7fO6HyK63LgwAEBQCxbtky2Pj8/X3h4eIhWrVqJ27dvS8s3bNggAIjp06dLy8r7maHai11mRAD69u2LuLg4PPnkkzhy5AjmzZuHsLAw1K9fv9Rm/ZCQEAQFBUmfGzZsiKeeegp//PEH9Ho9hBD46aefMGjQIAghcP36dekVFhaGjIwMHDp0CADw008/wc3NDa+99prRce7XdVTShAkTqnDmcqNGjYK1tbX0OTg4GEIIo+6o4OBgXLx4EYWFheXuz87OTnqfnZ2N69evo0uXLhBC4PDhw1WqY/Ff+Rs2bEBBQUGlt3/llVdkn0NDQ3Hjxg3odDoAwObNmwEAr776qqxcaV+fe8XExCA9PR3Dhg2Tfc01Gg2Cg4Oxffv2crcPDQ1FWloaEhMTARS1BHXr1g2hoaHYtWsXgKJWIyGErIWootf5+eefR3x8PJKSkqRl0dHR0Gq1eOqppwAACQkJOHPmDIYPH44bN25I55CdnY3evXsjNjYWBoNB2t/Vq1dlg/3Xrl0Lg8GA559/HgBw8+ZN/Pnnnxg6dCgyMzOl/d24cQNhYWE4c+aM1KX1008/oW3btlKLUUkV6Ua9evUqXn31Vdn4sYEDB6J58+b4/fffjbZR4meGHh4MRER3PProo1i3bh1u3bqF/fv3Y9q0acjMzMSzzz6LkydPyso2bdrUaPtmzZohJycH165dw7Vr15Ceno6vv/4a7u7ustfo0aMB3B2snZSUhMDAQFhZVb0H28rKCg0aNKjy9sUaNmwo++zs7AwA8PX1NVpuMBiQkZFR7v6Sk5MREREBV1dX1KlTB+7u7lL3yv22LUv37t0xZMgQzJw5E25ubnjqqaewbNmyCo1pAozPsbibqHj8zIULF6BWq+Hv7y8r16RJk/vu+8yZMwCAXr16GX3dt2zZct8B+sUhZ9euXcjOzsbhw4cRGhqKbt26SYFo165dcHJyQtu2baXtKnqdn3vuOajVakRHRwMAhBBYs2YNBgwYACcnJ9k5hIeHG53Dt99+i7y8PGmfxWOMivcHFAWsdu3aoVmzZgCAs2fPQgiB//znP0b7mzFjBgD5z0JFuqxLUzw2KjAw0Ghd8+bNjcZOKfUzQw8PjiEiuoeNjQ0effRRPProo2jWrBlGjx6NNWvWSP95V0TxX9AvvvgiwsPDSy1TcgzQg9JqtVCrjf++Keuvar1eD41GY7S8tGXlLRclBvqWdoy+ffvi5s2bmDp1Kpo3bw4HBwdcvnwZERER0jWqLJVKhbVr12Lv3r347bff8Mcff2DMmDH4+OOPsXfvXtSpU6fc7atyLhVVfE7/+9//ZIOei90v9Pr4+MDf3x+xsbFo1KgRhBAICQmBu7s7/u///g8XLlzArl270KVLF+nrXZnr7OPjg9DQUKxevRr//ve/sXfvXiQnJ8vGTxWXnz9/Ptq1a1dqPYuvsVarxeDBg/Hzzz/jyy+/RFpaGnbv3o3Zs2cb7e/NN99EWFhYqfurSNhUWlk/M1R7MRARlaNjx44AgJSUFNny4r+iSzp9+jTs7e2lO8IcHR2h1+vRp0+fco8REBCAffv2oaCgQNZdVVJlus5Kqlu3LtLT042WX7hwAY0bN67SPivq2LFjOH36NL777juMGjVKWh4TE2NUtirn17lzZ3Tu3BkffPABfvzxR4wYMQKrVq3CSy+99ED19vPzg8FgwLlz52QtgWfPnr3vtgEBAQCK7ky839e9LKGhoYiNjYW/vz/atWsHR0dHtG3bFs7Ozti8eTMOHTokm7OpMtcZKOrmevXVV5GYmIjo6GjY29tj0KBBRufg5ORUoXN4/vnn8d1332Hbtm04deoUhBBSdxkA6fvM2tq6Qj8LJe9MK01Z3yt+fn4AgMTERPTq1Uu2LjExUVpPVBbGYyIA27dvL7WFYOPGjQCMm+Hj4uKkMUAAcPHiRfz666/o168fNBoNNBoNhgwZgp9++qnU/+CvXbsmvR8yZAiuX7+OL774wqhccZ2K74ApLdyUJyAgAHv37kV+fr60bMOGDbh48WKl9lMVxS0xJa+rEKLUiS6L53+pyPndunXL6GtV3JJR0W6z8hS3Ynz55Zey5RWZsTwsLAxOTk6YPXt2qeObSn7dyxIaGorz588jOjpa6kJTq9Xo0qULFixYgIKCAtn4ocpcZ6Do+02j0WDlypVYs2YNnnjiCdn8O0FBQQgICMBHH32ErKys+55Dnz594OrqiujoaERHR6NTp06y7kYPDw/06NED//3vf43+sLh3f0OGDMGRI0fw888/G5UrPr+yvlc6duwIDw8PfPXVV7Lvg02bNuHUqVMVvkuQai+2EBGhaMBsTk4Onn76aTRv3hz5+fnYs2cPoqOj0ahRI2ncT7FWrVohLCxMdts9ANlf7nPnzsX27dsRHByMcePGoUWLFrh58yYOHTqErVu34ubNmwCKBjJ///33mDJlCvbv34/Q0FBkZ2dj69atePXVV/HUU0/Bzs4OLVq0QHR0NJo1awZXV1e0atXqvuMtXnrpJaxduxb9+/fH0KFDkZSUhB9++EFqBTCl5s2bIyAgAG+++SYuX74MJycn/PTTT7K5booVD1CfNGkSwsLCoNFo8MILL5S63++++w5ffvklnn76aQQEBCAzMxPffPMNnJyc8Pjjjz9wvYOCgjBkyBB8+umnuHHjhnTb/enTpwGU35rl5OSExYsXY+TIkejQoQNeeOEFuLu7Izk5Gb///jsee+yxUoNvScVhJzExUdb11K1bN2zatAlarVaaiweo3HUGigJKz549sWDBAmRmZspac4Ci8PXtt99iwIABaNmyJUaPHo369evj8uXL2L59O5ycnPDbb79J5a2trfHMM89g1apVyM7OxkcffWR0zEWLFqFr165o3bo1xo0bh8aNGyMtLQ1xcXG4dOkSjhw5AgB46623sHbtWjz33HMYM2YMgoKCcPPmTaxfvx5fffUV2rZti4CAALi4uOCrr76Co6MjHBwcEBwcDH9/f3z44YcYPXo0unfvjmHDhkm33Tdq1AiTJ08u97oT8bZ7IiHEpk2bxJgxY0Tz5s1FnTp1hI2NjWjSpIl47bXXRFpamqwsABEZGSl++OEH0bRpU6HVakX79u3F9u3bjfablpYmIiMjha+vr7C2thZeXl6id+/e4uuvv5aVy8nJEe+8847w9/eXyj377LMiKSlJKrNnzx4RFBQkbGxsZLd/h4eHCwcHhzLP7eOPPxb169cXWq1WPPbYY+LgwYNl3na/Zs0a2bbFt5Xfe4t78S3s165dK++yipMnT4o+ffqIOnXqCDc3NzFu3Dhx5MgRo9umCwsLxWuvvSbc3d2FSqUq9xb8Q4cOiWHDhomGDRsKrVYrPDw8xBNPPCGbBkGIsm+7v7fO9946L4QQ2dnZIjIyUri6uoo6deqIwYMHi8TERAFAzJ07t9xthSi6nmFhYcLZ2VnY2tqKgIAAERERYVTHsnh4eAgAsu+9v/76SwAQoaGhRuUrep2LffPNNwKAcHR0lN2iXtLhw4fFM888I+rVqye0Wq3w8/MTQ4cOFdu2bTMqGxMTIwAIlUolLl68WOr+kpKSxKhRo4SXl5ewtrYW9evXF0888YRYu3atrNyNGzfExIkTRf369YWNjY1o0KCBCA8Pl01f8euvv4oWLVoIKysro3OMjo4W7du3F1qtVri6uooRI0aIS5cuyY5xv58Zqp1UQigwkpCoFlGpVIiMjLzvX/r0cElISED79u3xww8/cFZjoocQxxAREd2j5CMvin366adQq9Xo1q2bGWpERKbGMURERPeYN28e4uPj0bNnT1hZWWHTpk3YtGkTxo8fbzQnExE9HBiIiIju0aVLF8TExOC9995DVlYWGjZsiKioKLzzzjvmrhoRmQjHEBEREVGtxzFEREREVOsxEBEREVGtxzFEFWAwGHDlyhU4OjpW+REKREREVL2EEMjMzISPj899n13HQFQBV65c4Z0lREREFurixYto0KBBuWUYiCrA0dERQNEFdXJyMnNtiIiIqCJ0Oh18fX2l3+PlYSCqgOJuMicnJwYiIiIiC1OR4S4cVE1ERES1HgMRERER1XoMRERERFTrMRARERFRrcdARERERLUeAxERERHVegxEREREVOsxEBEREVGtx0BEREREtR4DEREREdV6DERERERU6zEQERERUa1n1kAUGxuLQYMGwcfHByqVCr/88otsvUqlKvU1f/58qUyjRo2M1s+dO1e2n6NHjyI0NBS2trbw9fXFvHnzquP0iIjIRPIK9dAbhLmrQQ8Rswai7OxstG3bFosWLSp1fUpKiuy1dOlSqFQqDBkyRFZu1qxZsnKvvfaatE6n06Ffv37w8/NDfHw85s+fj6ioKHz99dcmPTciIjKNnPxCtI7agicW/mXuqtBDxMqcBx8wYAAGDBhQ5novLy/Z519//RU9e/ZE48aNZcsdHR2NyhZbsWIF8vPzsXTpUtjY2KBly5ZISEjAggULMH78+Ac/CSIiqlbxF24hv9CAUyk6c1eFHiIWM4YoLS0Nv//+O8aOHWu0bu7cuahXrx7at2+P+fPno7CwUFoXFxeHbt26wcbGRloWFhaGxMRE3Lp1q9Rj5eXlQafTyV5ERET08DJrC1FlfPfdd3B0dMQzzzwjWz5p0iR06NABrq6u2LNnD6ZNm4aUlBQsWLAAAJCamgp/f3/ZNp6entK6unXrGh1rzpw5mDlzponOhIiIiGoaiwlES5cuxYgRI2BraytbPmXKFOl9mzZtYGNjg5dffhlz5syBVqut0rGmTZsm269Op4Ovr2/VKk5EREQ1nkUEol27diExMRHR0dH3LRscHIzCwkKcP38egYGB8PLyQlpamqxM8eeyxh1ptdoqhykiIjItFVTmrgI9hCxiDNGSJUsQFBSEtm3b3rdsQkIC1Go1PDw8AAAhISGIjY1FQUGBVCYmJgaBgYGldpcRERFR7WPWQJSVlYWEhAQkJCQAAM6dO4eEhAQkJydLZXQ6HdasWYOXXnrJaPu4uDh8+umnOHLkCP755x+sWLECkydPxosvviiFneHDh8PGxgZjx47FiRMnEB0djc8++0zWJUZERES1m1m7zA4ePIiePXtKn4tDSnh4OJYvXw4AWLVqFYQQGDZsmNH2Wq0Wq1atQlRUFPLy8uDv74/JkyfLwo6zszO2bNmCyMhIBAUFwc3NDdOnT+ct90RERCRRCSE41ed96HQ6ODs7IyMjA05OTuauDhFRrfbXmet4cck+AMD5uQPNXBuqySrz+9sixhAREREVU3FMNZkAAxERERHVegxEREREVOsxEBEREVGtx0BEREREtR4DEREREdV6DERERGRReJMZmQIDERERWSxOpUdKYSAiIiKLxTxESmEgIiIiolqPgYiIiCwWG4hIKQxERERksTiGiJTCQERERJalxG1mjEOkFAYiIiKyWGwgIqUwEBERkcUSbCMihTAQERERUa3HQERERBaLXWakFAYiIiIiqvUYiIiIyKKoStxmxhYiUgoDERERWSwOqialMBAREZHFYgsRKYWBiIiIiGo9BiIiIrJYbCAipTAQERGRxeKzzEgpDERERGRRVHyWGZkAAxEREVksNhCRUhiIiIjIcjEQkUIYiIiIyKKU6DHjPESkGAYiIiKyKIxAZAoMREREZLE4hoiUwkBEREQWRd5lRqQMBiIiIrJYnIeIlMJAREREFotxiJTCQERERBalZAhiAxEphYGIiIgsCkMQmQIDERERWSzOQ0RKYSAiIiKLIgtBzEOkELMGotjYWAwaNAg+Pj5QqVT45ZdfZOsjIiKgUqlkr/79+8vK3Lx5EyNGjICTkxNcXFwwduxYZGVlycocPXoUoaGhsLW1ha+vL+bNm2fqUyMiIlNhHiITMGsgys7ORtu2bbFo0aIyy/Tv3x8pKSnSa+XKlbL1I0aMwIkTJxATE4MNGzYgNjYW48ePl9brdDr069cPfn5+iI+Px/z58xEVFYWvv/7aZOdFRETVg+OJSClW5jz4gAEDMGDAgHLLaLVaeHl5lbru1KlT2Lx5Mw4cOICOHTsCABYuXIjHH38cH330EXx8fLBixQrk5+dj6dKlsLGxQcuWLZGQkIAFCxbIghMREVkG2V1mbCMihdT4MUQ7duyAh4cHAgMDMWHCBNy4cUNaFxcXBxcXFykMAUCfPn2gVquxb98+qUy3bt1gY2MjlQkLC0NiYiJu3bpV6jHz8vKg0+lkLyIiqhnYKkSmUKMDUf/+/fH9999j27Zt+PDDD7Fz504MGDAAer0eAJCamgoPDw/ZNlZWVnB1dUVqaqpUxtPTU1am+HNxmXvNmTMHzs7O0svX11fpUyMiIgUwHJFSzNpldj8vvPCC9L5169Zo06YNAgICsGPHDvTu3dtkx502bRqmTJkifdbpdAxFREQ1RMluMuYhUkqNbiG6V+PGjeHm5oazZ88CALy8vHD16lVZmcLCQty8eVMad+Tl5YW0tDRZmeLPZY1N0mq1cHJykr2IiKhmKNkqxGeZkVIsKhBdunQJN27cgLe3NwAgJCQE6enpiI+Pl8r8+eefMBgMCA4OlsrExsaioKBAKhMTE4PAwEDUrVu3ek+AiIgUxTxESjFrIMrKykJCQgISEhIAAOfOnUNCQgKSk5ORlZWFt956C3v37sX58+exbds2PPXUU2jSpAnCwsIAAI888gj69++PcePGYf/+/di9ezcmTpyIF154AT4+PgCA4cOHw8bGBmPHjsWJEycQHR2Nzz77TNYlRkREloMZiEzBrIHo4MGDaN++Pdq3bw8AmDJlCtq3b4/p06dDo9Hg6NGjePLJJ9GsWTOMHTsWQUFB2LVrF7RarbSPFStWoHnz5ujduzcef/xxdO3aVTbHkLOzM7Zs2YJz584hKCgIb7zxBqZPn85b7omILBS7ycgUVILfWfel0+ng7OyMjIwMjiciIjKzHYlXEbHsAAAg9q2eaFjP3sw1opqqMr+/LWoMERERESdmJFNgICIiIssiu8vMfNWghwsDERERWSzmIVIKAxEREVkU2cSMbCIihTAQERERUa3HQERERBZFNlO1+apBDxkGIiIisiiCg6rJBBiIiIjIgjERkTIYiIiIyKLI5iFiHiKFMBAREZFFKXlnGfMQKYWBiIiIiGo9BiIiIrIo7DIjU2AgIiIiiyK/7Z6JiJTBQERERBaLLUSkFAYiIiKyMCUf3WHGatBDhYGIiIgsCrvMyBQYiIiIiKjWYyAiIiKLwrvMyBQYiIiIyKIwBJEpMBAREZHFYjgipTAQERGRRSk5kJqDqkkpDERERGRRZHeZMQ+RQhiIiIiIqNZjICIiIosiynhP9CAYiIiIyKIIIUp9T/QgGIiIiMhiMQ6RUhiIiIjIYrGBiJTCQERERBZFHoKYiEgZDERERERU6zEQERGRRZFNzMgGIlIIAxEREVkU2cSM5qsGPWQYiIiIyGKxhYiUwkBEREQWRf7oDiYiUgYDERERWRTOVE2mwEBEREQWiw1EpBQGIiIisijsJiNTMGsgio2NxaBBg+Dj4wOVSoVffvlFWldQUICpU6eidevWcHBwgI+PD0aNGoUrV67I9tGoUSOoVCrZa+7cubIyR48eRWhoKGxtbeHr64t58+ZVx+kREZEJyLvMGI5IGWYNRNnZ2Wjbti0WLVpktC4nJweHDh3Cf/7zHxw6dAjr1q1DYmIinnzySaOys2bNQkpKivR67bXXpHU6nQ79+vWDn58f4uPjMX/+fERFReHrr7826bkREVE1YB4ihViZ8+ADBgzAgAEDSl3n7OyMmJgY2bIvvvgCnTp1QnJyMho2bCgtd3R0hJeXV6n7WbFiBfLz87F06VLY2NigZcuWSEhIwIIFCzB+/HjlToaIiKoH5yEiE7CoMUQZGRlQqVRwcXGRLZ87dy7q1auH9u3bY/78+SgsLJTWxcXFoVu3brCxsZGWhYWFITExEbdu3aquqhMRkUI4UzWZgllbiCojNzcXU6dOxbBhw+Dk5CQtnzRpEjp06ABXV1fs2bMH06ZNQ0pKChYsWAAASE1Nhb+/v2xfnp6e0rq6desaHSsvLw95eXnSZ51OZ4pTIiKiB8QxRKQUiwhEBQUFGDp0KIQQWLx4sWzdlClTpPdt2rSBjY0NXn75ZcyZMwdarbZKx5szZw5mzpz5QHUmIiLTYKsQmUKN7zIrDkMXLlxATEyMrHWoNMHBwSgsLMT58+cBAF5eXkhLS5OVKf5c1rijadOmISMjQ3pdvHjxwU+EiIgUIbvLjOGIFFKjA1FxGDpz5gy2bt2KevXq3XebhIQEqNVqeHh4AABCQkIQGxuLgoICqUxMTAwCAwNL7S4DAK1WCycnJ9mLiIhqHuYhUopZu8yysrJw9uxZ6fO5c+eQkJAAV1dXeHt749lnn8WhQ4ewYcMG6PV6pKamAgBcXV1hY2ODuLg47Nu3Dz179oSjoyPi4uIwefJkvPjii1LYGT58OGbOnImxY8di6tSpOH78OD777DN88sknZjlnIiJ6MHyWGZmCWQPRwYMH0bNnT+lz8Xig8PBwREVFYf369QCAdu3aybbbvn07evToAa1Wi1WrViEqKgp5eXnw9/fH5MmTZeOKnJ2dsWXLFkRGRiIoKAhubm6YPn06b7knIrJQsrvMzFgPeriYNRD16NGj3HR/v+TfoUMH7N27977HadOmDXbt2lXp+hERUQ3HREQKqdFjiIiIiO7FXjIyBQYiIiKyKHyWGZkCAxEREVksthaRUhiIiIjIsgg+uoOUx0BEREQWRZTxnuhBMBAREZHF4jxEpBQGIiIisijMQGQKDERERGSxmI1IKQxERERkUQQHVZMJMBAREZFFEeV8IqoqBiIiIrJYbCEipTAQERGRRZE97d581aCHDAMRERFZFIYgMgUGIiIisljsMiOlMBAREZFFkd1lxvYiUggDERERWSy2EJFSGIiIiMhiMQ+RUhiIiIjIosjuMmMTESmEgYiIiCwKxw2RKTAQERERUa3HQERERBZF3mVmvnrQw4WBiIiILIqQvWciImUwEBERkcViCxEphYGIiIgsCrvMyBQYiIiIyKKwm4xMgYGIiIgsFqMRKYWBiIiILAonZiRTYCAiIiKLxThESmEgIiIiy8VERAphICIiIotSspuMA6xJKQxERERkUThsiEyhSoEoPT0d3377LaZNm4abN28CAA4dOoTLly8rWjkiIqLyMByRUqwqu8HRo0fRp08fODs74/z58xg3bhxcXV2xbt06JCcn4/vvvzdFPYmIiADc++gOImVUuoVoypQpiIiIwJkzZ2Braystf/zxxxEbG6to5YiIiO7FmarJFCodiA4cOICXX37ZaHn9+vWRmpqqSKWIiIgqgoOqSSmVDkRarRY6nc5o+enTp+Hu7q5IpYiIiMpSMgSxhYiUUulA9OSTT2LWrFkoKCgAAKhUKiQnJ2Pq1KkYMmSI4hUkIiIqiSGITKHSgejjjz9GVlYWPDw8cPv2bXTv3h1NmjSBo6MjPvjgg0rtKzY2FoMGDYKPjw9UKhV++eUX2XohBKZPnw5vb2/Y2dmhT58+OHPmjKzMzZs3MWLECDg5OcHFxQVjx45FVlaWrMzRo0cRGhoKW1tb+Pr6Yt68eZU9bSIiqoGYjUgplQ5Ezs7OiImJwW+//YbPP/8cEydOxMaNG7Fz5044ODhUal/Z2dlo27YtFi1aVOr6efPm4fPPP8dXX32Fffv2wcHBAWFhYcjNzZXKjBgxAidOnEBMTAw2bNiA2NhYjB8/Xlqv0+nQr18/+Pn5IT4+HvPnz0dUVBS+/vrryp46ERHVALIQxOYiUoqoIQCIn3/+WfpsMBiEl5eXmD9/vrQsPT1daLVasXLlSiGEECdPnhQAxIEDB6QymzZtEiqVSly+fFkIIcSXX34p6tatK/Ly8qQyU6dOFYGBgRWuW0ZGhgAgMjIyqnp6RESkkI//+Fv4Td0g/KZuEN/tOWfu6lANVpnf3xWah+jzzz+vcMCaNGlSlYLZvc6dO4fU1FT06dNHWubs7Izg4GDExcXhhRdeQFxcHFxcXNCxY0epTJ8+faBWq7Fv3z48/fTTiIuLQ7du3WBjYyOVCQsLw4cffohbt26hbt26RsfOy8tDXl6e9Lm0QeRERGR+bCAipVQoEH3yySeyz9euXUNOTg5cXFwAFM1cbW9vDw8PD8UCUfEt/J6enrLlnp6e0rrU1FR4eHjI1ltZWcHV1VVWxt/f32gfxetKC0Rz5szBzJkzFTkPIiJSlmxiRiYiUkiFxhCdO3dOen3wwQdo164dTp06hZs3b+LmzZs4deoUOnTogPfee8/U9a0W06ZNQ0ZGhvS6ePGiuatERER3MAORKVR6UPV//vMfLFy4EIGBgdKywMBAfPLJJ3j33XcVq5iXlxcAIC0tTbY8LS1NWufl5YWrV6/K1hcWFuLmzZuyMqXto+Qx7qXVauHk5CR7ERFRzcNsREqpdCBKSUlBYWGh0XK9Xm8UPB6Ev78/vLy8sG3bNmmZTqfDvn37EBISAgAICQlBeno64uPjpTJ//vknDAYDgoODpTKxsbHSvEkAEBMTg8DAwFK7y4iIqGbjxIxkCpUORL1798bLL7+MQ4cOScvi4+MxYcIE2QDoisjKykJCQgISEhIAFHXNJSQkIDk5GSqVCq+//jref/99rF+/HseOHcOoUaPg4+ODwYMHAwAeeeQR9O/fH+PGjcP+/fuxe/duTJw4ES+88AJ8fHwAAMOHD4eNjQ3Gjh2LEydOIDo6Gp999hmmTJlS2VMnIqIaQPYsM/NVgx4ylX7a/dKlSxEeHo6OHTvC2toaQFE3VVhYGL799ttK7evgwYPo2bOn9Lk4pISHh2P58uX417/+hezsbIwfPx7p6eno2rUrNm/eLHuo7IoVKzBx4kT07t0barUaQ4YMkd0V5+zsjC1btiAyMhJBQUFwc3PD9OnTZXMVERGRZeKgalKKSlTxu+n06dP4+++/AQDNmzdHs2bNFK1YTaLT6eDs7IyMjAyOJyIiMrMPN/+NxTuSAADvDnwEL4U2NnONqKaqzO/vSrcQFWvWrNlDHYKIiKhmknWZsYGIFFLpQDRmzJhy1y9durTKlSEiIiIyh0oHolu3bsk+FxQU4Pjx40hPT0evXr0UqxgREVFpZHeZcVg1KaTSgejnn382WmYwGDBhwgQEBAQoUikiIqIyscuMTKDSt92XuhO1GlOmTDF6xAcREZEpMQ+RUhQJRACQlJRU6oSNRERESpI/y8xs1aCHTKW7zO6d0FAIgZSUFPz+++8IDw9XrGJERESlKTlbDMcQkVIqHYgOHz4s+6xWq+Hu7o6PP/74vnegEREREdVElQ5E27dvN0U9iIiIKoTzEJEpVHoMUa9evZCenm60XKfT8bZ7IiIyOWYgMoVKB6IdO3YgPz/faHlubi527dqlSKWIiIgqgs8yI6VUuMvs6NGj0vuTJ08iNTVV+qzX67F582bUr19f2doRERHdg11mZAoVDkTt2rWDSqWCSqUqtWvMzs4OCxcuVLRyRERE5WEeIqVUOBCdO3cOQgg0btwY+/fvh7u7u7TOxsYGHh4e0Gg0JqkkERFRMd5qT6ZQ4UDk5+cHoOgxHURERObCLjMyhQoFovXr12PAgAGwtrbG+vXryy375JNPKlIxIiKi+2FrESmlQoFo8ODBSE1NhYeHBwYPHlxmOZVKBb1er1TdiIiIysUWIlJKhQJRyW4ydpkREZE5yR/dQaQMxR7uSkREVO3YREQKqVAL0eeff17hHU6aNKnKlSEiIrofRiAyhQoFok8++aRCO1OpVAxERERkUrK7zMxXDXrIVCgQnTt3ztT1ICIiqjT2mJFSHmgMkRCCz5EhIqJqVfJWe952T0qpUiBasmQJWrVqBVtbW9ja2qJVq1b49ttvla4bERGREU7MSKZQ4Zmqi02fPh0LFizAa6+9hpCQEABAXFwcJk+ejOTkZMyaNUvxShIREZWGeYiUUulAtHjxYnzzzTcYNmyYtOzJJ59EmzZt8NprrzEQERGRSTEEkSlUususoKAAHTt2NFoeFBSEwsJCRSpFRERUFnaZkSlUOhCNHDkSixcvNlr+9ddfY8SIEYpUioiIqCI4qJqUUukuM6BoUPWWLVvQuXNnAMC+ffuQnJyMUaNGYcqUKVK5BQsWKFNLIiIiCSciIuVVOhAdP34cHTp0AAAkJSUBANzc3ODm5objx49L5VQqlUJVJCIiuosTM5IpVDoQbd++3RT1ICIiqjTOhUdK4cNdiYjIojADkSlUuoUoNzcXCxcuxPbt23H16lUYDAbZ+kOHDilWOSIionvJZqpmOCKFVDoQjR07Flu2bMGzzz6LTp06cawQERGZDfMQKaXSgWjDhg3YuHEjHnvsMVPUh4iIqFych4hModJjiOrXrw9HR0dT1IWIiOi+hOw9ExEpo9KB6OOPP8bUqVNx4cIFU9SHiIiowthCREqpdCDq2LEjcnNz0bhxYzg6OsLV1VX2UlqjRo2gUqmMXpGRkQCAHj16GK175ZVXZPtITk7GwIEDYW9vDw8PD7z11lt8zAgRkYViCCJTqPQYomHDhuHy5cuYPXs2PD09TT6o+sCBA9Dr9dLn48ePo2/fvnjuueekZePGjZM9VNbe3l56r9frMXDgQHh5eWHPnj1ISUnBqFGjYG1tjdmzZ5u07kREpDx2k5EpVDoQ7dmzB3FxcWjbtq0p6mPE3d1d9nnu3LkICAhA9+7dpWX29vbw8vIqdfstW7bg5MmT2Lp1Kzw9PdGuXTu89957mDp1KqKiomBjY2PS+hMRkelwYkZSSqW7zJo3b47bt2+boi73lZ+fjx9++AFjxoyRtUytWLECbm5uaNWqFaZNm4acnBxpXVxcHFq3bg1PT09pWVhYGHQ6HU6cOFHqcfLy8qDT6WQvIiKqIfjoDjKBSrcQzZ07F2+88QY++OADtG7dGtbW1rL1Tk5OilXuXr/88gvS09MREREhLRs+fDj8/Pzg4+ODo0ePYurUqUhMTMS6desAAKmpqbIwBED6nJqaWupx5syZg5kzZ5rmJIiI6IHI7jJjIiKFVDoQ9e/fHwDQu3dv2XIhBFQqlWy8j9KWLFmCAQMGwMfHR1o2fvx46X3r1q3h7e2N3r17IykpCQEBAVU6zrRp0zBlyhTps06ng6+vb9UrTkREJsHxRKQURR/ueuzYsQeqTHkuXLiArVu3Si0/ZQkODgYAnD17FgEBAfDy8sL+/ftlZdLS0gCgzHFHWq0WWq1WgVoTEZHSOG6ITKHSgajkYGYAyMzMxMqVK/Htt98iPj4eEydOVKxyJS1btgweHh4YOHBgueUSEhIAAN7e3gCAkJAQfPDBB7h69So8PDwAADExMXByckKLFi1MUlciIjIddpmRKVT5afexsbEIDw+Ht7c3PvroI/Tq1Qt79+5Vsm4Sg8GAZcuWITw8HFZWdzNcUlIS3nvvPcTHx+P8+fNYv349Ro0ahW7duqFNmzYAgH79+qFFixYYOXIkjhw5gj/++APvvvsuIiMj2QpERGThmIdIKZVqIUpNTcXy5cuxZMkS6HQ6DB06FHl5efjll19M2tqydetWJCcnY8yYMbLlNjY22Lp1Kz799FNkZ2fD19cXQ4YMwbvvviuV0Wg02LBhAyZMmICQkBA4ODggPDxcNm8RERFZDj7LjEyhwoFo0KBBiI2NxcCBA/Hpp5+if//+0Gg0+Oqrr0xZPwBFrTyl9Rn7+vpi586d993ez88PGzduNEXViIiomolyPhFVVYUD0aZNmzBp0iRMmDABTZs2NWWdiIiIKoQtRKSUCo8h+uuvv5CZmYmgoCAEBwfjiy++wPXr101ZNyIiIiO8y4xMocKBqHPnzvjmm2+QkpKCl19+GatWrYKPjw8MBgNiYmKQmZlpynoSEREB4F1mZBqVvsvMwcEBY8aMwV9//YVjx47hjTfewNy5c+Hh4YEnn3zSFHUkIiIqFSdmJKVU+bZ7AAgMDMS8efNw6dIlrFy5Uqk6ERERlY13mZEJPFAgKqbRaDB48GCsX79eid0RERGVqWSrEPMQKUWRQERERGQObCEipTAQERGRRZFNzMg2IlIIAxEREVkUWasQ8xAphIGIiIgsloF9ZqQQBiIiIrIoJbvJ9MxDpBAGIiIisiglG4XYQkRKYSAiIiKLxcd4kFIYiIiIyKKUjEB6AwMRKYOBiIiILIq8y8x89aCHCwMRERFZLAMTESmEgYiIiCzM3RDEQdWkFAYiIiKyWGwgIqUwEBERkUXhbfdkCgxERERkUUpGIAYiUgoDERERWSzedk9KYSAiIiKLUnIyRuYhUgoDERERWRTZw+7ZZUYKYSAiIiKLxS4zUgoDERERWRTOVE2mwEBEREQWhV1mZAoMREREZLH0DESkEAYiIiKyKLK7zAxmrAg9VBiIiIjIYnFiRlIKAxEREVksBiJSCgMRERFZFN5lRqbAQERERBZFoOQYIiYiUgYDERERWSx2mZFSGIiIiMiilMxAvO2elMJAREREFkU2hoi33ZNCGIiIiMhicaZqUkqNDkRRUVFQqVSyV/PmzaX1ubm5iIyMRL169VCnTh0MGTIEaWlpsn0kJydj4MCBsLe3h4eHB9566y0UFhZW96kQEZFCSg6qZpcZKcXK3BW4n5YtW2Lr1q3SZyuru1WePHkyfv/9d6xZswbOzs6YOHEinnnmGezevRsAoNfrMXDgQHh5eWHPnj1ISUnBqFGjYG1tjdmzZ1f7uRAR0YPjbfdkCjU+EFlZWcHLy8toeUZGBpYsWYIff/wRvXr1AgAsW7YMjzzyCPbu3YvOnTtjy5YtOHnyJLZu3QpPT0+0a9cO7733HqZOnYqoqCjY2NhU9+kQEZGC2GVGSqnRXWYAcObMGfj4+KBx48YYMWIEkpOTAQDx8fEoKChAnz59pLLNmzdHw4YNERcXBwCIi4tD69at4enpKZUJCwuDTqfDiRMnqvdEiIhIESUjkJ5NRKSQGt1CFBwcjOXLlyMwMBApKSmYOXMmQkNDcfz4caSmpsLGxgYuLi6ybTw9PZGamgoASE1NlYWh4vXF68qSl5eHvLw86bNOp1PojIiI6IGxy4xMoEYHogEDBkjv27Rpg+DgYPj5+WH16tWws7Mz2XHnzJmDmTNnmmz/RESkDM5UTUqp8V1mJbm4uKBZs2Y4e/YsvLy8kJ+fj/T0dFmZtLQ0acyRl5eX0V1nxZ9LG5dUbNq0acjIyJBeFy9eVPZEiIioymSP7uAYIlKIRQWirKwsJCUlwdvbG0FBQbC2tsa2bduk9YmJiUhOTkZISAgAICQkBMeOHcPVq1elMjExMXByckKLFi3KPI5Wq4WTk5PsRURENQPvMiNTqNFdZm+++SYGDRoEPz8/XLlyBTNmzIBGo8GwYcPg7OyMsWPHYsqUKXB1dYWTkxNee+01hISEoHPnzgCAfv36oUWLFhg5ciTmzZuH1NRUvPvuu4iMjIRWqzXz2RER0YPiPESklBodiC5duoRhw4bhxo0bcHd3R9euXbF37164u7sDAD755BOo1WoMGTIEeXl5CAsLw5dffiltr9FosGHDBkyYMAEhISFwcHBAeHg4Zs2aZa5TIiKiB1QyAvG2e1KKSvC76b50Oh2cnZ2RkZHB7jMiIjN75svdOJScDgDQqFVImv24eStENVZlfn9b1BgiIiKikjgPESmFgYiIiCzKvRGIHR2kBAYiIiKyKPfmH7YSkRIYiIiIyKIxD5ESGIiIiMii3Jt/ODkjKYGBiIiILMs9AYiBiJTAQERERBaNXWakBAYiIiKyKPfmHw6qJiUwEBERkUW5t4eMt92TEhiIiIjIorGBiJTAQERERBZF3NNpxi4zUgIDERERWRR2mZEpMBAREZFFYwMRKYGBiIiILIrRozvYQkQKYCAiIiKLYjRTNZuISAEMREREZFHuDUCcqZqUwEBEREQWpcBgkH1mAxEpgYGIiIgsSqGeLUSkPAYiIiKyKAX6e1qI2ERECmAgIiIii1Jg1EJkporQQ4WBiIiILErhPWOIOFM1KYGBiIiILArHEJEpMBAREZFFyb9nDBHzECmBgYiIiCxK4Z1AZKMp+hXGmapJCQxERERkMfQGIQ2itrEq+hXGLjNSAgMRERFZjJK33GvvBCI+7Z6UwEBEREQWo7DEHWXFgeieIUVEVcJAREREFqOwRPphlxkpiYGIiIgsRslJGa3vDKrmTNWkBAYiIiKyGAUl7jDTqFUAOFM1KYOBiIiILEbxpIxWGhVUquJAxERED46BiIiILEbBncd2WKlVuNNAxHmISBEMREREZDGkLjOru11mvO2elMBAREREFkPqMlOrpS4z3nZPSmAgIiIii1HcQmSlUcH6TgtRIRMRKYCBiIiILEbxxIzWGjVsrTUAgNxCvTmrRA8JBiIiIrIYBYVFrUHWGhVsrYt+heUWsIWIHlyNDkRz5szBo48+CkdHR3h4eGDw4MFITEyUlenRowdUKpXs9corr8jKJCcnY+DAgbC3t4eHhwfeeustFBYWVuepEBGRAgoMd8cQaa3utBAVsIWIHpyVuStQnp07dyIyMhKPPvooCgsL8e9//xv9+vXDyZMn4eDgIJUbN24cZs2aJX22t7eX3uv1egwcOBBeXl7Ys2cPUlJSMGrUKFhbW2P27NnVej5ERPRgiscLWWtU0N5pIcorZAsRPbgaHYg2b94s+7x8+XJ4eHggPj4e3bp1k5bb29vDy8ur1H1s2bIFJ0+exNatW+Hp6Yl27drhvffew9SpUxEVFQUbGxuTngMRESmnQApEJcYQsYWIFFCju8zulZGRAQBwdXWVLV+xYgXc3NzQqlUrTJs2DTk5OdK6uLg4tG7dGp6entKysLAw6HQ6nDhxotTj5OXlQafTyV5ERGR+BSVmqraVuszYQkQPrka3EJVkMBjw+uuv47HHHkOrVq2k5cOHD4efnx98fHxw9OhRTJ06FYmJiVi3bh0AIDU1VRaGAEifU1NTSz3WnDlzMHPmTBOdCRERVVWh4W4L0d0uM7YQ0YOzmEAUGRmJ48eP46+//pItHz9+vPS+devW8Pb2Ru/evZGUlISAgIAqHWvatGmYMmWK9Fmn08HX17dqFSciIsVILURqthCRsiyiy2zixInYsGEDtm/fjgYNGpRbNjg4GABw9uxZAICXlxfS0tJkZYo/lzXuSKvVwsnJSfYiIiLzk48hutNCxDFEpIAaHYiEEJg4cSJ+/vln/Pnnn/D397/vNgkJCQAAb29vAEBISAiOHTuGq1evSmViYmLg5OSEFi1amKTeRERkGsWP7uDEjKS0Gt1lFhkZiR9//BG//vorHB0dpTE/zs7OsLOzQ1JSEn788Uc8/vjjqFevHo4ePYrJkyejW7duaNOmDQCgX79+aNGiBUaOHIl58+YhNTUV7777LiIjI6HVas15ekREVEklH92htSpuIWKXGT24Gt1CtHjxYmRkZKBHjx7w9vaWXtHR0QAAGxsbbN26Ff369UPz5s3xxhtvYMiQIfjtt9+kfWg0GmzYsAEajQYhISF48cUXMWrUKNm8RUREZBkKSjzclS1EpKQa3UIkhCh3va+vL3bu3Hnf/fj5+WHjxo1KVYuIiMyk5MSMfHQHKalGtxARERGVdPvOAGo7Gw20d1qIeNs9KYGBiIiILEZWXtFzKOtoraQxRGwhIiUwEBERkcUoGYj46A5SEgMRERGVSwiBnPxCc1cDAJCVW1QPB60VJ2YkRTEQERFRuWb+dhItpv+BUynmf65j9p1g5mhrdXdiRo4hIgUwEBERUbmW7zkPAPhs6xnzVgQlWohsrO4OqmYLESmAgYiIiCpEf5+pUKqDNIbI1gqOtkUzx+TrDRxHRA+MgYiIiCrkfnPDVYeSg6odtVbQqFUAgFs5+easFj0EGIiIiKhCDObPQ1KXWR2tFVQqFVzsrAEA6TkF5qwWPQQYiIiIqEL0Zk5EBoNAdn5R11idO91lLvZFgYgtRPSgGIiIiKhMJUOQwcxdZtklbv2voy0KRHXtbQCwhYgeHAMRERGV6XaJwcrmHkKUnVdUFyv13Sfdu9wJRGwhogfFQERERGUqOSFjgd68t7dn5ha1AjncGT8EAHXtOYaIlMFAREREZcrJu9tClG3m2aqvZeUBAOrVsZGW1XUo7jJjCxE9GAYiIiIqU8kQVHyHl7lcyywKRJ6OttIyZ7viQdVsIaIHw0BERERlup1/t4WoeA4gc0nT5QIAPJy00jJ3R61sHVFVMRAREVGZsksEokwztxBd1d1pIXK620LUoK4dAODyrdtmqRM9PBiIiIioTDklWoXyCg3ILzTfwOq0O11mHo53W4h869oDAC6l34ahJswcSRaLgYiIiMqUky9/RljGbfON1bkqdZndbSHycraFWgXkFxqkQddEVcFAREREZcq5584yXa75AlFKRlEg8izRQmStUcPbuajb7NKtHLPUix4ODERERFSme+/eMlcLUW6BXgo8/u4OsnW+rkWB6Nx1BiKqOgYiIiIq0417uqHMFYjOXc+GQQBOtlZwr6OVrXvE2wkAcOJKhjmqRg8JBiIiIirTjWz5hIc6MwWis1ezAABNPOpIs1QXa13fGQBw4rKu2utFDw8GIiIiKtPNewKRuVqIzqRlAigKRPdqVRyIrmTIHkZLVBkMREREVKYbWUWBqL5L0TidDDPNCB2ffAsA0LqBi9G6APc6cLK1Qna+HkcupVdvxUwsr1CPW9l8LEl1YCAiIqIyFXeZ+bsVDWQ2RwtRgd6AQxfSAQCdGrkardeoVXisiRsAIPb0teqsmslNiT6CznO24fz1bHNX5aHHQERERKUyGARu3XloamN38wWiIxfTcbtAD2c7azQtpcsMAHoEugMANh9PhRCm6zYTQmDupr/xf6sOI69Qf/8NHkCB3oDfj6Ugr9CAlfuTTXosYiAiIqIyZNwukMbkNKpXFIjM8RDVzcdTARSFHrVaVWqZ/i29YWOlxt+pmThuwsHVvx1NwVc7k/BrwhWsOXjJZMcBgMTUTOm9uZ8jVxswEBERUanO3SjqpnF31EotRMk3q7frpvBOKwkADGjlXWY5Z3tr9G/pBQD4b2ySSeoihMDiHXf3/X3ceZMcp1jJ8VB/lwhHZBoMREREVKpTKUUtLY94OyHAvair6vz1nGq9k2vLyTSkZOTC1cFG6hYryyvdAwAAvx9Lwd5/bihel+OXddI1AYDTaVlIu/M4EVP4O+VuCDqVouOz2kyMgYiIiEpV/Av5EW9H+LjYwcZKjXy9odoekVGoN+CTmNMAgBHBDWFrrSm3fAsfJ7zwqC+EAN5ccwSZCj9mJPpg0TieQW190Kp+0WSQe5KuK3qMks5cvRuIcvL1SL7JmbhNiYGIiIhKdfROl80jXk7QqFXwvzOOKOlaVrUc/+td/+DM1Sy42FvjpdDGFdrmnYGPoL6LHS7duo0xyw8oNvbmZnY+fj18BQDwfEdfPBZQdFfb7rPKt0QVO3tV3j1ZsnWKlMdARERERq6k38aRSxlQqYCQgHoAilpgAGD/uVsmP/72xKv4eEtR69C/H38EznbWFdrO0dYai1/sAEdbKxw4fwvPLt4jG5xcVXM3nUJmXiEe8XZCl4B66HLnNv89Z6+b5K629Jx8XL/z2JSBbYrGTp1kIDIpBiIiIjKyNr7oDqpH/Vzh6WQL4O6t7dv/vmrSY68/cgXjvz8IvUHgmfb18VxQg0pt36aBC1a8FIx6Djb4OzUTAz/fhXd+PibNdl0Zxd12qw9egkoFzBjUAmq1Co82qgtrjQpXMnJx5qryLWaHL6YDABrUtUNI46JA+tdZ03XPEQMRERHd40r6bXwT+w8AYETnhtLy7s3cYaVWITEtEwl3fmEr6WpmLt5YfQSTVh5GgV5gYGtvzB3SxujZZRXRpoELNr/eDX1beKLQILBiXzL6fhKLQQv/wkd/JCL29DVc1eWW2rojhEBKxm2sjb+EpxbtxmfbzgAA/hXWHJ3vhBN7Gyt0a1oUEH86pPzt9zsTiyaYDG3qjn4tPKFSAYeT06tt/FZtZGXuChARUc2RklE09iYzrxBtGjhjUBsfaZ2LvQ0Gt6+PtfGX8MHvJ7FyXGdYaR787+rjlzOwcn8yfjp0CbkFBqhUwMvdAvBWWCA0Zcw7VBHujlp8M6oj9v1zA9/sOocdiVdx7HIGjl3OALYXlXGw0cDF3gaOtlawsVIjJ1+Pa5l5sgkonWyt8O4TLTC0o69s/0Mf9cW2v69i1f6LeLV7EzjbV6xb737yCw3440TR3Evdm7nDw8kWnf3rIe6fG1i0PQlznmmtyHFIjoGIiIiQfCMHa+IvYtnu88jKK4S7oxaLhncwmgjx/3o3xaZjKThw/hZeXXEI7z/dCh6OthU+TlHrSy6OXkrHrjPXsevMddndU+18XfCfJx5BkJ/xIzqqKrhxPQQ3rocbWXnYeioN+/65ifjkW7h4MwfZ+Xpk59822kajVqGpRx0MbO2NFzo1hLuj1qhMn0c80dSjDs5czcLsjafw4bNtFKnvin0XkJKRCw9HrdRNOblvM8T9Nw4r9yejdX1nDOvkW6WWMyqbSphyjvMaZtGiRZg/fz5SU1PRtm1bLFy4EJ06dbrvdjqdDs7OzsjIyICTk1M11JSIyDTyCw1I0+XiSvptnE7LxMkUHQ5dSEdiifE1bX1dsPCF9mhYz77UfWw5kYrIHw+hQC9gb6NBr+YeaOfrgoau9nCys4a1RoW8AgMy8wqRcbsAV9Jv49Kt27h0Kwen07Jw856Hldpo1Ahr5YUXHvVFl4B61faLPq9Qj0u3bkN3uwCZuYXILzTAXqtBXXsbNHZ3gNaq/Nv8gaJB1SOW7IMQwNiu/vhX/8AKbVeW345cwRurjyBfb8B7T7XEyJBG0rrZG0/h6ztdmSGN62FMV3+ENnW773QEtVllfn/XmkAUHR2NUaNG4auvvkJwcDA+/fRTrFmzBomJifDw8Ch3WwYiIqpuBoNAoUGg0GBAXoEBeYUG5BXqkVdoQG5B0b9Fy/XSutwCA7LzCqHLLURmbgF0t+/8e+f91cw86c6le2nUKnRq5IrwLn7o18KrzEdkFEu4mI4Z60/gSBXGEhW3vgT7uyK0qTs6B9RDHa3ldlgs+esc3ttwEkDRM99GP+aPvo94wsv5/i1nQghcTr+N3WevY/XBS4i/UHQH38A23vhiWHtZODQYBL7YfhZf/HkW+XoDAMBao0KglyOaezmhvosd6rvYwcvZFi721nC2s4aTrTUcba0U6dq0RAxEpQgODsajjz6KL774AgBgMBjg6+uL1157DW+//Xa525oqEOkNAlfSjZtq76e8r5hA2SvL2q68b4Dyvj3K366clWVsWf55Ve1YxdejuIwQxsvu3U/J9UJaJ2T1uLttaWXL30b6GpW2zb31LXH8ew5Z6rkVr65Ife+Wvf+xpa0rcGyjc7/v/u+ul66jEDAIwCCKlhnuFDLcWS6kdcXri7YvWnd3m+Ll4s7ykvsUJdYX77NoWYl93rnuJetR/D1kMNz5jLv7KjQI6A0GFOoF9HcCzd1/DSg0CCnoyNbrDbLP+jvHMRUbKzW8nGwR4O6AFj5OaOHtjMea1IOLvU2l9iOEwOGL6djx91UkXctG8s0c5OQXotAgoLVSo47WCo621vBxsUV9Fzs0qGsPfzcHBHo5PnStGpuOpeA/vx7H9ay7rV8NXe0R4O4AHxc72NtoYH0nlGTcLkD67QJcvnUbZ69myeZKstaoML5bY0zu06zMEHPpVg6W/nUem46nICWjYjNl21lrYGuthq21BlqrO/+WfG+lhrVGBY1aDWu1ClbF7zUqWKnVsNKoYKVWwUqjvvOvCtZqNTRqVVEZTdF7K7Xqzr/yz7J1d/atUZX8rIKNRg1f19JbJauKgege+fn5sLe3x9q1azF48GBpeXh4ONLT0/Hrr7/Kyufl5SEv7+5fUTqdDr6+vooHoquZuej0wTbF9kdEDy8rtUr6xaW1Uku/zIpeGmiti947aK3gaGt1p2XAGk52RaHE0dYKHo5aeDvboa69NcefmEDG7QL8FH8JPx++jBNXMlDRJ21o1Cq0qu+M3s098EIn3wqPySpuXTp6KQPnrmfjcvptXL51G2m6XGTcLoDudgGy8/UPcEbVy91RiwPv9FF0n5UJRJbbRlkJ169fh16vh6enp2y5p6cn/v77b6Pyc+bMwcyZM6ulbnbl/JVU3v9X5f1XVt5/dGWuMcWxqrDPKtX9Pscq3rK4THFRlQpQlblOvkNpfQW2kbYsZX3JYxetk+8LJcoa1bWMbe4ez3ib4s+l7a/kvozrWspxKlHn+12bu9san4tKBahVKqiLKnHnfdE642UqqNV3r620XKWS9qMCoFarpHNSq+4ew3i7om3V0vZ3jnnPvks9huruX7qyv441KmhUxn8dW93zV7OmtL+s7/xVbqNR19ouD0vibGeNMV39MaarPzJzC3DkYgYu3spBSvpt5BYaUKA3QIiici721vB0skVTjzrwq+cAG6vKf31VKhUa1LVHg7plt6oU6g3Q5RYiO68QuQVF3aq5hfqiblfpfVGXq94gUKAvarEsNIg7LZ0GFBjkywpLfpatM0AvUGorqV5qFTUYtZ4Wt5o62po3ktSKQFRZ06ZNw5QpU6TPxS1ESvNwtMWp9/orvl8iIjIvR1trdG3qZu5qwEqjhquDDVwdKtcdWhvVikDk5uYGjUaDtLQ02fK0tDR4eXkZlddqtdBqjW+xJCIioodTrWiDtbGxQVBQELZtuztex2AwYNu2bQgJCTFjzYiIiKgmqBUtRAAwZcoUhIeHo2PHjujUqRM+/fRTZGdnY/To0eauGhEREZlZrQlEzz//PK5du4bp06cjNTUV7dq1w+bNm40GWhMREVHtUytuu39QnJiRiIjI8lTm93etGENEREREVB4GIiIiIqr1GIiIiIio1mMgIiIiolqPgYiIiIhqPQYiIiIiqvUYiIiIiKjWYyAiIiKiWo+BiIiIiGq9WvPojgdRPJm3Tqczc02IiIiooop/b1fkoRwMRBWQmZkJAPD19TVzTYiIiKiyMjMz4ezsXG4ZPsusAgwGA65cuQJHR0eoVCpzV6dG0Ol08PX1xcWLF/l8NxPjta4+vNbVh9e6+tTmay2EQGZmJnx8fKBWlz9KiC1EFaBWq9GgQQNzV6NGcnJyqnU/YObCa119eK2rD6919amt1/p+LUPFOKiaiIiIaj0GIiIiIqr1GIioSrRaLWbMmAGtVmvuqjz0eK2rD6919eG1rj681hXDQdVERERU67GFiIiIiGo9BiIiIiKq9RiIiIiIqNZjICIiIqJaj4GIyrRo0SI0atQItra2CA4Oxv79+yu03apVq6BSqTB48GDTVvAhUtlrnZ6ejsjISHh7e0Or1aJZs2bYuHFjNdXWslX2Wn/66acIDAyEnZ0dfH19MXnyZOTm5lZTbS1XbGwsBg0aBB8fH6hUKvzyyy/33WbHjh3o0KEDtFotmjRpguXLl5u8ng+Dyl7rdevWoW/fvnB3d4eTkxNCQkLwxx9/VE9lazAGIipVdHQ0pkyZghkzZuDQoUNo27YtwsLCcPXq1XK3O3/+PN58802EhoZWU00tX2WvdX5+Pvr27Yvz589j7dq1SExMxDfffIP69etXc80tT2Wv9Y8//oi3334bM2bMwKlTp7BkyRJER0fj3//+dzXX3PJkZ2ejbdu2WLRoUYXKnzt3DgMHDkTPnj2RkJCA119/HS+99BJ/UVdAZa91bGws+vbti40bNyI+Ph49e/bEoEGDcPjwYRPXtIYTRKXo1KmTiIyMlD7r9Xrh4+Mj5syZU+Y2hYWFokuXLuLbb78V4eHh4qmnnqqGmlq+yl7rxYsXi8aNG4v8/PzqquJDo7LXOjIyUvTq1Uu2bMqUKeKxxx4zaT0fNgDEzz//XG6Zf/3rX6Jly5ayZc8//7wICwszYc0ePhW51qVp0aKFmDlzpvIVsiBsISIj+fn5iI+PR58+faRlarUaffr0QVxcXJnbzZo1Cx4eHhg7dmx1VPOhUJVrvX79eoSEhCAyMhKenp5o1aoVZs+eDb1eX13VtkhVudZdunRBfHy81K32zz//YOPGjXj88cerpc61SVxcnOxrAwBhYWHl/p9DyjAYDMjMzISrq6u5q2JWfLgrGbl+/Tr0ej08PT1lyz09PfH333+Xus1ff/2FJUuWICEhoRpq+PCoyrX+559/8Oeff2LEiBHYuHEjzp49i1dffRUFBQWYMWNGdVTbIlXlWg8fPhzXr19H165dIYRAYWEhXnnlFXaZmUBqamqpXxudTofbt2/Dzs7OTDV7+H300UfIysrC0KFDzV0Vs2ILET2wzMxMjBw5Et988w3c3NzMXZ2HnsFggIeHB77++msEBQXh+eefxzvvvIOvvvrK3FV76OzYsQOzZ8/Gl19+iUOHDmHdunX4/fff8d5775m7akSK+PHHHzFz5kysXr0aHh4e5q6OWbGFiIy4ublBo9EgLS1NtjwtLQ1eXl5G5ZOSknD+/HkMGjRIWmYwGAAAVlZWSExMREBAgGkrbaEqe60BwNvbG9bW1tBoNNKyRx55BKmpqcjPz4eNjY1J62ypqnKt//Of/2DkyJF46aWXAACtW7dGdnY2xo8fj3feeQdqNf+mVIqXl1epXxsnJye2DpnIqlWr8NJLL2HNmjVG3ZW1EX+ayYiNjQ2CgoKwbds2aZnBYMC2bdsQEhJiVL558+Y4duwYEhISpNeTTz4p3S3i6+tbndW3KJW91gDw2GOP4ezZs1LoBIDTp0/D29ubYagcVbnWOTk5RqGnOIgKPgZSUSEhIbKvDQDExMSU+bWhB7Ny5UqMHj0aK1euxMCBA81dnZrB3KO6qWZatWqV0Gq1Yvny5eLkyZNi/PjxwsXFRaSmpgohhBg5cqR4++23y9yed5lVXGWvdXJysnB0dBQTJ04UiYmJYsOGDcLDw0O8//775joFi1HZaz1jxgzh6OgoVq5cKf755x+xZcsWERAQIIYOHWquU7AYmZmZ4vDhw+Lw4cMCgFiwYIE4fPiwuHDhghBCiLfffluMHDlSKv/PP/8Ie3t78dZbb4lTp06JRYsWCY1GIzZv3myuU7AYlb3WK1asEFZWVmLRokUiJSVFeqWnp5vrFGoEBiIq08KFC0XDhg2FjY2N6NSpk9i7d6+0rnv37iI8PLzMbRmIKqey13rPnj0iODhYaLVa0bhxY/HBBx+IwsLCaq61ZarMtS4oKBBRUVEiICBA2NraCl9fX/Hqq6+KW7duVX/FLcz27dsFAKNX8fUNDw8X3bt3N9qmXbt2wsbGRjRu3FgsW7as2uttiSp7rbt3715u+dpKJQTbfYmIiKh24xgiIiIiqvUYiIiIiKjWYyAiIiKiWo+BiIiIiGo9BiIiIiKq9RiIiIiIqNZjICIiIqJaj4GIiKia5Ofno0mTJtizZ4+i+928eTPatWsne5wLUU0QGxuLQYMGwcfHByqVCr/88kults/NzUVERARat24NKysrDB48uNzyu3fvhpWVFdq1a1fpujIQEVGVREREQKVSGb3Onj1r7qrVWF999RX8/f3RpUsXaVlZvyQiIiLu+59/sf79+8Pa2horVqxQqKZEysjOzkbbtm2xaNGiKm2v1+thZ2eHSZMm3fcBtOnp6Rg1ahR69+5dpWMxEBFRlfXv3x8pKSmyl7+/v1G5/Px8M9SuZhFC4IsvvsDYsWNNsv+IiAh8/vnnJtk3UVUNGDAA77//Pp5++ulS1+fl5eHNN99E/fr14eDggODgYOzYsUNa7+DggMWLF2PcuHHw8vIq91ivvPIKhg8fXuUHAjMQEVGVabVaeHl5yV4ajQY9evTAxIkT8frrr8PNzQ1hYWEAgOPHj2PAgAGoU6cOPD09MXLkSFy/fl3aX3Z2NkaNGoU6derA29sbH3/8MXr06IHXX39dKlNai4qLiwuWL18ufb548SKGDh0KFxcXuLq64qmnnsL58+el9cWtLx999BG8vb1Rr149REZGoqCgQCqTl5eHqVOnwtfXF1qtFk2aNMGSJUsghECTJk3w0UcfyeqQkJBQbgtZfHw8kpKSqvRk8fPnz5faGtejRw+pzKBBg3Dw4EEkJSVVev9E5jJx4kTExcVh1apVOHr0KJ577jn0798fZ86cqdR+li1bhn/++QczZsyocl0YiIjIJL777jvY2Nhg9+7d+Oqrr5Ceno5evXqhffv2OHjwIDZv3oy0tDQMHTpU2uatt97Czp078euvv2LLli3YsWMHDh06VKnjFhQUICwsDI6Ojti1axd2796NOnXqoH///rKWqu3btyMpKQnbt2/Hd999h+XLl8tC1ahRo7By5Up8/vnnOHXqFP773/+iTp06UKlUGDNmDJYtWyY77rJly9CtWzc0adKk1Hrt2rULzZo1g6OjY6XOBwB8fX1lrXCHDx9GvXr10K1bN6lMw4YN4enpiV27dlV6/0TmkJycjGXLlmHNmjUIDQ1FQEAA3nzzTXTt2tXo56s8Z86cwdtvv40ffvgBVlZWVa5P1bckolpvw4YNqFOnjvR5wIABWLNmDQCgadOmmDdvnrTu/fffR/v27TF79mxp2dKlS+Hr64vTp0/Dx8cHS5YswQ8//CCNAfjuu+/QoEGDStUpOjoaBoMB3377LVQqFYCisOLi4oIdO3agX79+AIC6deviiy++gEajQfPmzTFw4EBs27YN48aNw+nTp7F69WrExMRI4xYaN24sHSMiIgLTp0/H/v370alTJxQUFODHH380ajUq6cKFC/Dx8Sl13bBhw6DRaGTL8vLypNYkjUYjdRfk5uZi8ODBCAkJQVRUlGwbHx8fXLhwoRJXi8h8jh07Br1ej2bNmsmW5+XloV69ehXah16vx/DhwzFz5kyj/VQWAxERVVnPnj2xePFi6bODg4P0PigoSFb2yJEj2L59uyxAFUtKSsLt27eRn5+P4OBgabmrqysCAwMrVacjR47g7NmzRi0xubm5su6kli1bykKIt7c3jh07BqCo+0uj0aB79+6lHsPHxwcDBw7E0qVL0alTJ/z222/Iy8vDc889V2a9bt++DVtb21LXffLJJ0YDRqdOnQq9Xm9UdsyYMcjMzERMTAzUankjv52dHXJycsqsA1FNkpWVBY1Gg/j4eKM/CEr7f6I0mZmZOHjwIA4fPoyJEycCAAwGA4QQsLKywpYtW9CrV68K7YuBiIiqzMHBocwuopLhCCj6z2/QoEH48MMPjcp6e3tX+O40lUoFIYRsWcmxP1lZWQgKCir1jit3d3fpvbW1tdF+i29bt7Ozu289XnrpJYwcORKffPIJli1bhueffx729vZllndzc5MC1728vLyMrqOjoyPS09Nly95//3388ccf2L9/f6ldbzdv3pSdI1FN1r59e+j1ely9ehWhoaFV2oeTk5PRz9WXX36JP//8E2vXri31Jo+yMBARUbXo0KEDfvrpJzRq1KjUfv6AgABYW1tj3759aNiwIQDg1q1bOH36tKylxt3dHSkpKdLnM2fOyFpFOnTogOjoaHh4eMDJyalKdW3dujUMBgN27txZ5q2+jz/+uHQHzObNmxEbG1vuPtu3b4/FixdDCCF15VXGTz/9hFmzZmHTpk0ICAgwWl/cAta+fftK75vIVLKysmR/7Jw7dw4JCQlwdXVFs2bNMGLECIwaNQoff/wx2rdvj2vXrmHbtm1o06aN1GV88uRJ5Ofn4+bNm8jMzERCQgIAoF27dlCr1WjVqpXsmB4eHrC1tTVafj8cVE1E1SIyMhI3b97EsGHDcODAASQlJeGPP/7A6NGjodfrUadOHYwdOxZvvfUW/vzzTxw/fhwRERFG3UK9evXCF198gcOHD+PgwYN45ZVXZK09I0aMgJubG5566ins2rUL586dw44dOzBp0iRcunSpQnVt1KgRwsPDMWbMGPzyyy/SPlavXi2V0Wg0iIiIwLRp09C0adP73urbs2dPZGVl4cSJE5W4akWOHz+OUaNGYerUqWjZsiVSU1ORmpqKmzdvSmX27t0LrVZb5VuOiUzh4MGDaN++vRTUp0yZgvbt22P69OkAisb3jRo1Cm+88QYCAwMxePBgHDhwQPqjCCj646N9+/b47bffsGPHDtn+lMRARETVwsfHB7t374Zer0e/fv3QunVrvP7663BxcZFCz/z58xEaGopBgwahT58+6Nq1q9FYpI8//hi+vr4IDQ3F8OHD8eabb8q6quzt7REbG4uGDRvimWeewSOPPIKxY8ciNze3Ui1GixcvxrPPPotXX30VzZs3x7hx45CdnS0rM3bsWOTn52P06NH33V+9evXw9NNPV2nyxIMHDyInJwfvv/8+vL29pdczzzwjlVm5ciVGjBhRbrcdUXXr0aMHhBBGr+I7Oq2trTFz5kycO3cO+fn5uHLlCtatW4fWrVtL+zh//nyp+yhLVFSU1IpUGSpR3l6JiMysR48eaNeuHT799FNzV8XIrl270Lt3b1y8eBGenp73LX/06FH07dsXSUlJFR40WhHXr19HYGAgDh48WKkxE0R0F1uIiIgqKS8vD5cuXUJUVBSee+65CoUhAGjTpg0+/PBDnDt3TtH6nD9/Hl9++SXDENED4KBqIqJKWrlyJcaOHYt27drh+++/r9S2ERERitenY8eO6Nixo+L7JapN2GVGREREtR67zIiIiKjWYyAiIiKiWo+BiIiIiGo9BiIiIiKq9RiIiIiIqNZjICIiIqJaj4GIiIiIaj0GIiIiIqr1GIiIiIio1vt/mdIWQnpnt+AAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "df = 1 / np.amax(batch_data[\"sim_1\"].monitor_data[\"monitor_time_0\"].Hz.t)\n", - "minn = int(freq_range[0] / df)\n", - "maxn = int(freq_range[1] / df)\n", - "spectrum = np.fft.fft(batch_data[\"sim_1\"].monitor_data[\"monitor_time_0\"].Hz.squeeze())\n", - "plt.plot(\n", - " np.linspace(freq_range[0], freq_range[1], maxn - minn),\n", - " np.abs(spectrum[::-1][minn:maxn]),\n", - ")\n", - "plt.title(\"Spectrum at single wavevector\")\n", - "plt.xlabel(\"Frequency (Hz)\")\n", - "plt.ylabel(\"Amplitude\")\n", - "plt.show()\n" - ] - }, - { - "cell_type": "markdown", - "id": "663c96ba-8b16-4056-9983-bef38e7a5c9a", - "metadata": {}, - "source": [ - "We use the ResonanceFinder plugin to find the band frequencies.\n", - "\n", - "We first construct a `ResonanceFinder` object storing our parameters, and then call `run()` on our list of `FieldTimeData` objects. This will add up the signals from all of the monitors before searching for resonances. The `ResonanceFinder` class has additional methods in case the signal takes another form; see the api reference [here](https://docs.flexcompute.com/projects/tidy3d/en/latest/api/_autosummary/tidy3d.plugins.resonance.ResonanceFinder.html).\n", - "\n", - "The `run()` method returns an `xr.Dataset` containing the decay rate, Q factor, amplitude, phase, and estimation error for each resonance as a function of frequency. " - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "id": "7496ef10-068e-41ce-8907-418bbcd60e26", - "metadata": { - "execution": { - "iopub.execute_input": "2023-08-18T17:08:29.693707Z", - "iopub.status.busy": "2023-08-18T17:08:29.693525Z", - "iopub.status.idle": "2023-08-18T17:08:31.106128Z", - "shell.execute_reply": "2023-08-18T17:08:31.105255Z" - } - }, - "outputs": [ - { - "data": { - "text/html": [ - "
           loading SimulationData from                             webapi.py:590\n",
-       "           data/fdve-11e84743-7c10-413e-a81b-cd6d73f958a9v1.hdf5                \n",
-       "
\n" - ], - "text/plain": [ - "\u001b[2;36m \u001b[0m\u001b[2;36m \u001b[0mloading SimulationData from \u001b]8;id=804384;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=614369;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#590\u001b\\\u001b[2m590\u001b[0m\u001b]8;;\u001b\\\n", - "\u001b[2;36m \u001b[0mdata/fdve-\u001b[93m11e84743-7c10-413e-a81b-cd6d73f958a9\u001b[0mv1.hdf5 \u001b[2m \u001b[0m\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
decayQamplitudephaseerror
freq
2.527926e+132.497317e+103180.0984110.0015251.5292440.000312
9.788251e+137.422098e+11414.3127490.0096202.0303300.000019
1.061235e+149.526464e+103499.6913700.026843-2.8930370.000005
1.131264e+142.127492e+12167.0497660.0358681.7920830.000024
1.191562e+141.151471e+12325.0976340.020007-2.0871700.000019
1.372938e+141.121670e+12384.5348500.021763-0.4246170.000020
\n", - "
" - ], - "text/plain": [ - " decay Q amplitude phase error\n", - "freq \n", - "2.527926e+13 2.497317e+10 3180.098411 0.001525 1.529244 0.000312\n", - "9.788251e+13 7.422098e+11 414.312749 0.009620 2.030330 0.000019\n", - "1.061235e+14 9.526464e+10 3499.691370 0.026843 -2.893037 0.000005\n", - "1.131264e+14 2.127492e+12 167.049766 0.035868 1.792083 0.000024\n", - "1.191562e+14 1.151471e+12 325.097634 0.020007 -2.087170 0.000019\n", - "1.372938e+14 1.121670e+12 384.534850 0.021763 -0.424617 0.000020" - ] - }, - "execution_count": 1, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "resonance_finder = ResonanceFinder(freq_window=tuple(freq_range))\n", - "resonance_data = resonance_finder.run(signals=batch_data[\"sim_1\"].data)\n", - "resonance_data.to_dataframe()\n" - ] - }, - { - "cell_type": "markdown", - "id": "46db3d3c", - "metadata": {}, - "source": [ - "We see the four resonances from the previous figure. All four have reasonable Q factors, amplitudes, and errors, so they are likely to represent physical resonances. Note that in order to accurately obtain the Q factor for high-Q modes, it may be necessary to run the simulation for a longer time.\n", - "\n", - "Now we are ready to compute the band structure. We run the resonance finder at every Bloch wavevector." - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "id": "4afe673e", - "metadata": { - "execution": { - "iopub.execute_input": "2023-08-18T17:08:31.116954Z", - "iopub.status.busy": "2023-08-18T17:08:31.116520Z", - "iopub.status.idle": "2023-08-18T17:08:50.203875Z", - "shell.execute_reply": "2023-08-18T17:08:50.202960Z" - } - }, - "outputs": [ - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "16f71244fdb24a8faeaca8650bcf3b0f", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "Output()" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "
\n"
-      ],
-      "text/plain": []
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    },
-    {
-     "data": {
-      "text/html": [
-       "
\n",
-       "
\n" - ], - "text/plain": [ - "\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "
[10:08:31] loading SimulationData from                             webapi.py:590\n",
-       "           data/fdve-6f0e6891-d719-4100-b368-de8aa51a95e6v1.hdf5                \n",
-       "
\n" - ], - "text/plain": [ - "\u001b[2;36m[10:08:31]\u001b[0m\u001b[2;36m \u001b[0mloading SimulationData from \u001b]8;id=121046;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=449949;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#590\u001b\\\u001b[2m590\u001b[0m\u001b]8;;\u001b\\\n", - "\u001b[2;36m \u001b[0mdata/fdve-\u001b[93m6f0e6891-d719-4100-b368-de8aa51a95e6\u001b[0mv1.hdf5 \u001b[2m \u001b[0m\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "
[10:08:32] loading SimulationData from                             webapi.py:590\n",
-       "           data/fdve-11e84743-7c10-413e-a81b-cd6d73f958a9v1.hdf5                \n",
-       "
\n" - ], - "text/plain": [ - "\u001b[2;36m[10:08:32]\u001b[0m\u001b[2;36m \u001b[0mloading SimulationData from \u001b]8;id=613554;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=214802;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#590\u001b\\\u001b[2m590\u001b[0m\u001b]8;;\u001b\\\n", - "\u001b[2;36m \u001b[0mdata/fdve-\u001b[93m11e84743-7c10-413e-a81b-cd6d73f958a9\u001b[0mv1.hdf5 \u001b[2m \u001b[0m\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "b858360dec60443a9f064eebcecedc54", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "Output()" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "
\n"
-      ],
-      "text/plain": []
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    },
-    {
-     "data": {
-      "text/html": [
-       "
\n",
-       "
\n" - ], - "text/plain": [ - "\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "
[10:08:34] loading SimulationData from                             webapi.py:590\n",
-       "           data/fdve-7c275afb-12d7-49f8-8acc-45c7673126eav1.hdf5                \n",
-       "
\n" - ], - "text/plain": [ - "\u001b[2;36m[10:08:34]\u001b[0m\u001b[2;36m \u001b[0mloading SimulationData from \u001b]8;id=701184;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=727428;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#590\u001b\\\u001b[2m590\u001b[0m\u001b]8;;\u001b\\\n", - "\u001b[2;36m \u001b[0mdata/fdve-\u001b[93m7c275afb-12d7-49f8-8acc-45c7673126ea\u001b[0mv1.hdf5 \u001b[2m \u001b[0m\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "e3903c79f85f4672b49d0c6fffa8e735", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "Output()" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "
\n"
-      ],
-      "text/plain": []
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    },
-    {
-     "data": {
-      "text/html": [
-       "
\n",
-       "
\n" - ], - "text/plain": [ - "\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "
[10:08:36] loading SimulationData from                             webapi.py:590\n",
-       "           data/fdve-c8b6d038-aecd-421e-9a90-d97cb0ecf080v1.hdf5                \n",
-       "
\n" - ], - "text/plain": [ - "\u001b[2;36m[10:08:36]\u001b[0m\u001b[2;36m \u001b[0mloading SimulationData from \u001b]8;id=545924;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=587801;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#590\u001b\\\u001b[2m590\u001b[0m\u001b]8;;\u001b\\\n", - "\u001b[2;36m \u001b[0mdata/fdve-\u001b[93mc8b6d038-aecd-421e-9a90-d97cb0ecf080\u001b[0mv1.hdf5 \u001b[2m \u001b[0m\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "6e0a9d501b7b4953b70b298e43dc1d79", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "Output()" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "
\n"
-      ],
-      "text/plain": []
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    },
-    {
-     "data": {
-      "text/html": [
-       "
\n",
-       "
\n" - ], - "text/plain": [ - "\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "
[10:08:37] loading SimulationData from                             webapi.py:590\n",
-       "           data/fdve-abb0c8d9-6e3c-48af-a97e-c8ebd4283ca1v1.hdf5                \n",
-       "
\n" - ], - "text/plain": [ - "\u001b[2;36m[10:08:37]\u001b[0m\u001b[2;36m \u001b[0mloading SimulationData from \u001b]8;id=406361;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=828012;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#590\u001b\\\u001b[2m590\u001b[0m\u001b]8;;\u001b\\\n", - "\u001b[2;36m \u001b[0mdata/fdve-\u001b[93mabb0c8d9-6e3c-48af-a97e-c8ebd4283ca1\u001b[0mv1.hdf5 \u001b[2m \u001b[0m\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "d474383f568c4aaea2cc774483f1e86e", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "Output()" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "
\n"
-      ],
-      "text/plain": []
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    },
-    {
-     "data": {
-      "text/html": [
-       "
\n",
-       "
\n" - ], - "text/plain": [ - "\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "
[10:08:39] loading SimulationData from                             webapi.py:590\n",
-       "           data/fdve-67eac14f-7a6d-41f9-852f-98a33d6ba772v1.hdf5                \n",
-       "
\n" - ], - "text/plain": [ - "\u001b[2;36m[10:08:39]\u001b[0m\u001b[2;36m \u001b[0mloading SimulationData from \u001b]8;id=930155;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=644372;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#590\u001b\\\u001b[2m590\u001b[0m\u001b]8;;\u001b\\\n", - "\u001b[2;36m \u001b[0mdata/fdve-\u001b[93m67eac14f-7a6d-41f9-852f-98a33d6ba772\u001b[0mv1.hdf5 \u001b[2m \u001b[0m\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "197489061af94fdf8c990493f6466a00", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "Output()" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "
\n"
-      ],
-      "text/plain": []
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    },
-    {
-     "data": {
-      "text/html": [
-       "
\n",
-       "
\n" - ], - "text/plain": [ - "\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "
[10:08:40] loading SimulationData from                             webapi.py:590\n",
-       "           data/fdve-851e04b1-79be-422b-b189-e4a81edb2b9fv1.hdf5                \n",
-       "
\n" - ], - "text/plain": [ - "\u001b[2;36m[10:08:40]\u001b[0m\u001b[2;36m \u001b[0mloading SimulationData from \u001b]8;id=160324;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=737014;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#590\u001b\\\u001b[2m590\u001b[0m\u001b]8;;\u001b\\\n", - "\u001b[2;36m \u001b[0mdata/fdve-\u001b[93m851e04b1-79be-422b-b189-e4a81edb2b9f\u001b[0mv1.hdf5 \u001b[2m \u001b[0m\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "bf427677461a42cc9d0ff2907c495f95", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "Output()" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "
\n"
-      ],
-      "text/plain": []
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    },
-    {
-     "data": {
-      "text/html": [
-       "
\n",
-       "
\n" - ], - "text/plain": [ - "\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "
[10:08:42] loading SimulationData from                             webapi.py:590\n",
-       "           data/fdve-ff7e28fd-8551-465e-97ac-2852c05b2308v1.hdf5                \n",
-       "
\n" - ], - "text/plain": [ - "\u001b[2;36m[10:08:42]\u001b[0m\u001b[2;36m \u001b[0mloading SimulationData from \u001b]8;id=491738;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=937690;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#590\u001b\\\u001b[2m590\u001b[0m\u001b]8;;\u001b\\\n", - "\u001b[2;36m \u001b[0mdata/fdve-\u001b[93mff7e28fd-8551-465e-97ac-2852c05b2308\u001b[0mv1.hdf5 \u001b[2m \u001b[0m\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "f6daa559f33d4ffa89a5d42ce947ed3d", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "Output()" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "
\n"
-      ],
-      "text/plain": []
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    },
-    {
-     "data": {
-      "text/html": [
-       "
\n",
-       "
\n" - ], - "text/plain": [ - "\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "
[10:08:43] loading SimulationData from                             webapi.py:590\n",
-       "           data/fdve-473cf792-77fe-449f-9762-850b97cf88e5v1.hdf5                \n",
-       "
\n" - ], - "text/plain": [ - "\u001b[2;36m[10:08:43]\u001b[0m\u001b[2;36m \u001b[0mloading SimulationData from \u001b]8;id=7812;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=532005;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#590\u001b\\\u001b[2m590\u001b[0m\u001b]8;;\u001b\\\n", - "\u001b[2;36m \u001b[0mdata/fdve-\u001b[93m473cf792-77fe-449f-9762-850b97cf88e5\u001b[0mv1.hdf5 \u001b[2m \u001b[0m\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "a096707df2484144a97bb477372c4e22", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "Output()" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "
\n"
-      ],
-      "text/plain": []
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    },
-    {
-     "data": {
-      "text/html": [
-       "
\n",
-       "
\n" - ], - "text/plain": [ - "\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "
[10:08:45] loading SimulationData from                             webapi.py:590\n",
-       "           data/fdve-bcf3f7cd-ebb4-486e-bd64-e2076c4d6953v1.hdf5                \n",
-       "
\n" - ], - "text/plain": [ - "\u001b[2;36m[10:08:45]\u001b[0m\u001b[2;36m \u001b[0mloading SimulationData from \u001b]8;id=585006;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=202921;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#590\u001b\\\u001b[2m590\u001b[0m\u001b]8;;\u001b\\\n", - "\u001b[2;36m \u001b[0mdata/fdve-\u001b[93mbcf3f7cd-ebb4-486e-bd64-e2076c4d6953\u001b[0mv1.hdf5 \u001b[2m \u001b[0m\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "9ec3d0517cc24cb39dbb2e502467f4fc", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "Output()" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "
\n"
-      ],
-      "text/plain": []
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    },
-    {
-     "data": {
-      "text/html": [
-       "
\n",
-       "
\n" - ], - "text/plain": [ - "\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "
[10:08:47] loading SimulationData from                             webapi.py:590\n",
-       "           data/fdve-e78f4f92-4559-437a-8b51-529a62e6592bv1.hdf5                \n",
-       "
\n" - ], - "text/plain": [ - "\u001b[2;36m[10:08:47]\u001b[0m\u001b[2;36m \u001b[0mloading SimulationData from \u001b]8;id=572690;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=742006;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#590\u001b\\\u001b[2m590\u001b[0m\u001b]8;;\u001b\\\n", - "\u001b[2;36m \u001b[0mdata/fdve-\u001b[93me78f4f92-4559-437a-8b51-529a62e6592b\u001b[0mv1.hdf5 \u001b[2m \u001b[0m\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "7926f628c2c14694aabb6afe3f125fc2", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "Output()" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "
\n"
-      ],
-      "text/plain": []
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    },
-    {
-     "data": {
-      "text/html": [
-       "
\n",
-       "
\n" - ], - "text/plain": [ - "\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, + } + ], + "source": [ + "field = batch_data[\"sim_1\"].monitor_data[\"monitor_time_0\"].Hz.squeeze().real\n", + "\n", + "fmesh = np.fft.fftfreq(field.size, np.mean(np.diff(field.t)))\n", + "spectrum = np.fft.fft(field)\n", + "\n", + "mask = (fmesh > freq_range[0]) & (fmesh < freq_range[1])\n", + "\n", + "plt.plot(\n", + " fmesh[mask],\n", + " np.abs(spectrum)[mask],\n", + ")\n", + "plt.title(\"Spectrum at single wavevector\")\n", + "plt.xlabel(\"Frequency (Hz)\")\n", + "plt.ylabel(\"Amplitude\")\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "id": "663c96ba-8b16-4056-9983-bef38e7a5c9a", + "metadata": {}, + "source": [ + "We use the ResonanceFinder plugin to find the band frequencies.\n", + "\n", + "We first construct a `ResonanceFinder` object storing our parameters, and then call `run()` on our list of `FieldTimeData` objects. This will add up the signals from all of the monitors before searching for resonances. The `ResonanceFinder` class has additional methods in case the signal takes another form; see the api reference [here](https://docs.flexcompute.com/projects/tidy3d/en/latest/api/_autosummary/tidy3d.plugins.resonance.ResonanceFinder.html).\n", + "\n", + "The `run()` method returns an `xr.Dataset` containing the decay rate, Q factor, amplitude, phase, and estimation error for each resonance as a function of frequency. " + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "id": "7496ef10-068e-41ce-8907-418bbcd60e26", + "metadata": { + "execution": { + "iopub.execute_input": "2023-08-18T17:08:29.693707Z", + "iopub.status.busy": "2023-08-18T17:08:29.693525Z", + "iopub.status.idle": "2023-08-18T17:08:31.106128Z", + "shell.execute_reply": "2023-08-18T17:08:31.105255Z" + } + }, + "outputs": [ { "data": { "text/html": [ - "
[10:08:49] loading SimulationData from                             webapi.py:590\n",
-       "           data/fdve-23b401f4-1be4-4c02-87c8-c01afbd4d5bfv1.hdf5                \n",
-       "
\n" + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
decayQamplitudephaseerror
freq
2.555730e+132.905852e+072.763066e+060.0015491.2655840.000020
9.847409e+137.187784e+114.304045e+020.0095171.3927760.000020
1.067335e+141.085117e+113.090112e+030.0270572.8363460.000005
1.139619e+141.869788e+121.914773e+020.0360111.0338970.000023
1.198011e+149.581388e+113.928099e+020.021284-2.6845370.000017
1.381860e+147.934254e+115.471517e+020.022407-1.2359910.000046
\n", + "
" ], "text/plain": [ - "\u001b[2;36m[10:08:49]\u001b[0m\u001b[2;36m \u001b[0mloading SimulationData from \u001b]8;id=860094;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=371302;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#590\u001b\\\u001b[2m590\u001b[0m\u001b]8;;\u001b\\\n", - "\u001b[2;36m \u001b[0mdata/fdve-\u001b[93m23b401f4-1be4-4c02-87c8-c01afbd4d5bf\u001b[0mv1.hdf5 \u001b[2m \u001b[0m\n" + " decay Q amplitude phase error\n", + "freq \n", + "2.555730e+13 2.905852e+07 2.763066e+06 0.001549 1.265584 0.000020\n", + "9.847409e+13 7.187784e+11 4.304045e+02 0.009517 1.392776 0.000020\n", + "1.067335e+14 1.085117e+11 3.090112e+03 0.027057 2.836346 0.000005\n", + "1.139619e+14 1.869788e+12 1.914773e+02 0.036011 1.033897 0.000023\n", + "1.198011e+14 9.581388e+11 3.928099e+02 0.021284 -2.684537 0.000017\n", + "1.381860e+14 7.934254e+11 5.471517e+02 0.022407 -1.235991 0.000046" ] }, + "execution_count": 13, "metadata": {}, - "output_type": "display_data" + "output_type": "execute_result" } ], + "source": [ + "resonance_finder = ResonanceFinder(freq_window=tuple(freq_range))\n", + "resonance_data = resonance_finder.run(signals=batch_data[\"sim_1\"].data)\n", + "resonance_data.to_dataframe()\n" + ] + }, + { + "cell_type": "markdown", + "id": "46db3d3c", + "metadata": {}, + "source": [ + "We see the four resonances from the previous figure. All four have reasonable Q factors, amplitudes, and errors, so they are likely to represent physical resonances. Note that in order to accurately obtain the Q factor for high-Q modes, it may be necessary to run the simulation for a longer time.\n", + "\n", + "Now we are ready to compute the band structure. We run the resonance finder at every Bloch wavevector." + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "id": "4afe673e", + "metadata": { + "execution": { + "iopub.execute_input": "2023-08-18T17:08:31.116954Z", + "iopub.status.busy": "2023-08-18T17:08:31.116520Z", + "iopub.status.idle": "2023-08-18T17:08:50.203875Z", + "shell.execute_reply": "2023-08-18T17:08:50.202960Z" + } + }, + "outputs": [], "source": [ "resonance_finder = ResonanceFinder(freq_window=tuple(freq_range))\n", "resonance_datas = []\n", @@ -2436,7 +953,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkQAAAHHCAYAAABeLEexAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABgdElEQVR4nO3de1xU5do38N+AMCAyqKEcBEXFQ+WBEiUrUpTEstLItqcyyV1tK1/ddJLaaZZt1MxNB5O2Tx5qh7rr4XX7+iQd2NJjbdLynHkWxBPgCUZAOcys94/VGhgYZGaYYa016/f9fOYzsFizuBmRuea+r/u6dIIgCCAiIiLSMC+5B0BEREQkNwZEREREpHkMiIiIiEjzGBARERGR5jEgIiIiIs1jQERERESax4CIiIiINI8BEREREWkeAyIiIiLSPAZERKQKb7zxBnQ6ndOPHzlyJEaOHGn5vLCwEDqdDmvXrm394IhI9RgQEZGVtWvXQqfTWd26du2KhIQEbN26Ve7hERG5RTu5B0BEyvTmm2+iZ8+eEAQBJSUlWLt2Le6//378v//3//DAAw/IPbxW69GjB65duwYfHx+5h0JECsCAiIhsuu+++xAbG2v5fObMmQgJCcH69es9IiDS6XTw8/Nr8+9rNptRU1Mjy/cmouZxyYyI7NKxY0f4+/ujXTvr91HLli3DnXfeiZtuugn+/v4YMmQIvvzyyyaP1+l0eP7557Fp0yYMGDAAer0et956K3Jycpqc+8MPP2Do0KHw8/ND79698fHHHzs01r///e/o3bs3/P39MWzYMGzfvr3JObZyiPbv348ZM2agV69e8PPzQ2hoKJ588klcunSpyePz8vIQGxtrNUZbeU7Sz/3555/j1ltvhV6vt/zMjj53X3zxBW655Rb4+/tj+PDhOHDgAADg448/RnR0NPz8/DBy5EgUFhY69HwREWeIiKgZ5eXluHjxIgRBQGlpKT744ANUVFTgscceszrvvffew0MPPYRp06ahpqYGGzZswKOPPootW7Zg3LhxVuf+8MMPyM7OxrPPPovAwEC8//77eOSRR1BUVISbbroJAHDgwAGMGTMGXbp0wRtvvIG6ujosWLAAISEhdo37k08+wTPPPIM777wTc+fOxcmTJ/HQQw+hc+fOiIyMvOFjv/32W5w8eRIpKSkIDQ3FwYMH8fe//x0HDx7ETz/9ZAl29uzZg7FjxyIsLAwLFy6EyWTCm2++iS5duti87r///W/885//xPPPP4/g4GBERUU5/Nxt374dmzdvxnPPPQcASE9PxwMPPICXX34ZH330EZ599llcuXIFS5cuxZNPPol///vfdj1fRPQ7gYiogTVr1ggAmtz0er2wdu3aJudXVVVZfV5TUyMMGDBAGDVqlNVxAIKvr69w/Phxy7F9+/YJAIQPPvjAcmzChAmCn5+fcOrUKcux3377TfD29hZa+pNVU1MjdO3aVYiJiRGqq6stx//+978LAIQRI0ZYjhUUFAgAhDVr1jT7swiCIKxfv14AIPzv//6v5diDDz4otG/fXjh79qzl2LFjx4R27do1GSMAwcvLSzh48GCTazvy3On1eqGgoMBy7OOPPxYACKGhoYLRaLQcT0tLEwBYnUtELeOSGRHZtGLFCnz77bf49ttv8Y9//AMJCQn44x//iOzsbKvz/P39LR9fuXIF5eXliI+Px+7du5tcMzExEb1797Z8PmjQIBgMBpw8eRIAYDKZ8PXXX2PChAno3r275bybb74ZSUlJLY75l19+QWlpKf70pz/B19fXcnzGjBkICgpq8fENf5br16/j4sWLuOOOOwDA8vOYTCZ89913mDBhAsLDwy3nR0dH47777rN53REjRuCWW2654fdr6bkbPXq0ZWYJAOLi4gAAjzzyCAIDA5scl55TIrIPl8yIyKZhw4ZZJVVPmTIFt912G55//nk88MADloBjy5YtWLRoEfbu3Yvq6mrL+bZqBjUMciSdOnXClStXAAAXLlzAtWvX0KdPnybn9evXD1999dUNx3zq1CkAaPJ4Hx8f9OrV64aPBYDLly9j4cKF2LBhA0pLS62+Vl5eDgAoLS3FtWvXEB0d3eTxto4BQM+ePW0eb81zJwV4jZcBpePSc0pE9uEMERHZxcvLCwkJCTh//jyOHTsGQMxreeihh+Dn54ePPvoIX331Fb799ltMnToVgiA0uYa3t7fNa9s6Vw5/+MMfsGrVKvzpT39CdnY2vvnmG0sCtNlsdvq6DWeCJK567pT+nBKpBWeIiMhudXV1AICKigoAwH//93/Dz88PX3/9NfR6veW8NWvWOHX9Ll26wN/f3xJwNXTkyJEWH9+jRw8AwLFjxzBq1CjL8draWhQUFGDw4MHNPvbKlSvIzc3FwoULMX/+fMvxxmPp2rUr/Pz8cPz48SbXsHWsOa5+7oiodThDRER2qa2txTfffANfX1/cfPPNAMTZCZ1OB5PJZDmvsLAQmzZtcup7eHt7IykpCZs2bUJRUZHl+KFDh/D111+3+PjY2Fh06dIFmZmZqKmpsRxfu3YtysrKWvzeQNOZlYyMjCbnJSYmYtOmTTh37pzl+PHjxx2q5O3q546IWoczRERk09atW3H48GEAYt5MVlYWjh07hnnz5sFgMAAAxo0bh+XLl2Ps2LGYOnUqSktLsWLFCkRHR2P//v1Ofd+FCxciJycH8fHxePbZZ1FXV4cPPvgAt956a4vX9PHxwaJFi/DMM89g1KhRmDRpEgoKCrBmzZoWc4gMBgPuueceLF26FLW1tejWrRu++eYbFBQUNDn3jTfewDfffIO77roLs2bNgslkwocffogBAwZg7969dv2c7njuiMh5DIiIyKaGy0Z+fn7o378/Vq5ciWeeecZyfNSoUfjkk0+wePFizJ07Fz179sSSJUtQWFjo9Iv6oEGD8PXXXyM1NRXz589HREQEFi5ciPPnz9t1zaeffhomkwnvvPMOXnrpJQwcOBCbN2/G66+/3uJjs7KyMHv2bKxYsQKCIGDMmDHYunWr1W4yABgyZAi2bt2KF198Ea+//joiIyPx5ptv4tChQ5YgsiXueO6IyHk6gZl3REQuMWHCBBw8eNBmDhQRKRtziIiInHDt2jWrz48dO4avvvoKI0eOlGdARNQqnCEiInJCWFiYpe/ZqVOnsHLlSlRXV2PPnj026ygRkbIxh4iIyAljx47F+vXrUVxcDL1ej+HDh+Ovf/0rgyEileIMEREREWkec4iIiIhI8xgQERERkeYxh8gGs9mMc+fOITAw0GaTRSIiIlIeQRBw9epVhIeHw8vLsTkfBkQ2nDt3rkkHaSIiIlKH06dPIyIiwqHHMCCyITAwEID4hEotCohu5MIF4MwZoH17oF8/11xz82bg8ceb//pnnwEPPeSa70VEjqusBI4eBby9gYEDAXsXFLZvBx54oOXztmwB4uNbN0atMRqNiIyMtLyOO4IBkQ3SMpnBYGBARHY5cwbo0AHo3h1w1a/MY4+JAdacOeL1JZGRQEYGkJzsmu9DRM4JDARKSgCTCWjXDggIsO9xRqP95/ElyDnOpLswICJqpaoq4No1wMsL6NzZtddOTgbGjxffUZ4/D4SFie8Yf2/MTkQy0unEoKisTAxe7A2IwsJcex65BgMiola6eFG879jRPYGKtzfAbhBEymQw1AdE9gYw8fFARARw9ixgqxKgTid+nctlbYvb7sltTCYgLw9Yv168N5nkHpHrmc3A5cvix8HB8o6FiNqetKRVWWn/3zhvb+C998SPG6/sSJ9nZHAmuK0xICK3yM4GoqKAhARg6lTxPipKPO5JysrEP4K+vuLUORFpi14v3gQBqKiw/3HJycCXXwLdulkfj4gQjzNHsO1xyYxcLjsbmDix6VTw2bPicU/6zy4tl3F2iEi7DAZxp6nRCAQF2f845ggqCwMicimTSdwVZWtdXBDE6eC5c8U/Amr/T19dDVy9Kn58003yjoWI5NMwIHIUcwSVg0tm5FLbt1tvEW9MEIDTp8Xz1O7SJfHeYBCXzLROCzljRLYEBopv9q5fB2pq5B4NOYsBEbnU+fOuPU+pBKE+IOJymXZyxohs8fYWa4YBzs0SkTIwICKX0kp9jatXxXeC7dqJ2+21TMoZazwzKOWMMSgiLZB2mzEgUi8GRORSUn2N5oqE6nRipWW119eQkqk7d7a/XL8nailnDBBzxrh8Rp5OCoiuXrX9/4GUjwERuZQW6mvU1Ynb7QEul2kpZ4zoRgICxL9rdXVi9XpSHwZE5HKeXl/j8mXxhb59e8DfX+7RyEsrOWNELZHaeAD1u09JXbjtntxCLfU1TCbHx8jaQ/W0kjNGZI+GbTxCQ+UeDTmKARG5jdLra2RnN+0kHxEhLvk1N4vlzkauasSeTET1pDyiigqxrY8X12BUhf9cpEnO7oxydyNXtdFCzhiRvRq28eCymfowICLNcXZnFBu52ubpOWNEjuD2e/XikhlpjiM7oxou+bGRa/PUkjNG5G6Bgc638SB5MSAizXF2ZxSTqW9M6TljRG1BmiGS2niwrY96cMmMNMeZnVFs5EpE9vD2FmsSAcwjUhtFBEQrVqxAVFQU/Pz8EBcXh507d9r1uA0bNkCn02HChAlWxwVBwPz58xEWFgZ/f38kJibi2LFjbhg5qZEz1bTZyJWI7OWJeURaaN4se0C0ceNGpKamYsGCBdi9ezcGDx6MpKQklJaW3vBxhYWFePHFFxFvYz/v0qVL8f777yMzMxM7duxAQEAAkpKScP36dXf9GG1KC7+Y7uTozihB4HIZEdnP0wIirTRvlj0gWr58OZ566imkpKTglltuQWZmJtq3b4/Vq1c3+xiTyYRp06Zh4cKF6NWrl9XXBEFARkYG/vKXv2D8+PEYNGgQPv30U5w7dw6bNm1y80/jflr5xXQ3R3ZGXb0K1NaykSsR2ScgQKxB5AltPLTUvFnWgKimpga7du1CYmKi5ZiXlxcSExORn5/f7OPefPNNdO3aFTNnzmzytYKCAhQXF1tdMygoCHFxcc1es7q6Gkaj0eqmRFr6xWwLyclAYSGwbRuQlSXeFxQ03SbORq5E5IiGbTwU+nJil5ZKlAiCZzVvljUgunjxIkwmE0JCQqyOh4SEoLi42OZjfvjhB3zyySdYtWqVza9Lj3Pkmunp6QgKCrLcIiMjHf1R3I5dxd1D2hk1ZYp433ibOBu5EpEzPGHZrKUSJYBnNW+WfcnMEVevXsXjjz+OVatWIdiFr05paWkoLy+33E6fPu2ya7sKu4rLg41cicgZjdt4qNHZs649T+lkrUMUHBwMb29vlJSUWB0vKSlBqI3OeCdOnEBhYSEefPBByzHz779p7dq1w5EjRyyPKykpQViDfdMlJSWIiYmxOQ69Xg+9Xt/aH8et2FVcHkymJiJn+PmJO1JrasQ8xKAguUfkuAsXXHue0sk6Q+Tr64shQ4YgNzfXcsxsNiM3NxfDhw9vcn7//v1x4MAB7N2713J76KGHkJCQgL179yIyMhI9e/ZEaGio1TWNRiN27Nhh85pqwa7ibU8pjVy5q5BIndS+bNali2vPUzrZK1WnpqbiiSeeQGxsLIYNG4aMjAxUVlYiJSUFADB9+nR069YN6enp8PPzw4ABA6we3/H3bT8Nj8+dOxeLFi1Cnz590LNnT7z++usIDw9vUq9ITdhVvO0poZFrdraYO9ZwuTQiQiwbwB5hRMpmMIh/R9RaoLHxLtzWnqd0sgdEkyZNwoULFzB//nwUFxcjJiYGOTk5lqTooqIieHk5NpH18ssvo7KyEk8//TTKyspw9913IycnB35+fu74EdqEVDtn4kQx+GkYFLGruOspoZGrtKuwcQAs7Spk41QiZZN2ml27Jpbu8PGRdzyOkt6I3yh/tXERWzXTCYKt+QZtMxqNCAoKQnl5OQzSnKdC2JoxiIwUgyG+OLrO5cviFny9Hmg0KdkmTCaxvlRLf4gKChgEEynZ4cNAZaX4/1mNbX+ae2MGiG/GlfbGrDWv36raZUb2186h1pGWy+T6A6a17a5EnkrteURSEduICOvjkZHKC4ZaS/YlM3Icu4q7lxIauWptuyuRpzIYxN2/ag2IADHoGT9efAN2/ry4eSc+3vNmpxkQkaaZTE3/kyuhkavWtrsSearGbTzat7f+uq2/QUoMNLTwRpwBEWmWrXysbt2A1FRgxAh5aw9pbbsrkaeS2niUl4szzw0DIu4iVRbmEJEm3agv3AsvAN9/L28jVxt1SVt1HhHJR8ojKi+vP8belMrDgIjcRqkFBW/UF06ybJl6y+0TkbI0buPB3pTKxICI3CI7W9xmmpAATJ0q3kdFKeNdjz07uM6fl3cHV2mpa88jIvlIbTwEQQyK2JtSmRgQkcspfSpYDX3h2KqFyLM03H6vhr9BWsSASIWUuhQFqGMqWA3BhlQhVqpC3phO51kVYok8XcOASA1/g7SIAdENbN+urGADUPZSFKCOqeCWgg1A/mBDatUCNB0nW7UQqU/DNh533ME3PErEgOgGHnhAWcGG0peiAHVMBd8o2JCOKSHYkCrENm6cGBGhzAqxSp65JJJbu3b1W+4rK/mGR4kYELVAKcGGGpaiAPVMBTcXbISHKyvYUEurFqXPXBIpQcNlM7W94dECFmZsgSCIEfvcuWLpcrkidkeWouSsJiotR50923wzwIgI5UwFNx7jjZbR5KL0CrHNNX+U3kzwjzuRyGAAiovrWwNppSWGWnCGyA5KyHtRw1IUoJ7cF+lFvHEvsHPnlDEjqBZqmbkkUoIOHcQ2HrW1Yi4RUP+GZ8oU8V7uv41axoDIAdyGbR+lTwW39CIuCHwRt5cakuiJlEJq4wGou9mrp2JA5ABuw7afknNf7CnMyBdx+6hl5pJIKRrmEZGyMIfIDkrIe5GWoiZOFMfTcHZDSUtRDSk196XxMllrz9MyNc1cEilB4zYeXpyWUAz+U7RAScGG0pei1OLCBdeep2Vqm7kkkpufH+DjIwZDFRVyj4YaYkDUAqUFG0peilKLLl1ce56WqSWJnkhJuGymTFwyu4EtW4CxY5X3x1ypS1Fq0XiGrbXnaZ00czlnjnVuVkSEGAwxWCeyZjAAly4xIFIanSDY2mujbUajEUFBQSgvL4dBCuXJY5hM4jLOjRJ9IyPFmTelBcNKZjKxngqRPerqgH37xI8HDRKX0Mg1WvP6zRkichulvkB6ewOvvCJurbdFKa071IYzl0T2kdp4VFWJRRo7d5Z7RAQwh4jcRMmtHCorgbvvBt55p+myWGSksnLGiMgzMY9IebhkZgOXzFqnuVYOUpKt3AFHUZG4g6xzZ6B7d2XOYqmRUmcEiZTo6lXg6FFxuWzQILlH4zm4ZEaK0VIVaLn7wpnNwOXL4sfBwVzmcZXsbNtJ1e+9x9k2Ilsat/Hw95d7RMQlM3IppbdyuHJFDNp8fetL6FPrSDOCjf/dpeauSlgmJVIanU4MigAumykFAyJyKaW3crh0SbwPDpbn+3saNnclch7ziJSFARG5lJJbOVRXi+v2AHDTTW3//T2R0mcEiZSscRsPkhcDohvYvl2Z72xNJiAvD1i/XrxX0hiV3MpBmh0yGMQlM2o9pc8IEimZv399G4/KSrlHQwyIbuCBB5SzVVyi5O3sgHJbOQgCcPGi+DGXy1xHyTOCRGogzRKVl8s7DmJA1CIlJYaqJXlViU1ojUZxN0e7dkDHjm3//T2VkmcEidRACoik5XySD+sQ2SDVMQDKARig04l/9OVs5WAyiTNBzeVrKGGMjSmpLs3Jk+IOs65dxRdoch0pUAesk6uVUneKSMlqa4H9+8WPBw8W37SR81pTh0gRM0QrVqxAVFQU/Pz8EBcXh507dzZ7bnZ2NmJjY9GxY0cEBAQgJiYGn332mdU5M2bMgE6ns7qNHTvW6fEpITFUjcmrUo2fKVPEe7mCobo6oKxM/JjLZa6nxBlBIrXw8RHbeADcbSY32WPRjRs3IjU1FZmZmYiLi0NGRgaSkpJw5MgRdO3atcn5nTt3xmuvvYb+/fvD19cXW7ZsQUpKCrp27YqkpCTLeWPHjsWaNWssn+v1+laPVc7EUCavOu/SJTFgbN+exc/cJTlZLLaplBlBIjUJDBT7mhmN7GsmJ9kDouXLl+Opp55CSkoKACAzMxP/8z//g9WrV2PevHlNzh/ZqKzwnDlzsG7dOvzwww9WAZFer0doaKhLxypnYiiTV53H2kNtQw1Vv5W0jEskMRiAkhLOEMlN1iWzmpoa7Nq1C4mJiZZjXl5eSExMRH5+fouPFwQBubm5OHLkCO655x6rr+Xl5aFr167o168fZs2ahUvSq6IN1dXVMBqNVrfGbrpJ3sRQJq86p7JSLIvv5cV3Xlqn9B2apF2N23iQPGQNiC5evAiTyYSQkBCr4yEhISguLm72ceXl5ejQoQN8fX0xbtw4fPDBB7j33nstXx87diw+/fRT5ObmYsmSJfj+++9x3333wdRMwZ709HQEBQVZbpEKzLpV6nZ2pZPi4I4d+dxomVp2aJI2eXnVt/HgbjP5KCKp2lGBgYHYu3cvfv75Z7z99ttITU1FXl6e5euTJ0/GQw89hIEDB2LChAnYsmULfv75Z6tzGkpLS0N5ebnldvr06SbnXLokf8Iyk1cd07iRK2kT24uQGrCNh/xkzSEKDg6Gt7c3SkpKrI6XlJTcMP/Hy8sL0dHRAICYmBgcOnQI6enpTfKLJL169UJwcDCOHz+O0aNHN/m6Xq+3K+laCQnLTF61n9TIVa9nI1ctc2SHptJzoMhzNaxHJAjNp0eQ+8g6Q+Tr64shQ4YgNzfXcsxsNiM3NxfDhw+3+zpmsxnV1dXNfv3MmTO4dOkSwlqZcayUhGWlbGdXOmm5jH3LtI07NEkNGrbxqKiQezTaJPsus9TUVDzxxBOIjY3FsGHDkJGRgcrKSsuus+nTp6Nbt25IT08HIOb7xMbGonfv3qiursZXX32Fzz77DCtXrgQAVFRUYOHChXjkkUcQGhqKEydO4OWXX0Z0dLTVLjRHSEUPmbCsHmzkShLu0CS1CAwUl/mNRs5qy0H2gGjSpEm4cOEC5s+fj+LiYsTExCAnJ8eSaF1UVAQvr/qJrMrKSjz77LM4c+YM/P390b9/f/zjH//ApEmTAADe3t7Yv38/1q1bh7KyMoSHh2PMmDF46623nKpFxIRldZL6lrGRK0k7NM+etZ1HxDc8pBQGQ31A1DhXlNyPrTtsaNi6IzLSgIwMJiyriSAABw6IW1h79QI6dZJ7RCQ3thfRJrXVnVJyGw+1PJeqb92hVFu2iL3B+IdSXdjIlRrjDk3tUWPdKR+f+mr6Stp+r8bn0hmcIbKhNREmyY+NXKk5NTXARx8BJ04AvXsDzz7LJVVPJM0INn51U8OM4JkzYtXq4GCgRw+5R6O+57I1r98MiGxgQKRedXXilLMgALfcwt5lVC87W6xH1HALfkSEWPBUSX/QqXVMJnH2orlSC1LOWEGBUpd8gGPHxEB94EB5x6LG55JLZkS/YyNXsoWVqrXDkbpTStShgxho1NQA16/LOxa1P5eOYkBEHoWNXKkxVqrWFrXXnfLyqt9yL3fVarU/l45iQEQeg41cyRatvcvVOk+oO6WUNh6e8Fw6ggEReQyp9hAbuVJDWnuXq3VS3anmWl/odOJmCyXXnZJmiKQ2HnLxhOfSEQyIyCOYzeLOMoDLZWRNa+9ytc7bW0yUB5q+kKul0G779mLZELnbeHjCc+kIBkQqZDIBeXnA+vXiPXMf2MiVmqe1d7nkGXWnlLJs5gnPpb247d4GJW+759Zh244eFaeXw8P5Tp+aYqVqbVJLdWVbLl0CCguBgACgf3+5R6Oe55J1iFxMqQGR2gpktZXqauDXX8WPBw5koT2yzdabichIsDUPKZKS23goGQMiF1NiQKTGAllt5exZoLhYnGLu00fu0ZCSqeVdLhEA/PabuHNWCT0Z1fJ/pzWv34w5VcKRrcMjR7bZsGQnCKw9RPbz9tbW/w9SN4NBDIiMRnkDIq2kajCpWiW4ddg2NnIlIk+lhMRqLVV5Z0CkEtw6bJs0O9S5c/O7iIiI1EjuNh5aq/LOgEgluHW4qbo6oKxM/JjLZUTkaby8xKAIkGeWSGtV3hkQqYTWCmTZg41cyROxzhg1JOeymdZSNRgQqYiWCmTZg8nU5Gmys8XdpAkJwNSp4n1UlGflaZBjpIBIjjYeWkvV4LZ7G5S47b4htWx/dKfKSuDwYXFKedAg7f385HlYZ0yb7Pl7vm+fmCLQr1/9ElpbjS0qSkygthUpKLHcS2tevzlDpELS1uEpU8R7pfwitiVpdoiNXMkTaC15lUT2zgjKtWymtVQNBkSkOmYzcPmy+DGXy8gTaC15lRzbzi5nHpGWUjVYmJFUh41cydNoLXlV61qaEdTpxBnB8ePF2Rfp71xlpfjYtp6RSU4Wx+LpqRoMiEh1pOWym26SdxxErqK15FWtc7TzgK8v4Ocn1iKSq2q1Fqq8c8mMVKW6WtxtATAgIs8RH9/y7/NNN2mrzpgnc2ZGUAlVqz0dAyJSlYsXxXuDgV3tiUidnJkRZEDkfgyISDXYyJU81fbt9b/bzbl0iUnVnsKZzgOBgfVtPKqr22acWsOAiFSDjVzJUzGpWluc2c4udxsPLWBARKohLZexkSt5GiZVu4eS26A4s52dy2buxV1mpAp1dUB5ufgxl8vI00hLKC1VBGZStf2ys8Wt7Q13c0VEiDMzSqmd4+h2doNB/B2R2njwjaFrMSAiVWAjV/Jk0hLKxInii1zDoMgTKwK7W3NtUKSih0oqKOjIdnZ/fzFloK5OrEnUlm08tIBLZqQK0nIZZ4fIU2mpIrA7eXIbFJ2uvkgjl81cjzNEpHiVlWJBMi8vMX+IyFOpqSKwUptMO1r0UG0MBrFav9EIhIfLPRrPoogZohUrViAqKgp+fn6Ii4vDzp07mz03OzsbsbGx6NixIwICAhATE4PPPvvM6hxBEDB//nyEhYXB398fiYmJOHbsmLt/DHITaXaIjVxJC9TQvNnepqRy8PQde1JitdTGg1xH9oBo48aNSE1NxYIFC7B7924MHjwYSUlJKC0ttXl+586d8dprryE/Px/79+9HSkoKUlJS8PXXX1vOWbp0Kd5//31kZmZix44dCAgIQFJSEq5fv95WPxa5iNksvhsCuFxGpASONCWVg6fv2JPaeAD1VfvJNXSCYGulte3ExcVh6NCh+PDDDwEAZrMZkZGRmD17NubNm2fXNW6//XaMGzcOb731FgRBQHh4OF544QW8+OKLAIDy8nKEhIRg7dq1mDx5covXMxqNCAoKQnl5OQxSOE6yuHQJKCwUG7kOGCD3aIi0zWQSZ4KaW5KSdsMVFMg3syWNsaUde3KOsbVOnwZKS4EuXYDu3eUejbK05vVb1hmimpoa7Nq1C4mJiZZjXl5eSExMRH5+fouPFwQBubm5OHLkCO655x4AQEFBAYqLi62uGRQUhLi4uGavWV1dDaPRaHUjZZCWy9i3jEh+juTnyMWZoodqw3pE7iFrQHTx4kWYTCaEhIRYHQ8JCUFxcXGzjysvL0eHDh3g6+uLcePG4YMPPsC9994LAJbHOXLN9PR0BAUFWW6RkZGt+bHIRaqrgYoK8WMGRETyU0t+jpp27DlTPFJq41FdzTYerqTKXWaBgYHYu3cvKioqkJubi9TUVPTq1QsjndwykJaWhtTUVMvnRqORQZELtHYXChu5EimLmvJz1LBjz9nikV5eQECA+IbRaBSXzqj1ZA2IgoOD4e3tjZKSEqvjJSUlCA0NbfZxXl5eiI6OBgDExMTg0KFDSE9Px8iRIy2PKykpQViD/5UlJSWIiYmxeT29Xg+9Xt/Kn4Yaam2VWDZyJVIetVXUdqToYVtrbfFIg4EBkavJumTm6+uLIUOGIDc313LMbDYjNzcXw4cPt/s6ZrMZ1b/PG/bs2ROhoaFW1zQajdixY4dD1yTnuWIXChu5EimPFvJz2oIrikdKeURSGw9qPdm33aempmLVqlVYt24dDh06hFmzZqGyshIpKSkAgOnTpyMtLc1yfnp6Or799lucPHkShw4dwrvvvovPPvsMjz32GABAp9Nh7ty5WLRoETZv3owDBw5g+vTpCA8Px4QJE+T4ETXFVVVi2ciVSJnUlJ+jVK5ITm/fXgw8TSagqsr1Y9Qi2XOIJk2ahAsXLmD+/PkoLi5GTEwMcnJyLEnRRUVF8PKqj9sqKyvx7LPP4syZM/D390f//v3xj3/8A5MmTbKc8/LLL6OyshJPP/00ysrKcPfddyMnJwd+UvEGchtXVIllI1ciZVNDfo6SuSI5XaezrlodEOCasWmZ7HWIlIh1iJy3fr1YubYlWVliJV5bSkrEoKp9e+Dmm107PiIiueXlidW9W7Jt241zoC5eBE6dEpu89uvnqtGpm2rrEJHnccUuFDZyJSJPJiWnN5cOoNMBkZEtJ6ezjYdrMSAil2rtf3Q2ciUiT+eq5HSpjYcgsI2HKzAgIpdq7X90NnIlIi1wVXJ6YKB4z6rVrceAiFzO2f/obORKRFqSnCz2aty2Tcyr3LZN7LHmyE49tvFwHdl3mZFncmYXypUr4jq4Xl//roeIyJO1tnhk4zYerDHsPAZE5DaO/kdnI1ciIsd4e9e38bh6lQFRa3DJjBSBjVyJiJzDZTPXYEBEisBGrkREzmkYELGyoPMYEJHs2MiViMh5bOPhGgyISHZs5EpE5DypjQfAZbPWYFI1yY6NXInIHUwm7fRbCwys72tmb8cAssaAiGTFRq5E5A7Z2cCcOdbNpiMixMKxjtT5UYvGbTw8NfBzJy6ZkawuXRJziAICAH9/uUdDRJ4gOxuYONE6GAKAs2fF49nZ8ozLnfR68cY2Hs5jQESyYu0hInIlk0mcGbK120o6NneuZzZDlWaJGBA5x6ElM7PZjO+//x7bt2/HqVOnUFVVhS5duuC2225DYmIiIiMj3TVO8kBs5EpErrZ9e9OZoYYEATh9WjyvNRWilchgAC5cYGK1s+yaIbp27RoWLVqEyMhI3H///di6dSvKysrg7e2N48ePY8GCBejZsyfuv/9+/PTTT+4eM3kIaXaoUyeudxORa5w/79rz1ERq43H9OlBTI/do1MeuGaK+ffti+PDhWLVqFe699174+Pg0OefUqVPIysrC5MmT8dprr+Gpp55y+WDJczRs5MrlMiJyFXt3WHniTqyGbTyMRm5UcZROEFqua3no0CHcfPPNdl2wtrYWRUVF6N27d6sHJxej0YigoCCUl5fDIC3KkktduiR2edbrgQED5B4NEXkKkwmIihITqG29uul04m6zggLPnJk+fx44d06cee/VS+7RtL3WvH7btWRmbzAEAD4+PqoOhqhtMJmaiNzB21vcWg80rWsmfZ6R4ZnBECAumwFiYjXbeDjG6TpEVVVVKCoqQk2jhcpBgwa1elDk2djIlUj9lFz0MDkZ+PJL23WIMjI8sw6RJCBA/HeoqxPbeAQEyD0i9XA4ILpw4QJSUlKwdetWm183eeJeRnIpaXYoKIiNXInUSA1FD5OTgfHjlRu0uYtOJ84SlZWJeUQMiOzncB2iuXPnoqysDDt27IC/vz9ycnKwbt069OnTB5s3b3bHGMmDNGzkytkhIvVRU9FDb29xa/2UKeK9pwdDEtYjco7DM0T//ve/8a9//QuxsbHw8vJCjx49cO+998JgMCA9PR3jxo1zxzjJQ7CRK5F6tVT0UKcTix6OH6+d4EOJpICoooJtPBzh8AxRZWUlunbtCgDo1KkTLly4AAAYOHAgdu/e7drRkcdpmEythEauJhOQlwesXy/ec8WX5Kbk30lHih6SfBq28ZDyNallDgdE/fr1w5EjRwAAgwcPxscff4yzZ88iMzMTYZ5Y2IFcpmEjVyUsl2Vni9tzExKAqVPF+6goZU35k7Yo/XdSy0UP1UaaJWLVavs5HBDNmTMH53//bV+wYAG2bt2K7t274/3338df//pXlw+QPIeSGrmqKQ+CtEENv5NaLnqoNgyIHGdXYcYbqaqqwuHDh9G9e3cEe0hZTBZmdI+DB8WS8j16yFtBVSrc1tzUv6cXbiPlUcvvpNaLHqqJyQTs3St+PHCgdnb0ur0wIwDEx8dj2bJlOHr0qNXx9u3b4/bbb/eYYIjco2Ej106d5B0L8yBIadTyO6n1oodqIrXxADhLZC+7A6KnnnoK+fn5GDJkCG6++Wa88sor+PHHH9HKCSbSCCU1cmUeBCmNmn4npaKH3bpZH4+IEI8rpQ4RcdnMUXZvu58+fTqmT5+O6upq5Obm4l//+hceffRRmEwmjBs3Dg899BCSkpLgL3dyCCmO0hq5Mg+ClEZtv5NaLXqoNgaD+O/DekT2aXUO0Y4dO7B582Zs3rwZJ06cwKhRo5CWloa77rrLVWNsc8whci2lNXJlHgQpDX8nyR0EAdi3T/z9uvlmoH17uUfkfm2SQ9ScuLg4vP322zhw4AAOHDiA0aNHW3ahEQH1y2VKSTNjHgQpDX8nyR2kNh4Al83s4XBA9PPPP2PHjh1Nju/YsQNXrlzBn//8Z0ycONGha65YsQJRUVHw8/NDXFwcdu7c2ey5q1atQnx8PDp16oROnTohMTGxyfkzZsyATqezuo0dO9ahMZFrKLWRK/MgSGma+53s1o2/k+Q85hHZz+GA6LnnnsPp06ebHD979iyee+45hwewceNGpKamYsGCBdi9ezcGDx6MpKQklJaW2jw/Ly8PU6ZMwbZt25Cfn4/IyEiMGTMGZ8+etTpv7NixOH/+vOW2fv16h8dGrdewkauPj7xjaSw5WVzK27YNyMoS7wsK+MJD8mq8ZMZ9K9QaDdt4mM3yjkXpHM4h6tChA/bv349evXpZHS8oKMCgQYNw1cHsrbi4OAwdOhQffvghAMBsNiMyMhKzZ8/GvHnzWny8yWRCp06d8OGHH2L69OkAxBmisrIybNq0yaGxSJhD5BqCABw4IPYu69VL/u32RCaTchOBpcKMjf8iS0tmnCUiZx04ANTUANHR4ptTT9amOUR6vR4lJSVNjp8/fx7t2jnWK7ampga7du1CYmJi/YC8vJCYmIj8/Hy7rlFVVYXa2lp07tzZ6nheXh66du2Kfv36YdasWbgktVi3obq6Gkaj0epGrcdGrqQkSm6L0VLTVEBsmqqkvmakHlw2s4/DAdGYMWOQlpaGcqkpFYCysjK8+uqruPfeex261sWLF2EymRASEmJ1PCQkBMXFxXZd45VXXkF4eLhVUDV27Fh8+umnyM3NxZIlS/D999/jvvvug6mZvybp6ekICgqy3CIjIx36Ocg2pTVyJe1SelsMtRRmJHViQGQfx6Z0ACxbtgz33HMPevTogdtuuw0AsHfvXoSEhOCzzz5z+QBvZPHixdiwYQPy8vLg5+dnOT558mTLxwMHDsSgQYPQu3dv5OXlYfTo0U2uk5aWhtTUVMvnRqORQVErKa2RK2lXS7MvOp04+zJ+vHzLZ2oqzEjqI+00u35dXDrTShsPRzk8Q9StWzfs378fS5cuxS233IIhQ4bgvffew4EDBxwOIoKDg+Ht7d1kCa6kpAShoaE3fOyyZcuwePFifPPNNxg0aNANz+3VqxeCg4Nx/Phxm1/X6/UwGAxWN2odJTVyJW1Tw+yL2gozkrq0a1ffxoNFGpvn8AwRAAQEBODpp59u9Tf39fXFkCFDkJubiwkTJgAQk6pzc3Px/PPPN/u4pUuX4u2338bXX3+N2NjYFr/PmTNncOnSJYTxr0mbabhcRiQnNcy+xMeLJR9aKswYH9/2YyPPYDCIPSWNRv5dbo5dM0Q//fST3ResqqrCwYMH7T4/NTUVq1atwrp163Do0CHMmjULlZWVSElJASC2DElLS7Ocv2TJErz++utYvXo1oqKiUFxcjOLiYlT8XuymoqICL730En766ScUFhYiNzcX48ePR3R0NJKSkuweFzmvYSPXRrnuRG1ODbMvLMxI7sY8opbZFRA9/vjjSEpKwhdffIHKykqb5/z222949dVX0bt3b+zatcvuAUyaNAnLli3D/PnzERMTg7179yInJ8eSaF1UVGRV+XrlypWoqanBxIkTERYWZrktW7YMAODt7Y39+/fjoYceQt++fTFz5kwMGTIE27dvh16vt3tc5DwlNXIlkmZfmkvs1+mAyEj5Z19YLJTcKSBAfJNaVwdUVck9GmWyqw5RbW0tVq5ciRUrVuDkyZPo27cvwsPD4efnhytXruDw4cOoqKjAww8/jFdffRUDBw5si7G7DesQOc9sBvbvFxNZ+/atT+Yjz6eGGj+A9ZKUEmv8KPl5JHU7flzc7NKtG9BCmq5qteb12+HCjL/88gt++OEHnDp1CteuXUNwcDBuu+02JCQkNKkFpFYMiJyntEau1Days8WdXA2TlyMixGUgpQQatsYYGSkuRSlljETuVFoqbiAIDBTfsHqiNg2ItIABkfOOHBFLxHvyOxCypqYKy5x9IS27fh04eFD8vxkTIy6heZrWvH47tcuMyJbr15XZyFXtlPwiroYaPw15ewMjR8o9CiJ5+PmJNYhqasS/1Xy/b80D40OSi9QdRYmNXNVKye0mAHXU+CGietxt1jwGROQSglAfEHF2yDWU3m4CUEeNHyKqx4CoeQyIyCXYyNW11NLsUw01foionrTz99o18W821XM4IDp58qQ7xkEqx0aurqWWpSi11PghIlG7dkD79uLHnCWy5nBAFB0djYSEBPzjH//A9evX3TEmUhk2cnU9tSxFscIykfpw2cw2hwOi3bt3Y9CgQUhNTUVoaCieeeYZ7Ny50x1jI5VgI1fXU9NSFCssk1KZTEBeHrB+vXgv9xKzUjAgss3pOkR1dXXYvHkz1q5di5ycHPTt2xdPPvkkHn/8cXTp0sXV42xTrEPkmIMHxS33PXoAwcFyj8YzmEzibrKWmn0WFChn9kXJ5QEkahgjuYYaioXKRRCAvXvFzgI331y/hOYJZC3MWF1djY8++ghpaWmoqamBr68v/vCHP2DJkiWq7S7PgMh+lZXA4cNiga9Bg/ji4kpqajehBnyB1A41FQuVi6e28WjN67fTu8x++eUXPPvsswgLC8Py5cvx4osv4sSJE/j2229x7tw5jB8/3tlLk4qwkav7cCnKddRQwoBcQy07NOUmxQpXr8o7DiVxeIZo+fLlWLNmDY4cOYL7778ff/zjH3H//ffDq0EN8DNnziAqKgp1dXUuH3Bb4AyRfdjItW1wmad1pOXH5nbtKXH5kZyXlycWMG3Jtm3arlruqW082rR1x8qVK/Hkk09ixowZzS6Jde3aFZ988omjlyaVuXJFfLHR6xkMuRPbTbSOIyUM+Dyrn1p2aMqNbTyacjggOnbsWIvn+Pr64oknnnBqQKQe0nIZE6lJyfgCqS1q2qEpt8BAcZew0ciACHAih2jNmjX44osvmhz/4osvsG7dOpcMipSPjVxJLfgCqS0sFmo/br+35nBAlJ6ejmAbUwJdu3bFX//6V5cMipSPjVxJLfgCqS0sFmo/KSBiGw+RwwFRUVERevbs2eR4jx49UFRU5JJBkbKxkSupCV8gtYc7NO3DNh7WHA6Iunbtiv379zc5vm/fPtzEV0dNYCNXUhu+QGpPcjJQWCjuJsvKEu8LCvhv3Ri339dzOKl6ypQp+D//5/8gMDAQ99xzDwDg+++/x5w5czB58mSXD5CUh41cSY2Sk4Hx41nCQEu4Q7NlBgNQXMwZIsCJgOitt95CYWEhRo8ejXbtxIebzWZMnz6dOUQawEaupGZ8gSSy1qGDWIOotlbMJdJyP0qHAyJfX19s3LgRb731Fvbt2wd/f38MHDgQPXr0cMf4SGHYyJWIyHPodOL2+/JycZZIy3/XHQ6IJH379kXfvn1dORZSAdYeIiLyLA0DopAQuUcjH4cDIpPJhLVr1yI3NxelpaUwm81WX//3v//tssGRslRWivWHvLzE3mVEDbHFCJE6SYnVFRViSyZPaePhKIcDojlz5mDt2rUYN24cBgwYAB2zajWDjVypOewkT6Re/v5iPbnaWm238XA4INqwYQP++c9/4v7773fHeEihzGbg8mXxYyZTU0NSJ/nGbaKlTvLc1k6kfAYD23g4PDHm6+uL6Ohod4yFFOzKFTEoYiNXashkEmeGGgdDQP2xuXPF84hIuViPyImA6IUXXsB7770HwdZfQPJYTKYmWxzpJE9EyiUFRFVV2m3j4fCS2Q8//IBt27Zh69atuPXWW+HTqJFVdna2ywZHysBGrvJScrIyO8kTeQapjUdVlThL1Lmz3CNqew4HRB07dsTDDz/sjrGQQrGRq3yUnqzMTvJEnsNgEAMio1GbAZFO4NpXE0ajEUFBQSgvL4dBq9llvxME4MABcQq1Vy9ut29LzSUrSxs7lZCsbDIBUVFiArWtvyQ6nRjAFRQoZ1aLiGy7ehU4elR84ztokNyjcU5rXr+dqjZQV1eH7777Dh9//DGu/p6Bde7cOVRI6yrkMdjIVR5qSVZmJ3kizxEQYN3GQ2scDohOnTqFgQMHYvz48Xjuuedw4cIFAMCSJUvw4osvOjWIFStWICoqCn5+foiLi8POnTubPXfVqlWIj49Hp06d0KlTJyQmJjY5XxAEzJ8/H2FhYfD390diYiKOHTvm1Ni0jo1c5aGmZGV2kifyDF5eYm8zQJvNXh0OiObMmYPY2FhcuXIF/g2anjz88MPIzc11eAAbN25EamoqFixYgN27d2Pw4MFISkpCaWmpzfPz8vIwZcoUbNu2Dfn5+YiMjMSYMWNw9uxZyzlLly7F+++/j8zMTOzYsQMBAQFISkrC9evXHR6fltXWspGrXNSWrJycDBQWAtu2AVlZ4n1BAYMhIrWRVpm0GBBBcFDnzp2Fw4cPC4IgCB06dBBOnDghCIIgFBQUCP7+/o5eThg2bJjw3HPPWT43mUxCeHi4kJ6ebtfj6+rqhMDAQGHdunWCIAiC2WwWQkNDhXfeecdyTllZmaDX64X169fbdc3y8nIBgFBeXu7AT+J5iosF4ZdfBOHQIblHoj3btgmCOA9049u2bXKPlIg8SVWV+Hd/925BMJvlHo3jWvP67fAMkdlshslG4sKZM2cQ6GDFvpqaGuzatQuJiYmWY15eXkhMTER+fr5d16iqqkJtbS06/54SX1BQgOLiYqtrBgUFIS4urtlrVldXw2g0Wt2ItYfkFB8vLjk1t0yp0wGRkeJ5RESuIrXxMJvry61ohcMB0ZgxY5CRkWH5XKfToaKiAgsWLHC4ncfFixdhMpkQ0qi9bkhICIqLi+26xiuvvILw8HBLACQ9zpFrpqenIygoyHKLjIx06OfwRGzkKi8mKxORXLS6bOZwQPTuu+/ixx9/xC233ILr169j6tSpiIqKwtmzZ7FkyRJ3jLFZixcvxoYNG/B//+//hZ+fn9PXSUtLQ3l5ueV2+vRpF45SndjIVX5MViYiOWg1IHK4MGNERAT27duHDRs2YP/+/aioqMDMmTMxbdo0qyRrewQHB8Pb2xslJSVWx0tKShAaGnrDxy5btgyLFy/Gd999h0ENCiZIjyspKUFYg2pwJSUliImJsXktvV4PvV7v0Ng9GRu5KkdyMjB+vHIrVROR55GyX6qqgLo6seyKFjj1Y7Zr1w6PPfZYq7+5r68vhgwZgtzcXEyYMAGAmKOUm5uL559/vtnHLV26FG+//Ta+/vprxMbGWn2tZ8+eCA0NRW5uriUAMhqN2LFjB2bNmtXqMWsBG7kqi7c3MHKk3KMgIq3w8RFzia5d01bVaocDok8//fSGX58+fbpD10tNTcUTTzyB2NhYDBs2DBkZGaisrERKSorlet26dUN6ejoAsd7R/PnzkZWVhaioKEteUIcOHdChQwfodDrMnTsXixYtQp8+fdCzZ0+8/vrrCA8PtwRddGNMpiYi0jaDgQFRi+bMmWP1eW1tLaqqquDr64v27ds7HBBNmjQJFy5cwPz581FcXIyYmBjk5ORYkqKLiorg5VWf6rRy5UrU1NRg4sSJVtdZsGAB3njjDQDAyy+/jMrKSjz99NMoKyvD3XffjZycnFblGWkFG7kSEZHBAJSUaCuPyCW9zI4dO4ZZs2bhpZdeQlJSkivGJSst9zI7exYoLhYbuUZHyz0aIiKSg9kM7Nsn3t96K6CW+YQ272XWWJ8+fbB48eIms0ekLoJQ39mes0NERNqlxTYeLgmIADHR+ty5c666HMmAjVyJiEiite33DucQbd682epzQRBw/vx5fPjhh7jrrrtcNjBqe2zkSkREEikgunpVXEHw9NcFhwOixju1dDodunTpglGjRuHdd9911biojbGRKxERNSS18aitFTfbeHoZFocDIrPZ7I5xkMwuXxbfAQQEiP8JiIiIAgPF1wej0fMDIpflEJG6sfYQERE1pqU8IodniFJTU+0+d/ny5Y5enmTARq5ERGSLFBBpoY2Hwz/anj17sGfPHtTW1qJfv34AgKNHj8Lb2xu333675Tydp2dfeRA2ciUiIlsatvG4etWz3zQ7HBA9+OCDCAwMxLp169Dp92fmypUrSElJQXx8PF544QWXD5Lcp2EjVy0ul5lMbJxKRHQjDdt4eHJA5HCl6m7duuGbb77BrbfeanX8119/xZgxYzyiFpGWKlVfugQUFoqNXAcMkHs0bSs7G5gzBzhzpv5YRATw3ntil3kiIhIDoWPHAF9fYOBAuUdzY21aqdpoNOLChQtNjl+4cAFXr1519HIkM60mU2dnAxMnWgdDgNi6ZOJE8etERCRWrNbpgJoaMd/UUzkcED388MNISUlBdnY2zpw5gzNnzuC///u/MXPmTCTzbbWqaLWRq8kkzgzZmhuVjs2dK55HRKR1Wmnj4XBAlJmZifvuuw9Tp05Fjx490KNHD0ydOhVjx47FRx995I4xkptIfcuCgsTEOa3Yvr3pzFBDggCcPi2eR0RE2th+73BSdfv27fHRRx/hnXfewYkTJwAAvXv3RkBAgMsHR+7TsJGr1pbLzp937XlERM5Sy8YOg0FMKfDkNh5OF2Y8f/48zp8/jz59+iAgIAAO5maTzBo2cg0Kkns0bSsszLXnERE5IzsbiIoCEhKAqVPF+6goZeYwtm8vvl6YzWLtOk/kcEB06dIljB49Gn379sX999+P87+/jZ45cya33KuIlhu5xseLu8ma+7l1OiAyUjyPiMgd1Lixw9OXzRwOiP785z/Dx8cHRUVFaN++veX4pEmTkJOT49LBkXtovZGrt7e4tR5oGhRJn2dkKHPamojUT60bOxgQNfLNN99gyZIliIiIsDrep08fnDp1ymUDI/dhI1exztCXXwLdulkfj4gQj3PDJBG5i1o3dkgBUWWl2MbD0zicVF1ZWWk1MyS5fPky9Hq9SwZF7qXV2kONJScD48erI6GRiDyHWjd2+PgAfn5iyRZPbOPh8AxRfHw8Pv30U8vnOp0OZrMZS5cuRUJCgksHR67HRq7WvL2BkSOBKVPEewZDRORuat7Y4cnLZg7PEC1duhSjR4/GL7/8gpqaGrz88ss4ePAgLl++jB9//NEdYyQXYiNXIiJ5SRs7zp61nUek04lfV+LGDoMBKC31zIDI4RmiAQMG4OjRo7j77rsxfvx4VFZWIjk5GXv27EHv3r3dMUZyEa03ciUiUgI1b+wIDPTcNh4OzRDV1tZi7NixyMzMxGuvveauMZGbXLkiBkV6fX0ZdiIianvSxg5bDaYzMpS7sUNq43H1qjhL5Ocn94hcx6GAyMfHB/v373fXWMjNmExNRKQcat3YYTCIAdHVq0DXrnKPxnUcXjJ77LHH8Mknn7hjLORGWm3kSkSkZGrc2CElVkttPDyFw0nVdXV1WL16Nb777jsMGTKkSQ+z5cuXu2xw5DpabeRKRESuJbXxqKsTdy57SgqGwwHRr7/+ittvvx0AcPToUauv6bTWA0IltNzIlYiIXC8wUMxLNRo1GBCdPHkSPXv2xLZt29w5HnIDLTdyJSIi1zMY6gOi8HC5R+MaducQ9enTBxcuXLB8PmnSJJSUlLhlUORaWm7kSkRErtewjYfSeq45y+6ASGiUOfXVV1+hsrLS5QMi12rYyJXLZURE5Aq+vvVb7j2lSKPDu8xIXRo2cvWkehFERCSvhrvNPIHdAZFOp2uSNM0kauVj7SEiInIHKSCSViHUzqElsxkzZiA5ORnJycm4fv06/vSnP1k+l26OWrFiBaKiouDn54e4uDjs3Lmz2XMPHjyIRx55BFFRUdDpdMjIyGhyzhtvvGEJ3qRb//79HR6XJ2AjVyIicpeGbTyqq+UeTevZvcvsiSeesPr8sccea/U337hxI1JTU5GZmYm4uDhkZGQgKSkJR44cQVcb5S+rqqrQq1cvPProo/jzn//c7HVvvfVWfPfdd5bP27VzuLqAR2AjVyIicpfGbTy6dJF7RK1jd6SwZs0al3/z5cuX46mnnkJKSgoAIDMzE//zP/+D1atXY968eU3OHzp0KIYOHQoANr8uadeuHUJDQ10+XjVhI1ciInI3qY2HJwREsiVV19TUYNeuXUhMTKwfjJcXEhMTkZ+f36prHzt2DOHh4ejVqxemTZuGoqKiG55fXV0No9FodVM7NnIlIiJ3CwwU7z2hjYdsAdHFixdhMpkQEhJidTwkJATFxcVOXzcuLg5r165FTk4OVq5ciYKCAsTHx+PqDdLg09PTERQUZLlFRkY6/f2VgsnURETkblIbD5NJzFtVM4/bdn/ffffh0UcfxaBBg5CUlISvvvoKZWVl+Oc//9nsY9LS0lBeXm65nT59ug1H7Hps5EpERG1Bp6ufJVL74ops2cbBwcHw9vZuUu26pKTEpfk/HTt2RN++fXH8+PFmz9Hr9dDr9S77nnJjI1ciImorUhsPtdcjkm2GyNfXF0OGDEFubq7lmNlsRm5uLoYPH+6y71NRUYETJ04gLCzMZddUMjZyJSKituQpbTxk3Y+empqKJ554ArGxsRg2bBgyMjJQWVlp2XU2ffp0dOvWDenp6QDEROzffvvN8vHZs2exd+9edOjQAdHR0QCAF198EQ8++CB69OiBc+fOYcGCBfD29saUKVPk+SHbGBu5EhFRW5LaeFy/Ls4Sdewo94icI2tANGnSJFy4cAHz589HcXExYmJikJOTY0m0LioqgpdX/STWuXPncNttt1k+X7ZsGZYtW4YRI0YgLy8PAHDmzBlMmTIFly5dQpcuXXD33Xfjp59+Qhe17we0Exu5EhFRWzMYxIDIaFRvQKQTGndtJRiNRgQFBaG8vBwGaS5QBWprgQMHxGWzW29l7zIiImob5eXA8eNiqZcBA+QbR2tevz1ul5mWsZErERHJoUMHcVWiulq9bTy02dPCQymt9pDJBGzfDpw/D4SFAfHxbCFCROSJvL3FN+MVFeqtWs0ZIg9RUaGsRq7Z2UBUFJCQAEydKt5HRYnHiYjI80grVGrdfs+AyENIW+2V0Mg1OxuYOBE4c8b6+Nmz4nEGRUREnkcKiIxGdbbxYEDkAZTUyNVkAubMsf2fQTo2d666a1UQEVFT7duLb8hNJqCqSu7ROI4BkQdQUiPX7dubzgw1JAjA6dPieURE5Dl0OutZIrVhQOQBlJRMff68a88jIiL1YEBEslFaI1d7O6RopJMKEZGmSI1e1djGgwGRyimtkWt8PBAR0XyVbJ0OiIwUzyMiIs+i14s3QVDfbjMGRCqmxEau3t7Ae++JHzcOiqTPMzLk3wlHRETuodZlMwZEKlZersxGrsnJwJdfAt26WR+PiBCPJyfLMy4iInI/tQZErFStYtLskBIbuSYnA+PHs1I1EZHWBAbWt/GoqQF8feUekX0YEKlUba04QwQoZ7msMW9vYORIuUdBRERtqXEbD6W+RjXGJTOVYiNXIiJSKjUumzEgUikl1R4iIiJqSI1tPBgQqZDSGrkSERE1pMY2HgyIVEhJjVyJiIga0+nqizSqZdmMAZHKKKmRKxERUXPUlkfEgEhlLl9WTiNXIiKi5kgBkVraeDAgUhmlVaYmIiKypWEbD6nnppIxIFIRqZGrTqeMRq5EREQ3oqZlMwZEKiLNDhkMymjkSkREdCMMiMjllNjIlYiI6EaknWbXr4ttPJSMAZFKKLWRKxERUXOkNh6A8meJGBCphJIbuRIRETVHLctmbO6qAmpo5EpERJ7LZAK2bwfOnwfCwoD4ePsLAxsM4uOuXhXTP5T6pp4zRCpw6RIbuRIRkTyys4GoKCAhAZg6VbyPihKP2yMgQAye6uqAa9fcOdLWYUCkAkymJiIiOWRnAxMnAmfOWB8/e1Y8bk9QpJY2HgyIFI6NXImISA4mEzBnju1u9dKxuXPtq0KthjwiBkQKx0auREQkh+3bm84MNSQIwOnT4nktkQKiigqx/ZQSMSBSMJOJjVyJiEge58+77ryGbTyuXm3duNxF9oBoxYoViIqKgp+fH+Li4rBz585mzz148CAeeeQRREVFQafTISMjo9XXVLIrV9jIlYiI5BEW5trzlJ5HJGtAtHHjRqSmpmLBggXYvXs3Bg8ejKSkJJSWlto8v6qqCr169cLixYsRGhrqkmsqGZOpiYhILvHxQERE89vkdTogMlI8zx5KzyOSNSBavnw5nnrqKaSkpOCWW25BZmYm2rdvj9WrV9s8f+jQoXjnnXcwefJk6PV6l1xTqdjIlYiI5OTtDbz3nvhx46BI+jwjw7F6RIBy23jIFhDV1NRg165dSExMrB+MlxcSExORn5+vmGvKhY1ciYhIbsnJwJdfAt26WR+PiBCPJyfbfy2lt/GQrVL1xYsXYTKZEBISYnU8JCQEhw8fbtNrVldXo7q62vK5UeZ/KTZyJSIipUhOBsaPd75SdUMGA1BZKSZWK+31ja07AKSnp2PhwoVyD8OCjVyJiEhJvL2BkSNbfx2pjYcSZ4hkWzILDg6Gt7c3SkpKrI6XlJQ0mzDtrmumpaWhvLzccjt9+rRT399V2MiViIg8UUCAWGi4rg6oqpJ7NNZkC4h8fX0xZMgQ5ObmWo6ZzWbk5uZi+PDhbXpNvV4Pg8FgdZMLG7kSEZGnUnIbD1mXzFJTU/HEE08gNjYWw4YNQ0ZGBiorK5GSkgIAmD59Orp164b09HQAYtL0b7/9Zvn47Nmz2Lt3Lzp06IDo6Gi7rql0bORKRESezGAQ3/gbjYCTC0JuIWtANGnSJFy4cAHz589HcXExYmJikJOTY0mKLioqgpdX/STWuXPncNttt1k+X7ZsGZYtW4YRI0YgLy/PrmsqHZOpiYjIkzVu4+Ele4lokU4QbLVt0zaj0YigoCCUl5e36fJZRQVw5Ij4yzFoEHuXERGRZzpwQKxFFB3t2s1DrXn9VkhcRgAbuRIRkTZIsYqS+poxIFIINnIlIiKtUGIbD9YhUghHGrmaTK4pkEVERCQHaafZtWvi7moldGTgDJFC2JtMnZ0NREUBCQnA1KnifVSUeJyIiEgN2rVTXhsPBkQKYG8j1+xsYOJE4MwZ6+Nnz4rHGRQREZFaKK0eEQMiBbh4Uby/USNXkwmYM0esUdSYdGzuXPE8IiIipVNaHhEDIpkJgn3J1Nu3N50Zanyd06fF84iIiJSuQwdltfFgQCQzexu5nj9v3/XsPY+IiEhOSmvjwYBIZvY2cg0Ls+969p5HREQkNyXVI2JAJCNHGrnGxwMREc0HTTodEBkpnkdERKQGDQMis1nesTAgkpEjjVy9vYH33hM/bhwUSZ9nZLAeERERqYefH+DrK74WVlTIOxYGRDJytJFrcjLw5ZdAt27WxyMixOPJya4dHxERkbspZbcZK1XLpKJCrD/k5SX2LrNXcjIwfjwrVRMRkWcwGMTyMwyINEqqPeRMI1dvb2DkSJcPiYiIqM0ppY0Hl8xkYDKJvcsANnIlIiJta9cOaN9e/FjOWSIGRDKQGrn6+bXcyJWIiMjTKSGPiAGRDBrWHiIiItI6JdQjYkDUxuxt5EpERKQVUhuP2loxl0gODIjamDQ7dKNGrkRERFqihDYeDIjakCA4XnuIiIhIC+TOI2JA1IakRq4+Pjdu5EpERKQ1UkBUUSFPGw8GRG1Imh3q3PnGjVyJiIi0xs9PnDAwm+Vp48GAqI040siViIhIi+RcNmNA1EYcaeRKRESkRQyINIDJ1ERERDcmBURSG4+2xICoDTjbyJWIiEhLGrbxaOsijQyI2kBrGrkSERFpiVzLZgyI3IyNXImIiOzHgMhDsZErERGR/QIC5GnjwYDIzdjIlYiIyH5eXvUTCG05S8SAyI3YyJWIiMhxciybMSByIymZmo1ciYiI7CdHGw9FBEQrVqxAVFQU/Pz8EBcXh507d97w/C+++AL9+/eHn58fBg4ciK+++srq6zNmzIBOp7O6jR071p0/QhOCAFy+LH7MZGoiIiL7+fvXt/GorGyb7yl7QLRx40akpqZiwYIF2L17NwYPHoykpCSUlpbaPP8///kPpkyZgpkzZ2LPnj2YMGECJkyYgF9//dXqvLFjx+L8+fOW2/r169vix7FgI1ciIiLntfWymU4QBKFtvpVtcXFxGDp0KD788EMAgNlsRmRkJGbPno158+Y1OX/SpEmorKzEli1bLMfuuOMOxMTEIDMzE4A4Q1RWVoZNmzY5NSaj0YigoCCUl5fDIP2LOOjECaCsDAgJASIinLoEERGRZl2+DBQUiIUab77Zvse05vVb1hmimpoa7Nq1C4mJiZZjXl5eSExMRH5+vs3H5OfnW50PAElJSU3Oz8vLQ9euXdGvXz/MmjULl6TtXm2AjVyJiIhaJzBQvK+qAurq3P/92rn/WzTv4sWLMJlMCAkJsToeEhKCw4cP23xMcXGxzfOLi4stn48dOxbJycno2bMnTpw4gVdffRX33Xcf8vPz4W2jVHR1dTWqq6stnxtbOT8nNXLt0IGNXImIiJzh4yPmEl27Ji6bde7s3u8na0DkLpMnT7Z8PHDgQAwaNAi9e/dGXl4eRo8e3eT89PR0LFy40GXfn7WHiIiIWs9gaLuASNYls+DgYHh7e6OkpMTqeElJCUJDQ20+JjQ01KHzAaBXr14IDg7G8ePHbX49LS0N5eXlltvp06cd/EnqsZErERGRa7RlYrWsAZGvry+GDBmC3NxcyzGz2Yzc3FwMHz7c5mOGDx9udT4AfPvtt82eDwBnzpzBpUuXEBYWZvPrer0eBoPB6uYsNnIlIiJyjQ4d6tt4XL/u3u8l+7b71NRUrFq1CuvWrcOhQ4cwa9YsVFZWIiUlBQAwffp0pKWlWc6fM2cOcnJy8O677+Lw4cN444038Msvv+D5558HAFRUVOCll17CTz/9hMLCQuTm5mL8+PGIjo5GUlKSW38WNnIlIiJynbZs4yF7DtGkSZNw4cIFzJ8/H8XFxYiJiUFOTo4lcbqoqAheXvVx25133omsrCz85S9/wauvvoo+ffpg06ZNGDBgAADA29sb+/fvx7p161BWVobw8HCMGTMGb731FvR6vVt/FjZyJSIici2DQQyGjEaga1f3fR/Z6xApkbN1DA4fFitqdusG3CCliYiIiOx07Rrw22/ibFFMjNgftDmqrUPkSa5fF4MhNnIlIiJynYZtPCoq3Pd9GBC5iJRMHRTERq5ERESu1Ba7zRgQuYAgsPYQERGRu0hVqxkQKVx5uVhWnI1ciYiIXE+aIXJnGw8GRC4gLZd17nzjZC8iIiJynNTGA3DfLBEDolaqra3/x2HtISIiIveQZomuXnXP9RkQtZLUyDUggI1ciYiI3MXdidUMiFpJSqbm7BAREZH7dOggpqXU1LinjQcDolZgI1ciIqK24eXl3t1mDIhagY1ciYiI2o47l80YEDmJjVyJiIjaljRDdPWqmL/rSgyInMRGrkRERG2rfXugXTv3tPFgQOQkabmMlamJiIjajru23zMgcgIbuRIREcnDXXlEDIicwEauRERE8pACospK17bxYEDkIDZyJSIikk/DNh6uXDZjQOQgNnIlIiKSlzuWzRgQOYiNXImIiOTFgEhmbORKREQkP3e08WBA5ACpkWuHDmzkSkREJBcvr/oagK6aJWJA5AAmUxMRESmDq+sRMSCyExu5EhERKUfDgMgVbTwYENmpYTI1G7kSERHJS2rjYTKJNYlaiwGRHRo2cuVyGRERkTK4crcZAyI7sJErERGR8jAgamNs5EpERKQ8gYHifWWluJrTGgyIWsBGrkRERMrk61tfBqe1s0QMiFrARq5ERETK5aplMwZEN8BGrkRERMrGgKgNsJErERGRsgUG1rfxqK52/joMiG6g4ewQG7kSEREpT8M2Hq2pWs2A6AakJ5bLZURERMrlimUzRQREK1asQFRUFPz8/BAXF4edO3fe8PwvvvgC/fv3h5+fHwYOHIivvvrK6uuCIGD+/PkICwuDv78/EhMTcezYMYfHxUauREREyicFRBUVzl9D9oBo48aNSE1NxYIFC7B7924MHjwYSUlJKC0ttXn+f/7zH0yZMgUzZ87Enj17MGHCBEyYMAG//vqr5ZylS5fi/fffR2ZmJnbs2IGAgAAkJSXh+vXrDo+Ps0NERETK5u9f38bDWTpBcEVLNOfFxcVh6NCh+PDDDwEAZrMZkZGRmD17NubNm9fk/EmTJqGyshJbtmyxHLvjjjsQExODzMxMCIKA8PBwvPDCC3jxxRcBAOXl5QgJCcHatWsxefLkFsdkNBoRFBSE//3fctx5p4G9y4iIiBTu5Eng9GkjRo4MQnl5OQzStJGdZJ0hqqmpwa5du5CYmGg55uXlhcTEROTn59t8TH5+vtX5AJCUlGQ5v6CgAMXFxVbnBAUFIS4urtlrNqdTJzZyJSIiUgMH458m2rlmGM65ePEiTCYTQkJCrI6HhITg8OHDNh9TXFxs8/zi4mLL16VjzZ3TWHV1Naob7NUrLy8HAPj4GF3SH4WIiIjcr7JSfNF2ZvFL1oBIKdLT07Fw4cImx/v3j5RhNERERNQaly5dQpCDBQRlDYiCg4Ph7e2NkpISq+MlJSUIDQ21+ZjQ0NAbni/dl5SUICwszOqcmJgYm9dMS0tDamqq5fOysjL06NEDRUVFDj+hRO5gNBoRGRmJ06dPO7wuTuQu/L0kpSkvL0f37t3RuXNnhx8ra0Dk6+uLIUOGIDc3FxMmTAAgJlXn5ubi+eeft/mY4cOHIzc3F3PnzrUc+/bbbzF8+HAAQM+ePREaGorc3FxLAGQ0GrFjxw7MmjXL5jX1ej30en2T40FBQfxPTopiMBj4O0mKw99LUhovL8dTpGVfMktNTcUTTzyB2NhYDBs2DBkZGaisrERKSgoAYPr06ejWrRvS09MBAHPmzMGIESPw7rvvYty4cdiwYQN++eUX/P3vfwcA6HQ6zJ07F4sWLUKfPn3Qs2dPvP766wgPD7cEXUREREQNyR4QTZo0CRcuXMD8+fNRXFyMmJgY5OTkWJKii4qKrCK9O++8E1lZWfjLX/6CV199FX369MGmTZswYMAAyzkvv/wyKisr8fTTT6OsrAx33303cnJy4McKi0RERGSD7HWIlKi6uhrp6elIS0uzuZRG1Nb4O0lKxN9LUprW/E4yICIiIiLNk711BxEREZHcGBARERGR5jEgIiIiIs1jQERERESax4CogRkzZkCn0zW5/fGPf5R7aKRBJpMJd955J5KTk62Ol5eXIzIyEq+99ppMIyOtkv5G/ulPf2ryteeeew46nQ4zZsxo+4GR5rni9Vv2OkRKM3bsWKxZs8bqWPv27WUaDWmZt7c31q5di5iYGHz++eeYNm0aAGD27Nno3LkzFixYIPMISYsiIyOxYcMG/O1vf4O/vz8A4Pr168jKykL37t1lHh1pWWtfvxkQNaLX65vto0bU1vr27YvFixdj9uzZGDVqFHbu3IkNGzbg559/hq+vr9zDIw26/fbbceLECWRnZ1uC9OzsbHTv3h09e/aUeXSkZa19/eaSGZHCzZ49G4MHD8bjjz+Op59+GvPnz8fgwYPlHhZp2JNPPmn1Tnz16tWWdktEasWAiEjhdDodVq5cidzcXISEhGDevHlyD4k07rHHHsMPP/yAU6dO4dSpU/jxxx/x2GOPyT0solbhkhmRCqxevRrt27dHQUEBzpw5g6ioKLmHRBrWpUsXjBs3DmvXroUgCBg3bhyCg4PlHhZRq3CGiEjh/vOf/+Bvf/sbtmzZgmHDhmHmzJlgxx2S25NPPom1a9di3bp1ePLJJ+UeDlGrMSAiUrCqqirMmDEDs2bNQkJCAj755BPs3LkTmZmZcg+NNG7s2LGoqalBbW0tkpKS5B4OUasxICJSsLS0NAiCgMWLFwMAoqKisGzZMrz88ssoLCyUd3Ckad7e3jh06BB+++03eHt7yz0colZjQESkUN9//z1WrFiBNWvWWNXSeOaZZ3DnnXdy6YxkZzAYYDAY5B4GkUvoBP5FJSIiIo3jDBERERFpHgMiIiIi0jwGRERERKR5DIiIiIhI8xgQERERkeYxICIiIiLNY0BEREREmseAiIiIiDSPARERuVRmZiYCAwNRV1dnOVZRUQEfHx+MHDnS6ty8vDzodDqcOHGijUfpeoWFhdDpdNi7d6/cQyEiJzAgIiKXSkhIQEVFBX755RfLse3btyM0NBQ7duzA9evXLce3bduG7t27o3fv3nIMVbFqa2vlHgKR5jAgIiKX6tevH8LCwpCXl2c5lpeXh/Hjx6Nnz5746aefrI4nJCTgs88+Q2xsLAIDAxEaGoqpU6eitLQUAGA2mxEREYGVK1dafZ89e/bAy8sLp06dAgCUlZXhj3/8I7p06QKDwYBRo0Zh3759AICjR49Cp9Ph8OHDVtf429/+ZhWM/frrr7jvvvvQoUMHhISE4PHHH8fFixctXzebzVi6dCmio6Oh1+vRvXt3vP322wCAnj17AgBuu+026HQ6y2yY2WzGm2++iYiICOj1esTExCAnJ8dyTWlmaePGjRgxYgT8/Pzw+eefO/XcE5HzGBARkcslJCRg27Ztls+3bduGkSNHYsSIEZbj165dw44dO5CQkIDa2lq89dZb2LdvHzZt2oTCwkLMmDEDAODl5YUpU6YgKyvL6nt8/vnnuOuuu9CjRw8AwKOPPorS0lJs3boVu3btwu23347Ro0fj8uXL6Nu3L2JjY5sEGp9//jmmTp0KQAyoRo0ahdtuuw2//PILcnJyUFJSgj/84Q+W89PS0rB48WK8/vrr+O2335CVlYWQkBAAwM6dOwEA3333Hc6fP4/s7GwAwHvvvYd3330Xy5Ytw/79+5GUlISHHnoIx44dsxrLvHnzMGfOHBw6dAhJSUmtev6JyAkCEZGLrVq1SggICBBqa2sFo9EotGvXTigtLRWysrKEe+65RxAEQcjNzRUACKdOnWry+J9//lkAIFy9elUQBEHYs2ePoNPpLOeaTCahW7duwsqVKwVBEITt27cLBoNBuH79utV1evfuLXz88ceCIAjC3/72N6F3796Wrx05ckQAIBw6dEgQBEF46623hDFjxlg9/vTp0wIA4ciRI4LRaBT0er2watUqmz9zQUGBAEDYs2eP1fHw8HDh7bfftjo2dOhQ4dlnn7V6XEZGRjPPJhG1Bc4QEZHLjRw5EpWVlfj555+xfft29O3bF126dMGIESMseUR5eXno1asXunfvjl27duHBBx9E9+7dERgYiBEjRgAAioqKAAAxMTG4+eabLbNE33//PUpLS/Hoo48CAPbt24eKigrcdNNN6NChg+VWUFBgSdiePHkyCgsLLUt2n3/+OW6//Xb079/fco1t27ZZPV762okTJ3Do0CFUV1dj9OjRdj8PRqMR586dw1133WV1/K677sKhQ4esjsXGxjr0HBORa7WTewBE5Hmio6MRERGBbdu24cqVK5YAJzw8HJGRkfjPf/6Dbdu2YdSoUaisrERSUhKSkpLw+eefo0uXLigqKkJSUhJqamos15w2bRqysrIwb948ZGVlYezYsbjpppsAiLvYGuctSTp27AgACA0NxahRo5CVlYU77rgDWVlZmDVrluW8iooKPPjgg1iyZEmTa4SFheHkyZMufIaaCggIcOv1iejGOENERG6RkJCAvLw85OXlWW23v+eee7B161bs3LkTCQkJOHz4MC5duoTFixcjPj4e/fv3tyRUNzR16lT8+uuv2LVrF7788ktMmzbN8rXbb78dxcXFaNeuHaKjo61uwcHBlvOmTZuGjRs3Ij8/HydPnsTkyZOtrnHw4EFERUU1uUZAQAD69OkDf39/5Obm2vx5fX19AQAmk8lyzGAwIDw8HD/++KPVuT/++CNuueUWx55QInIvudfsiMgzrV69WvD39xfatWsnFBcXW46vW7dOCAwMFAAI586dE0pLSwVfX1/hpZdeEk6cOCH861//Evr27WszH+euu+4SBg8eLAQGBgpVVVWW42azWbj77ruFwYMHC19//bVQUFAg/Pjjj8Krr74q/Pzzz5bzjEaj4O/vLwwePFgYPXq01bXPnj0rdOnSRZg4caKwc+dO4fjx40JOTo4wY8YMoa6uThAEQXjjjTeETp06CevWrROOHz8u5OfnC//1X/8lCIIg1NbWCv7+/sKiRYuE4uJioaysTBAEMXfJYDAIGzZsEA4fPiy88sorgo+Pj3D06FFBEJrPPSKitsWAiIjcQnqh79+/v9XxwsJCAYDQr18/y7GsrCwhKipK0Ov1wvDhw4XNmzfbDBI++ugjAYAwffr0Jt/PaDQKs2fPFsLDwwUfHx8hMjJSmDZtmlBUVGR13h/+8AcBgLB69eom1zh69Kjw8MMPCx07dhT8/f2F/v37C3PnzhXMZrMgCGIy96JFi4QePXoIPj4+Qvfu3YW//vWvlsevWrVKiIyMFLy8vIQRI0ZYHvPGG28I3bp1E3x8fITBgwcLW7dubfI8MSAikpdOEARBtukpIiIiIgVgDhERERFpHgMiIiIi0jwGRERERKR5DIiIiIhI8xgQERERkeYxICIiIiLNY0BEREREmseAiIiIiDSPARERERFpHgMiIiIi0jwGRERERKR5DIiIiIhI8/4/p4tmHkrQjNgAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkQAAAHHCAYAAABeLEexAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAABgv0lEQVR4nO3deVxU9f4/8NeAMCAyqKEsgoLiUrlQomRlipJYVhrZdalrore6Vn71knWlvmmLXcysa4tp+c3lVqgtfP367ZdYEfS1Qs0ty9RcQBRlcWFGQFlmzu+Pc8/AyAAzMMM5Z87r+XjMY+Bw5vABceY9n+2lEwRBABEREZGGecndACIiIiK5sSAiIiIizWNBRERERJrHgoiIiIg0jwURERERaR4LIiIiItI8FkRERESkeSyIiIiISPNYEBEREZHmsSAiIlV48cUXodPpWv340aNHY/To0dbPCwoKoNPpsH79+rY3johUjwUREdlYv349dDqdza179+5ISEjAtm3b5G4eEZFbdJC7AUSkTC+//DKio6MhCAJKSkqwfv163H333fjf//1f3HPPPXI3r8169eqFK1euwMfHR+6mEJECsCAiIrvuuusuxMXFWT+fPXs2QkJCsHHjRo8oiHQ6Hfz8/Nr9+1osFtTU1MjyvYmoaRwyIyKHdO7cGf7+/ujQwfZ91PLly3Hrrbfiuuuug7+/P4YOHYrPP/+80eN1Oh2eeuopbNmyBQMHDoRer8eNN96IrKysRuf+8MMPGDZsGPz8/NCnTx+8//77TrX1gw8+QJ8+feDv74/hw4djx44djc6xN4fo4MGDmDlzJnr37g0/Pz+EhoZi1qxZuHDhQqPH5+bmIi4uzqaN9uY5ST/3J598ghtvvBF6vd76Mzv7u/vss89www03wN/fHyNGjMCvv/4KAHj//fcRExMDPz8/jB49GgUFBU79voiIPURE1ASj0Yjz589DEASUlpbinXfeQUVFBR5++GGb89566y3cd999eOihh1BTU4NNmzbhwQcfxJdffokJEybYnPvDDz8gMzMTTzzxBAIDA/H222/jgQceQGFhIa677joAwK+//opx48ahW7duePHFF1FXV4fFixcjJCTEoXZ/+OGHePzxx3Hrrbdi/vz5OHnyJO677z507doVkZGRzT72m2++wcmTJ5GSkoLQ0FAcOnQIH3zwAQ4dOoSdO3dai539+/dj/PjxCAsLw0svvQSz2YyXX34Z3bp1s3vd7777Dp9++imeeuopBAcHIyoqyunf3Y4dO7B161Y8+eSTAID09HTcc889ePbZZ/Hee+/hiSeewKVLl7Bs2TLMmjUL3333nUO/LyL6N4GIqIF169YJABrd9Hq9sH79+kbnV1VV2XxeU1MjDBw4UBgzZozNcQCCr6+vcPz4ceuxX375RQAgvPPOO9ZjkyZNEvz8/IRTp05Zj/3++++Ct7e30NJTVk1NjdC9e3chNjZWqK6uth7/4IMPBADCqFGjrMfy8/MFAMK6deua/FkEQRA2btwoABD+7//+z3rs3nvvFTp27CgUFRVZjx07dkzo0KFDozYCELy8vIRDhw41urYzvzu9Xi/k5+dbj73//vsCACE0NFQwmUzW42lpaQIAm3OJqGUcMiMiu1auXIlvvvkG33zzDT7++GMkJCTgL3/5CzIzM23O8/f3t3586dIlGI1GjBw5Evv27Wt0zcTERPTp08f6+eDBg2EwGHDy5EkAgNlsxvbt2zFp0iT07NnTet7111+PpKSkFtu8Z88elJaW4q9//St8fX2tx2fOnImgoKAWH9/wZ7l69SrOnz+PW265BQCsP4/ZbMa3336LSZMmITw83Hp+TEwM7rrrLrvXHTVqFG644YZmv19Lv7uxY8dae5YAID4+HgDwwAMPIDAwsNFx6XdKRI7hkBkR2TV8+HCbSdXTpk3DTTfdhKeeegr33HOPteD48ssvsWTJEhw4cADV1dXW8+3tGdSwyJF06dIFly5dAgCUlZXhypUr6Nu3b6Pz+vfvj6+++qrZNp86dQoAGj3ex8cHvXv3bvaxAHDx4kW89NJL2LRpE0pLS22+ZjQaAQClpaW4cuUKYmJiGj3e3jEAiI6Otnu8Lb87qcC7dhhQOi79TonIMewhIiKHeHl5ISEhAefOncOxY8cAiPNa7rvvPvj5+eG9997DV199hW+++QbTp0+HIAiNruHt7W332vbOlcOf/vQnrFmzBn/961+RmZmJr7/+2joB2mKxtPq6DXuCJK763Sn9d0qkFuwhIiKH1dXVAQAqKioAAF988QX8/Pywfft26PV663nr1q1r1fW7desGf39/a8HV0NGjR1t8fK9evQAAx44dw5gxY6zHa2trkZ+fjyFDhjT52EuXLiE7OxsvvfQSFi1aZD1+bVu6d+8OPz8/HD9+vNE17B1riqt/d0TUNuwhIiKH1NbW4uuvv4avry+uv/56AGLvhE6ng9lstp5XUFCALVu2tOp7eHt7IykpCVu2bEFhYaH1+OHDh7F9+/YWHx8XF4du3bph9erVqKmpsR5fv349ysvLW/zeQOOelRUrVjQ6LzExEVu2bMHZs2etx48fP+7UTt6u/t0RUduwh4iI7Nq2bRuOHDkCQJw3k5GRgWPHjmHhwoUwGAwAgAkTJuDNN9/E+PHjMX36dJSWlmLlypWIiYnBwYMHW/V9X3rpJWRlZWHkyJF44oknUFdXh3feeQc33nhji9f08fHBkiVL8Pjjj2PMmDGYMmUK8vPzsW7duhbnEBkMBtxxxx1YtmwZamtr0aNHD3z99dfIz89vdO6LL76Ir7/+GrfddhvmzJkDs9mMd999FwMHDsSBAwcc+jnd8bsjotZjQUREdjUcNvLz88OAAQOwatUqPP7449bjY8aMwYcffoilS5di/vz5iI6OxmuvvYaCgoJWv6gPHjwY27dvR2pqKhYtWoSIiAi89NJLOHfunEPXfOyxx2A2m/H666/jmWeewaBBg7B161a88MILLT42IyMDc+fOxcqVKyEIAsaNG4dt27bZrCYDgKFDh2Lbtm1YsGABXnjhBURGRuLll1/G4cOHrUVkS9zxuyOi1tMJnHlHROQSkyZNwqFDh+zOgSIiZeMcIiKiVrhy5YrN58eOHcNXX32F0aNHy9MgImoT9hAREbVCWFiYNffs1KlTWLVqFaqrq7F//367+ygRkbJxDhERUSuMHz8eGzduRHFxMfR6PUaMGIF//OMfLIaIVIo9RERERKR5nENEREREmseCiIiIiDSPc4jssFgsOHv2LAIDA+2GLBIREZHyCIKAy5cvIzw8HF5ezvX5sCCy4+zZs40SpImIiEgdTp8+jYiICKcew4LIjsDAQADiL1SKKCBqTlkZcOYM0LEj0L+/3K0hovZQWQn88Qfg7Q0MGgQ4OqDw2WfAX/7S8nn/9V/Agw+2rY1aYzKZEBkZaX0ddwYLIjukYTKDwcCCiBxy5gzQqRPQsyfAPxkibQgMBEpKALMZ6NABCAhw7HF9+jh+Hp9PWqc10104qZqojaqqgCtXAC8voGtXuVtDRO1FpxOLIgAwmRx/3MiRQERE0z1KOh0QGSmeR+2HBRG5jdkM5OYCGzeK92az3C1yj/PnxfvOncWucyLSDqkHx5mCyNsbeOst8eNriyLp8xUr+HzS3lgQkVtkZgJRUUBCAjB9ungfFSUe9yQWC3DxovhxcLC8bSGi9icVRJWVzr3pS04GPv8c6NHD9nhEhHg8Odl1bSTHcA4RuVxmJjB5MnDtHuhFReJxT/rPXl4uPgn6+tZ3nRORduj14q26GqioAIKCHH9scjIwcSKwYwdw7hwQFiYOk7FnSB4siMilzGZg3rzGxRAgHtPpgPnzxScBT/hPLw2XsXeISLsMBnGlqcnkXEEEiM+Do0e7pVnkJA6ZkUvt2CGuuGqKIACnT4vnqV11NXD5svjxddfJ2xYl0MqcMaJrtWYeESkPCyJyqXPnXHuekl24IN4bDOKQmZZpZc4YkT2BgWLv99WrQE2N3K2h1mJBRC4VFuba85RKEOoLIq0Pl0lzxq7tGZTmjLEoIk/n7S1uygqwl0jNWBCRS2llf43Ll8V3gh06iMvttaqlOWOAOGeMw2fk6Thspn4siMiltLK/hjSZumtXx7fr90RamjNG1BypILp82f4bBFI+FkTkcmraX6M1E4Hr6sTl9gCHy7Q0Z4yoOQEB4hu9ujpx93pSHy67J7dQw/4amZnicE/DHo6ICLGHq7mi7eJF8R1gx46Av7/726lkWpkzRtQSKcajvFzsJXI014yUgwURuY2S99doy+aR3HuonjRnrKjI/jCBTid+Xe1zxogcYTCIBZHJBISGyt0achaHzEhz2jIRmEGutrQyZ4zIEdI8oooKMdaH1IUFEWlOWyYCM8i1MTXNGSNyJynGQxDqN20l9eCQGWlOaycCM8i1aWqYM0bUHtoS40HyYkFEmtPaicAMcm2ekueMEbWXwMD6gojUhUNmpDmt3TySk6mJqCXSPCLGeKgPCyIVYohm27RmIjCDXInIEd7e9UvuPWkekRZedxRREK1cuRJRUVHw8/NDfHw8du/e7dDjNm3aBJ1Oh0mTJtkcFwQBixYtQlhYGPz9/ZGYmIhjx465oeXtjyGaruHsRGAGuRKRozwtxkMrrzuyF0SbN29GamoqFi9ejH379mHIkCFISkpCaWlps48rKCjAggULMNLOBifLli3D22+/jdWrV2PXrl0ICAhAUlISrl696q4fo10wRNO1kpOBggIgJwfIyBDv8/MbF0OCwOEyInKcJxVEmZnAAw80ft05c0Y87kmvOzpBkDd1JT4+HsOGDcO7774LALBYLIiMjMTcuXOxcOFCu48xm8244447MGvWLOzYsQPl5eXYsmULALF3KDw8HE8//TQWLFgAADAajQgJCcH69esxderUFttkMpkQFBQEo9EIg/SXLTOzWazIm1ouLm2Al5/PlT2uZjIBx46JQa6DB2s7u4yIWiYIwIED4srU668Xd7VXI7MZCAmp7yG357rrgJIS5bzutOX1W9YeopqaGuzduxeJiYnWY15eXkhMTEReXl6Tj3v55ZfRvXt3zJ49u9HX8vPzUVxcbHPNoKAgxMfHN3nN6upqmEwmm5vSMERTPgxyJSJnSDEegLp7iXJzmy+GAPHrubnt0Rr3k7UgOn/+PMxmM0JCQmyOh4SEoLi42O5jfvjhB3z44YdYs2aN3a9Lj3Pmmunp6QgKCrLeIiMjnf1R3I4hmvJgkCsRtYYnDJs5WuiwIJLB5cuX8ec//xlr1qxBsAtfndLS0mA0Gq2306dPu+zarsIQTXkoIchVC6s7iDwNYzzUR9aNGYODg+Ht7Y2SkhKb4yUlJQi1k4x34sQJFBQU4N5777Ues/z7L61Dhw44evSo9XElJSUIa1AdlJSUIDY21m479Ho99Hp9W38ct2KIpjzknkydmSnmrjUcLo2IELcNYCQGkXL5+YkrUmtqxOX3aty1evRoYMkSx87zBLL2EPn6+mLo0KHIzs62HrNYLMjOzsaIESManT9gwAD8+uuvOHDggPV23333ISEhAQcOHEBkZCSio6MRGhpqc02TyYRdu3bZvaZaMESz/ckd5MpVhUTqpvZhs9GjW9537brrWBC5TGpqKtasWYMNGzbg8OHDmDNnDiorK5GSkgIAmDFjBtLS0gAAfn5+GDhwoM2tc+fOCAwMxMCBA+Hr6wudTof58+djyZIl2Lp1K3799VfMmDED4eHhjfYrUhuGaLYvOYNczWaxZ8heb6AgiLf58zl8RqRkUkGk1g0avb2BDz5o/pwPPvCcN+KyZ5lNmTIFZWVlWLRoEYqLixEbG4usrCzrpOjCwkJ4eTlXtz377LOorKzEY489hvLyctx+++3IysqCn5+fO36EdsUQzfYhd5BrS6sKgfpVhZ7y7ozI00grza5cAWprAR8fedvTGsnJwBdfAP/xH2LvtMQTh+5l34dIiZS4DxG1r4sXxT2d9Hpg4MD2//6ffAI8/HDL5338MfDQQ+5vDxG1zpEjQGWluI+cmmN/zGZ1vBFvy+u37D1ERHJq6j+5NFwm1xNYWZlrzyMieRgMYkFkMtl/PlFLoeHt7fm90SyISLOaWsG1fDkQEyN+LldB1K2ba88jInkYDGKxY29iNVeRKovsk6qJ5NDcCq6pU4HvvpM3yPXaifNtPY+I5BEQIK5UrasTV65KuIpUeTiHyA7OIXINpXYFt5QLB4j5Pb/9Jt/+QzU14maQza0i8/YWn2DlKtqIyDHHjwNGo9j7ExLCbEp3Um2WGXmuzEzxP3xCAjB9ungfFaWMdz2OrOAqKQF+/bV92mPPTz+1vKTebBbPIyJlk16XjUbxntmUysSCSIWUHuWg9K5gR/Pemoi+axfMriPyHNfGePD/tzKxIGrGjh3KLDaU2vMCtLyhICD/hoJqyIVTQxuJyDFSjIcgiEUR/38rEwuiZtxzj7KKDaX3vADq6AqWcuGujUBpKDJS3ly4ltqo08nfxmspveeSSE4NYzzU+P9bC1gQtUApxYYael4AdXQFN5cLJ5E7F05t2XVK77kkklvDgkht/7+1ggVRC5RSbKih5wVQT1dwU7lw3bsDn36qjD1A1JJdp4aeSyK5XRvjoZb/31rCjRkd0LDYkGunTjX0vAD1XcFFRfZ7s6TlpErpCr62jTqdst6VKT27rqWeS51OfDMxcaJy2kwkhw4dxK00qqrqd61W+v9vrWFB5AQ5iw219LxIXcGTJ4svhg1fKJXUFSz1alz7Ql5SIh5X0js0JW+Z70zPpVJ/BqL2YjDYFkSAsv9/aw2HzJwgZ7Ghpkl4Su8Kbq5XQyL3EKlaqKXnkkgJpHlEly/L2w6yjwWRA5RQbKhtEl5yMlBQAOTkABkZ4n1+vvzFEKCe+VhqoJaeSyIl6NRJjPGorRXnEpGysCBqgZKKDaX3vFxL6gqeNk28l/v3J2GvhuuoqeeSSG46Xf3kanthryQvFkQtUFqxoeSeF7Xo3t2152mZ2nouieTWcPk9KQsnVTfjyy+B8eOV92TOSXikJFLP5bx5tkORERFiMcRinajetTEeXuyWUAwWRM3g8kfPVFrq2vOIy4eJHOXnB/j4iPOIKirqCySSHwsi0hxOBHYP9lwSOcZgAC5cEIfNWBApBzvrSHNGjmw8Mb0hTgQmInfiPCJlYkFEbqPUsE9vb+Dll+1/jROBicjdpIJIivEgZWBBRG6h9LDPW24Bli1rPCymtFWFaqLUAphIaaQYD4CbNCoJ5xCRyzUViyGFfcpdcFRWiu/MEhPFlVE//cSJwG2VmWl/ldlbb7G4JLKnYYxH165yt4YAQCcIzQUYaJPJZEJQUBCMRiMMnPHmFLNZ7AlqaidoKdw1P1++wqOwECgrE5+EoqPlaYMnaaoAloYf5S6AiZTo8mXgjz/EFWeDB8vdGs/RltdvDpmRSyk9FsNiAS5eFD8ODpanDZ6kpbR7gLlwRPYwxkN5WBCRSyk9FuPSJfHF2de3fgt9aj2lF8BESqXTiUURwNVmSsGCqBk7dijzna2SJ68qfY+fCxfEe/YOuYbSC2AiJePye2VhQdSMe+5R1sooQPmrt5Qc9lldXb+i47rr2v/7eyKlF8BESnZtjAfJiwVRC6SVUUooOKTJq9cOUSipjUoO+5R6hwwGcciM2k7JBTCR0vn7i5OqLRZx9SvJiwVRC5QyMVRNk1elsM9rd4OWc48fQQDOnxc/5nCZ6yi5ACZSA6mXyGiUtx3EgsghSpgYqrbJq8nJQEEBkJMDZGSI9/n58i2/NpnE1RwdOgCdO8vTBk+lxAKYSC2kgogbNMqPGzM6Qc6JoWqcvKqksE9puKxr16aHd6j11JJ2bzYrv42kLdJq16oqoK5OfNNG8lBED9HKlSsRFRUFPz8/xMfHY/fu3U2em5mZibi4OHTu3BkBAQGIjY3FRx99ZHPOzJkzodPpbG7jx49vczvlnBjKyautV1cHlJeLH3O4zH2kAnjaNPFeaYWG0hckkDb5+NTHeHC1mbxkL4g2b96M1NRULF68GPv27cOQIUOQlJSE0tJSu+d37doVzz//PPLy8nDw4EGkpKQgJSUF27dvtzlv/PjxOHfunPW2cePGVrdRCRNDOXm19S5cEIcUO3YUJzGS9qhhQQJpl9RLxIJIXrIXRG+++SYeffRRpKSk4IYbbsDq1avRsWNHrF271u75o0ePxv3334/rr78effr0wbx58zB48GD88MMPNufp9XqEhoZab126dGl1GwVB/omhnLzaetx7SNvUtCCBtIn7ESmDrAVRTU0N9u7di8TEROsxLy8vJCYmIi8vr8XHC4KA7OxsHD16FHfccYfN13Jzc9G9e3f0798fc+bMwQXpVdGO6upqmEwmm5sScfKq86QgVy8vBihqldoWJJD2MMZDGWSdvnX+/HmYzWaEhITYHA8JCcGRI0eafJzRaESPHj1QXV0Nb29vvPfee7jzzjutXx8/fjySk5MRHR2NEydO4LnnnsNdd92FvLw8eNvpQklPT8dLL73U5PfT6cR3kBMnyt8Do5bJq0oh1cGdO/N3pFVqXJBA2uLlJRZFJpO42oxD+/JQ5Xz2wMBAHDhwABUVFcjOzkZqaip69+6N0f9e0jR16lTruYMGDcLgwYPRp08f5ObmYuzYsY2ul5aWhtTUVOvnJpMJkZGR1s8bvoNUwqopJa3eUjIGuRLABQmkDgaDWBCZTED37nK3RptkLYiCg4Ph7e2NkpISm+MlJSUIDQ1t8nFeXl6IiYkBAMTGxuLw4cNIT0+3FkTX6t27N4KDg3H8+HG7BZFer4der2+xvXwHqS5SkKtezyBXLZMWJBQV2Z9HpNOJX+eCBJJTw/2IBIHbg8hB1jlEvr6+GDp0KLKzs63HLBYLsrOzMWLECIevY7FYUF1d3eTXz5w5gwsXLiCsjW8B+Q5SXaThMuaWaRsXJGiXkoOwr9UwxqOiQu7WaJPsq8xSU1OxZs0abNiwAYcPH8acOXNQWVmJlJQUAMCMGTOQlpZmPT89PR3ffPMNTp48icOHD+ONN97ARx99hIcffhgAUFFRgWeeeQY7d+5EQUEBsrOzMXHiRMTExCApKalVbeSSdvVhkCs1xAUJ2qPGfaeUvPxeTcVla8k+h2jKlCkoKyvDokWLUFxcjNjYWGRlZVknWhcWFsLLq75uq6ysxBNPPIEzZ87A398fAwYMwMcff4wpU6YAALy9vXHw4EFs2LAB5eXlCA8Px7hx4/DKK684NCx2Lb6DVCcpt4xBriThggTtkPadunaIVNp3SqlFsMEgzns0mRoX73LKzBS3rmi4WjMiQux5VeLvsbV0gmBvVF3bTCYTgoKCABgRGWnAihWe9Y/u6QQB+PVXcQlr795AG7agIg/D6A7PZzaLPUFNbbUgzRnLz1fev31tLXDwoPjxkCHKiPFoqriUOguUVlxKr99GoxEGaWKWg2QfMlOyL7+UN5CUWodBrmSPGodQyHlq3nfKx6d+yb0Swl61tqkpC6Jm8N2jOjHIla7F6A7tUPu+U0ratVrNxWVrsCAij8IgV7qW1t7lap3a951SUkGk9uLSWSyIyKMwyJWupbV3uVqn9iDsTp3ENtbUAFevytsWtReXzmJBRB6FQa50La29y9U6te875eWlnOX3ai8uncWCiDwGg1zJHq29yyX17zullGEztReXzmJBRB5D2nuIQa7UkNbe5ZIoORkoKABycoCMDPFeLauGpR4iKcZDTmovLp2hgF0OyFncS6Uxi0XMLgM4XEa2pHe5kyeLxU/DFxhPfJdL9dQahN2xo7htSF2dGOMhdxajVjY1ZQ+RynAvFfsY5ErN0dK7XPIMShk2k0jF5bRp4r2nFUMAe4hURa3b0bcHBrlSS7TyLpc8gxTjoYQNGrWCBZFKtLSXik4n7qUycaL2nuAZ5EqOUusQCmmP1ENUWSkOnckd46GFqRocMlMJ7qXSNAa5EpGnUVKMh1amarAgUgnupWKfIHDvISLyTEqYR6Sl2BsWRCrBvVTsY5AreRqzGcjNBTZuFO8ZKaJdchdEWou9YUGkEtxLxT4GuZIn0crQBNVrrgCWO8ZDa1M1WBCphNZ2DHUEg1zJk2hpaIJELRXAXl5iUQTI00uktakaLIhUhHup2GKQK3kKrQ1NkOMFsJzDZlqbqqETBLk3Blcek8mEoKAgGI1GGKS/RgXRwvJHR/z+u5hd1rMn0K2b3K0har3cXLF3oCU5Odw2wBOYzWJPUFPDUTqd+EY3P1/cVuTwYbG3KDa2facGSO0sKrJfrDdsp1Jeg9ry+s19iFSIe6kwyJU8i9aGJrTOmbk5o0fXx3hUVtYPobUHrcXecMiMVEmaTM0gV/IEWhua0DpnC2A5h820NFWDPUSkOhaLuKU9wMnU5BlGjhR3WZcKfXuuu057q0g9lbMFsBTjYTIB4eHua1dTtBJ7w4KIVIdBrkSkZtI2Ki3NzZEKYOl5rrJSfO6ToxDRwlQNDpmR6jDIlTzNjh3N9w4B4tc9Zb8XrXN2GxVfX8DPT/xYzl2rPR0LIlIVBrmSJ+Kkau1xdm6O3LtWawGHzEhVGORKnoiTqt1D6VuUODM3x2AASktZELkTCyJSDQa5kqdydk4JtSwzU9zssuHy9ogIcahKSSujHJ2bExhYH+NRXS3OoSTX4pAZqQaDXMlTMZrHtTwxBkXuGA8tYEFEqiENlzHIlTyR2vZ7aS6UVE6eHIPCeUTuxSEzUoW6OsBoFD/mcBl5KrXs96Lk4Shnd4FWE4NB7OW6fFn8OfjG0LVYEJEqMMiVtELp+71Iw1HX9sBIw1Fy92Z58oo9f3/5Yjy0gENmpArScBl7h4jko4bhKE9esafT1W/SyGEz12NBRIpXWQlcvcogVyK5OTMcJRdpxV5Tw0k6HRAZqd4Ve5xH5D6KKIhWrlyJqKgo+Pn5IT4+Hrt3727y3MzMTMTFxaFz584ICAhAbGwsPvroI5tzBEHAokWLEBYWBn9/fyQmJuLYsWPu/jHITaTeIQa5EslLDcNRnr5iTyqIpBgPch3ZC6LNmzcjNTUVixcvxr59+zBkyBAkJSWhtLTU7vldu3bF888/j7y8PBw8eBApKSlISUnB9u3brecsW7YMb7/9NlavXo1du3YhICAASUlJuHr1anv9WOQiFouYXQZwuIxIbmoZjlLbij1nNIzxkHbtJ9fQCYK90eD2Ex8fj2HDhuHdd98FAFgsFkRGRmLu3LlYuHChQ9e4+eabMWHCBLzyyisQBAHh4eF4+umnsWDBAgCA0WhESEgI1q9fj6lTp7Z4PZPJhKCgIBiNRhikcpxkceECUFAgbkI2cKDcrSHSNrMZiIpqeQPJ/Hxl9MAofafq1jp9Wty1uls3oGdPuVujLG15/Za1h6impgZ79+5FYmKi9ZiXlxcSExORl5fX4uMFQUB2djaOHj2KO+64AwCQn5+P4uJim2sGBQUhPj6+yWtWV1fDZDLZ3KjtXLFPiTRcxtwyIvmpbThKWrE3bZp4r5R2NdSa50nOI3IPWQui8+fPw2w2IyQkxOZ4SEgIiouLm3yc0WhEp06d4OvriwkTJuCdd97BnXfeCQDWxzlzzfT0dAQFBVlvkZGRbfmxCOLS3KgoICEBmD5dvI+Kcm6H2OpqoKJC/JgFEZEyePJwVHtr7fOkFONRXS3eyDVkn0PUGoGBgThw4AB+/vlnvPrqq0hNTUVubm6rr5eWlgaj0Wi9nT592nWN1SBXbZvPIFciZUpOFoeyc3KAjAzxPj+fxZAz2vI86eUFBASIH7OXyHVk3ZgxODgY3t7eKCkpsTleUlKC0NDQJh/n5eWFmJgYAEBsbCwOHz6M9PR0jB492vq4kpIShDWY2VdSUoLY2Fi719Pr9dAzKc8lWtqnRKcT9ymZOLH57msGuRIpm9I3kFQyVzxPGgxiD7rJJM4loraTtYfI19cXQ4cORXZ2tvWYxWJBdnY2RowY4fB1LBYLqv/dbxgdHY3Q0FCba5pMJuzatcupa1LruGqfEga5EpGncsXzpDSPSIrxoLaTPbojNTUVjzzyCOLi4jB8+HCsWLEClZWVSElJAQDMmDEDPXr0QHp6OgBxvk9cXBz69OmD6upqfPXVV/joo4+watUqAIBOp8P8+fOxZMkS9O3bF9HR0XjhhRcQHh6OSZMmyfVjaoar9ilhkCsReSpXPE927Cj2HpnNQFVV/RAatZ7sBdGUKVNQVlaGRYsWobi4GLGxscjKyrJOii4sLISXV31HVmVlJZ544gmcOXMG/v7+GDBgAD7++GNMmTLFes6zzz6LyspKPPbYYygvL8ftt9+OrKws+EmbN5DbuGKfEga5EpEnc8XzpE4n9hJduiT2qLMgajvZ9yFSIu5D1Hqu2KekpETsTu7YEbj+erc2l4io3blqP6fz54FTp8SQ1/793dZcVVHtPkTkeVyxTwmDXInIk7lqPyfGeLgWCyJyubbsU8IgVyLSAlfs5yTFeAgCYzxcgUNmdnDIzDVas23+qVNiD1HXrkB0dPu0k4hILm2NFyksBMrKGOMhacvrt+yTqslzObtPCYNciUhr2rqfk8EgFkTcoLHtOGRGinHpkvhuSa8Xt6YnIqLmMcbDdVgQkWIwyJWIyDne3vVL7jmPqG1YEJEiMMiViKh1pKkyHDZrGxZEpAgMciUiap2GBRGXSbUeCyKSHYNciYha79oYD2odrjIj2THIlYjcoa1L2tWCMR6uwR4ikh2DXInI1TIzxXiMhARg+nTxPipKPO6JpJW5nEfUeiyISFYMciUiV8vMBCZPFjMRGyoqEo97YlHEGI+2Y0FEsrpwQZxDFBAA+PvL3RoiUjuzGZg3z/7kYunY/PmeVzTo9eKNMR6tx4KIZMW9h4jIlXbsaNwz1JAgAKdPi+d5GqmXiAVR6zg1qdpiseD777/Hjh07cOrUKVRVVaFbt2646aabkJiYiMjISHe1kzwQg1yJyNXOnXPteWrCGI+2caiH6MqVK1iyZAkiIyNx9913Y9u2bSgvL4e3tzeOHz+OxYsXIzo6GnfffTd27tzp7jaTh5B6h7p08cyVH0TU/sLCXHuemkgxHlevAjU1crdGfRzqIerXrx9GjBiBNWvW4M4774SPj0+jc06dOoWMjAxMnToVzz//PB599FGXN5Y8R8MgVw6XEZGrjBwJRESIE6jtzSPS6cSvjxzZ/m1zNynGo6JC7CXiQhXn6ASh5X0tDx8+jOuvv96hC9bW1qKwsBB9+vRpc+PkYjKZEBQUBKPRCIM0KEsudeECUFAgTgIcOFDu1hCRJ5FWmQG2RZG0rcfnnwPJye3frvZw7hxw9qzY8967t9ytaX9tef12aMjM0WIIAHx8fFRdDFH74GRqInUzm4HcXGDjRvFeSau2kpPFoqdHD9vjERGeXQwB9fsRXb7MGA9ntXqn6qqqKhQWFqLmmoHKwYMHt7lR5NkY5EqkbpmZ4tL2hqu5IiKAt95STrGRnAxMnKiNnaobCggQf8a6OjHGg7tWO87pgqisrAwpKSnYtm2b3a+blfQ2gRRJ6h0KCmKQK5HaSMNR1/Y+SJseKqkHxtsbGD1a7la0L51O7CUqL2eMh7Oc3odo/vz5KC8vx65du+Dv74+srCxs2LABffv2xdatW93RRvIgDYNcldA7pORuf9ImJf9NanXTQ7XhfkSt43QP0XfffYf/+Z//QVxcHLy8vNCrVy/ceeedMBgMSE9Px4QJE9zRTvIQSgpyVUO3P2mL0v8mndn0UGs9M0oiFUQVFWJx6unDhK7idA9RZWUlunfvDgDo0qULysrKAACDBg3Cvn37XNs68jgNJ1PLGeSqxawjUjY1/E1qedNDNWkY4yHN16SWOV0Q9e/fH0ePHgUADBkyBO+//z6KioqwevVqhHniTlfkMg2DXOUcLmO3PymNWv4mtbzpodpIvUTctdpxThdE8+bNw7l/l/+LFy/Gtm3b0LNnT7z99tv4xz/+4fIGkudQSpCrlrOOSJnU8jcpbXrYVO+uTgdERnrmpodqw4LIeU7PIXr44YetHw8dOhSnTp3CkSNH0LNnTwRzW0xqhjRcJvefCbv9SWnU8jfp7S3OZ5o8WSx+7G16uGIF56wogbQfkRTjwRW9LXO4h2jkyJFYvnw5/vjjD5vjHTt2xM0338xiiJrVMMi1Sxd528Juf1IaNf1NannTQzWRYjwA9hI5yuGC6NFHH0VeXh6GDh2K66+/Hn//+9/x448/woHkDyJFBbmy25+URm1/k8nJYvROTg6QkSHe5+ezGFIaDps5x+GCaMaMGfjiiy9w/vx5vPHGGygvL8eDDz6I0NBQzJo1C1u2bMGVK1fc2VZSKaUFuUrd/kDjFyB2+5Mc1Pg3KW16OG2aeK+ktpGI+xE5x+lJ1Xq9HnfffTfef/99nD17Flu3bkVYWBheeOEFXHfddbjnnnvw448/uqOtpFKXLomrY/T6+nFtubHbn5SGf5PkatfGeFDzHEq7d9SJEyewdetWREZGYrIUNaxCTLt3raNHxb0wevQAQkPlbo0ts1l7WUekbDU1wHvvASdOAH36AE88wQmx1HonTogxHkp8/nUHt6fdN/Tzzz9j165djY7v2rULly5dwt/+9jeni6GVK1ciKioKfn5+iI+Px+7du5s8d82aNRg5ciS6dOmCLl26IDExsdH5M2fOhE6ns7mNHz/eqTaRayg9yJXd/tqi5FgMQNx8sU8f4G9/A959V7zv00cZmzKSOnEekeOcLoiefPJJnD59utHxoqIiPPnkk043YPPmzUhNTcXixYuxb98+DBkyBElJSSgtLbV7fm5uLqZNm4acnBzk5eUhMjIS48aNQ1FRkc1548ePx7lz56y3jRs3Ot02aruGQa4+PvK2hbQtMxOIigISEoDp08X7qCjlFBtq2Kma1KdhjIfFIm9blM7pIbNOnTrh4MGD6N27t83x/Px8DB48GJednL0VHx+PYcOG4d133wUAWCwWREZGYu7cuVi4cGGLjzebzejSpQveffddzJgxA4DYQ1ReXo4tW7Y41RYJh8xcQxCAX38Vs8t695Z/uT1pV1MJ7dKEZbnn6JjNYnHW1OaMOp04lyg/n72Y5LxffxWHYmNixDennqxdh8z0ej1KSkoaHT937hw6dHBun8eamhrs3bsXiYmJ9Q3y8kJiYiLy8vIcukZVVRVqa2vRtWtXm+O5ubno3r07+vfvjzlz5uCCFLFuR3V1NUwmk82N2k5JQa6kXWqIxVDLTtWkThw2c4zTBdG4ceOQlpYGoxRKBaC8vBzPPfcc7rzzTqeudf78eZjNZoSEhNgcDwkJQXFxsUPX+Pvf/47w8HCbomr8+PH417/+hezsbLz22mv4/vvvcdddd8HcxDNeeno6goKCrLfIyEinfg6yTylBrqRtaig21LJTNakTCyLHOB3dsXz5ctxxxx3o1asXbrrpJgDAgQMHEBISgo8++sjlDWzO0qVLsWnTJuTm5sLPz896fOrUqdaPBw0ahMGDB6NPnz7Izc3F2LFjG10nLS0Nqamp1s9NJhOLojZSSpArkRqKDTXtVE3qwxgPxzhdEPXo0QMHDx7EJ598gl9++QX+/v5ISUnBtGnT4OPkrNng4GB4e3s3GoIrKSlBaAvrA5cvX46lS5fi22+/xeDBg5s9t3fv3ggODsbx48ftFkR6vR56vd6ptlPzlBLkSqSGYkPaqbqoyP7QnjSHSCk7VZO6dOggPhdXVoqbNPJNqn1OF0QAEBAQgMcee6zN39zX1xdDhw5FdnY2Jk2aBECcVJ2dnY2nnnqqycctW7YMr776KrZv3464uLgWv8+ZM2dw4cIFhPHtVbtpOFxG2qDUPZ3UUGwwNJXczWAQCyKTic/LTXFoDtHOnTsdvmBVVRUOHTrk8PmpqalYs2YNNmzYgMOHD2POnDmorKxESkoKADEyJC0tzXr+a6+9hhdeeAFr165FVFQUiouLUVxcjIp/b3ZTUVGBZ555Bjt37kRBQQGys7MxceJExMTEICkpyeF2Ues1DHK9Zq47eSglL2lXSywGd6omd+I8IgcIDoiJiRHGjRsnfPrpp0JFRYXdcw4dOiSkpaUJoaGhwoYNGxy5rNU777wj9OzZU/D19RWGDx8u7Ny50/q1UaNGCY888oj18169egkAGt0WL14sCIIgVFVVCePGjRO6desm+Pj4CL169RIeffRRobi42OH2GI1GAYBgNBqd+jlIVFAgCHv2CEJ+vtwtofbwxReCoNMJgtivUX/T6cTbF1/I3ULRF18IQkSEbRsjI5XTPkldnSDk5AhCRoZ4X1cnd4vIE1gsgrBvn/jcXFkpd2vcpy2v3w7tQ1RbW4tVq1Zh5cqVOHnyJPr164fw8HD4+fnh0qVLOHLkCCoqKnD//ffjueeew6BBg9xaxLkb9yFqPYsFOHhQHD7p10852WVqptShKEB9++co+XdJ5G7Hj4uLXTw5xqMtr99Ob8y4Z88e/PDDDzh16hSuXLmC4OBg3HTTTUhISGi0F5BasSBqvQsXgIICMch14EC5W6N+mZniHjoNC46ICHEISAlDKLm54vBYS3JyxGgUIpJPaam4xURgoPiG1RO15fXb6UnVcXFxDk1kJm2SJlMHB8vbDk/Q1O7KUpSDEuaVqGFJOxGJro3x8HJ6J0LPxl8HuczVq8oOclUTNeyuDKhjSTsRifz8xD2IBKH+uZrqsSAil5HSURjk2nZq2F0ZqF/S3tRO5DodEBnJ/XOIlIKrzZrGgohcQhDqCyL2DrWdWoai1LKknYhELIiaxoKIXIJBrq6lpqEo7p9DpB7Syt8rV8TnbKrn9KTqkydPonfv3u5oC6kYg1xdSw27KzeUnAxMnMgl7URK16ED0LEjUFXFXauv5XQPUUxMDBISEvDxxx/j6tWr7mgTqQyDXF1PjUNR3t7i0vpp08R7JbWNtMlsFreG2LhRvJd7EYJScNjMPqcLon379mHw4MFITU1FaGgoHn/8cezevdsdbSOVYJCre3AoyvX4AqkdSo6TkRsLIvuc3phRUldXh61bt2L9+vXIyspCv379MGvWLPz5z39Gt27dXN3OdsWNGZ1z6JC45L5XL+4/5A7cXdk1lL7JJblOU3t4Sb2rWn9DIQjAgQPiXkTXXy8OoXmKdt2p+lrV1dV47733kJaWhpqaGvj6+uJPf/oTXnvtNdWmy7MgclxlJXDkiLjB1+DBfKEmZeILpHaoLU5GLp4a49GW1+9WrzLbs2cPnnjiCYSFheHNN9/EggULcOLECXzzzTc4e/YsJk6c2NpLk4pIk6m7dNH2kwspl1o2uSTXUMseXnKTaoXLl+Vth5I4vcrszTffxLp163D06FHcfffd+Ne//oW7774bXv/eAzw6Ohrr169HVFSUq9tKCmOxAJcuiR9zMjUplTMvkMxbUz+17OElt4YFEWM8RE4XRKtWrcKsWbMwc+bMJofEunfvjg8//LDNjSNlu3RJfFet1zPVnpSLL5DaoqY9vOQkxXjU1IgxHpwd0oqC6NixYy2e4+vri0ceeaRVDSL1YJArqQFfILVFbXt4ySkwUFwlbDKxIAJaMYdo3bp1+Oyzzxod/+yzz7BhwwaXNIqUj0GupBbMW9MWNe7hJRcuv7fldEGUnp6OYDtdAt27d8c//vEPlzSKlI9BrqQWfIHUHu7h5RipIGKMh8jpgqiwsBDR0dGNjvfq1QuFhYUuaRQpG4NcSW34Aqk9yclAQQGQkwNkZIj3+fn8t25IivEA2EsEtGIOUffu3XHw4MFGq8h++eUXXMdXR01gkCupEfPWtEeKk6GmGQxirtnly3yD63RBNG3aNPzHf/wHAgMDcccddwAAvv/+e8ybNw9Tp051eQNJeRjkSmrFF0giWwYDUFzMHiKgFQXRK6+8goKCAowdOxYdOogPt1gsmDFjBucQaQCDXImIPEenTuIeRLW14lwiLedROl0Q+fr6YvPmzXjllVfwyy+/wN/fH4MGDUKvXr3c0T5SGAa5EhF5Dp1OXH5vNIq9RFp+Xne6IJL069cP/fr1c2VbSAW49xA1hSG0ROrUsCAKCZG7NfJxuiAym81Yv349srOzUVpaCovFYvP17777zmWNI2WprBT3H/LyErPLiCRMkidSL2n5fUWFtmM8nC6I5s2bh/Xr12PChAkYOHAgdJxVqxkMciV7mkqSLyoSj3NZO5Gy+fuL+8nV1mo7xsPpgmjTpk349NNPcffdd7ujPaRQFgtw8aL4MSdTk6SlJHmdTkySnziRRTSRkhkMjPFwumPM19cXMTEx7mgLKdilS2JRxCBXasiZJHkiUi6pCLp8Wd52yMnpgujpp5/GW2+9BcHeW0LyWJxMTfYwSZ7IM0gFUVWVdmM8nB4y++GHH5CTk4Nt27bhxhtvhM81QVaZmZkuaxwpA4Nc5aXk1VtMkifyDFKMh7Rrddeucreo/TldEHXu3Bn333+/O9pCCsUgV/koffWWlCRfVGR/HpFOJ36dSfJEyifFeJhMLIgcsm7dOne0gxSKQa7yUcPqLSlJfvJksfhp2FYmyROpi9ZjPFq120BdXR2+/fZbvP/++7j87xlYZ8+eRYU0rkIeg0Gu8mhp9RYgrt4ym9u1WXYxSZ7IMwQE2MZ4aI3TBdGpU6cwaNAgTJw4EU8++STKysoAAK+99hoWLFjQqkasXLkSUVFR8PPzQ3x8PHbv3t3kuWvWrMHIkSPRpUsXdOnSBYmJiY3OFwQBixYtQlhYGPz9/ZGYmIhjx461qm1axyBXeaht9VZyMlBQAOTkABkZ4n1+PoshIjXx8hKzzQBt9hI5XRDNmzcPcXFxuHTpEvwbhJ7cf//9yM7OdroBmzdvRmpqKhYvXox9+/ZhyJAhSEpKQmlpqd3zc3NzMW3aNOTk5CAvLw+RkZEYN24cioqKrOcsW7YMb7/9NlavXo1du3YhICAASUlJuHr1qtPt07LaWga5ykWNq7ekJPlp08R7DpMRqY+02kyLBREEJ3Xt2lU4cuSIIAiC0KlTJ+HEiROCIAhCfn6+4O/v7+zlhOHDhwtPPvmk9XOz2SyEh4cL6enpDj2+rq5OCAwMFDZs2CAIgiBYLBYhNDRUeP31163nlJeXC3q9Xti4caND1zQajQIAwWg0OvGTeJ7iYkHYs0cQDh+WuyXak5MjCGI/UPO3nBy5W0pEnqSqSnze37dPECwWuVvjvLa8fjvdQ2SxWGC2M3HhzJkzCHRyx76amhrs3bsXiYmJ1mNeXl5ITExEXl6eQ9eoqqpCbW0tuv57Snx+fj6Ki4ttrhkUFIT4+Pgmr1ldXQ2TyWRzI+49JCdp9VZTw5Q6HRAZydVbRORaUoyHxVK/3YpWOF0QjRs3DitWrLB+rtPpUFFRgcWLFzsd53H+/HmYzWaEXBOvGxISguLiYoeu8fe//x3h4eHWAkh6nDPXTE9PR1BQkPUWGRnp1M/hiRjkKi9p9RbQuCji6i0icietDps5XRC98cYb+PHHH3HDDTfg6tWrmD59OqKiolBUVITXXnvNHW1s0tKlS7Fp0yb893//N/z8/Fp9nbS0NBiNRuvt9OnTLmylOjHIVX5cvUVEctBqQeT0PkQRERH45ZdfsGnTJhw8eBAVFRWYPXs2HnroIZtJ1o4IDg6Gt7c3SkpKbI6XlJQgNDS02ccuX74cS5cuxbfffovBgwdbj0uPKykpQViD7XFLSkoQGxtr91p6vR56vd6ptnsyBrkqR3KyGIyq1J2qicjzSLNfqqqAujpx2xUtaNWP2aFDBzz88MNt/ua+vr4YOnQosrOzMWnSJADiHKXs7Gw89dRTTT5u2bJlePXVV7F9+3bExcXZfC06OhqhoaHIzs62FkAmkwm7du3CnDlz2txmLWCQq7JIq7eIiNqDj484l+jKFW3tWu10QfSvf/2r2a/PmDHDqeulpqbikUceQVxcHIYPH44VK1agsrISKSkp1uv16NED6enpAMT9jhYtWoSMjAxERUVZ5wV16tQJnTp1gk6nw/z587FkyRL07dsX0dHReOGFFxAeHm4tuqh5nExNRKRtBgMLohbNmzfP5vPa2lpUVVXB19cXHTt2dLogmjJlCsrKyrBo0SIUFxcjNjYWWVlZ1knRhYWF8PKqn+q0atUq1NTUYPLkyTbXWbx4MV588UUAwLPPPovKyko89thjKC8vx+23346srKw2zTPSCga5EhGRwQCUlGhrHpFOEOyFAzjn2LFjmDNnDp555hkkJSW5ol2yMplMCAoKgtFohEGaXaYRRUVilk1QEBATI3driIhIDhYL8Msv4v2NNwJq6U9oy+t3q7LMrtW3b18sXbq0Ue8RqQuDXImICNBmjIdLCiJAnGh99uxZV12OZMAgVyIikmht+b3Tc4i2bt1q87kgCDh37hzeffdd3HbbbS5rGLU/BrkSEZFEKoguXxZHEDz9dcHpgujalVo6nQ7dunXDmDFj8MYbb7iqXdTOGORKREQNSTEetbXiYhtP34bF6YLIYrG4ox0ks4sXxXcAAQHifwIiIqLAQPH1wWTy/ILIZXOISN249xAREV1LS/OInO4hSk1NdfjcN99809nLkwwY5EpERPZIBZEWYjyc/tH279+P/fv3o7a2Fv379wcA/PHHH/D29sbNN99sPU/n6bOvPIiWg1zNZuaEERE1pWGMx+XLnv2m2emC6N5770VgYCA2bNiALv/+zVy6dAkpKSkYOXIknn76aZc3ktynYZCr1obLMjOBefOAM2fqj0VEAG+9xSR5IiJJwxgPTy6InN6pukePHvj6669x44032hz/7bffMG7cOI/Yi0hLO1VfuAAUFIhBrgMHyt2a9pOZCUyeLE4kb0jq2Pz8cxZFRESAWAgdOwb4+gKDBsndmua1607VJpMJZWVljY6XlZXh8uXLzl6OZKbFydRms9gzZO+tgHRs/nzxPCIirevUSXyzWFMjzjf1VE4XRPfffz9SUlKQmZmJM2fO4MyZM/jiiy8we/ZsJPMttapoNch1xw7bYbJrCQJw+rR4HhGR1mklxsPpOUSrV6/GggULMH36dNTW1ooX6dABs2fPxuuvv+7yBpL7SLllQUHixDmtOHfOtecREbWWWhZ2GAzipGqTCejeXe7WuIfTBVHHjh3x3nvv4fXXX8eJEycAAH369EFAQIDLG0fu0zDIVUvDZYD4pOPK84iIWkNNCzsMBqCoyLNjPFq9MeO5c+dw7tw59O3bFwEBAXBybjbJrGGQa1CQ3K1pXyNHik86Tf2H1umAyEjxPCIid5AWdlw7fF9UJB7PzJSnXU3p2FF8vbBYxL3rPJHTBdGFCxcwduxY9OvXD3fffTfO/XtcYfbs2VxyryJaDnL19hbfgQGNf3bp8xUrlNltTUTqp9aFHZ6+a7XTBdHf/vY3+Pj4oLCwEB07drQenzJlCrKyslzaOHIPBrmK3dGffw706GF7PCKCS+6JyL3UurDD0wsip+cQff3119i+fTsiIiJsjvft2xenTp1yWcPIfRjkKkpOBiZOVMeERiLyHGpd2CEVRJWVnhnj4fSPU1lZadMzJLl48SL0er1LGkXupcW9h5ri7Q2MHi13K4hIS9S6sMPHB/DzE7ds8cQYD6eHzEaOHIl//etf1s91Oh0sFguWLVuGhIQElzaOXI9BrkRE8lLzwg5PHjZzuodo2bJlGDt2LPbs2YOamho8++yzOHToEC5evIgff/zRHW0kF9JykCsRkRJICzsmTxaLn4aTq5W+sMNgAEpLPbMgcrqHaODAgfjjjz9w++23Y+LEiaisrERycjL279+PPn36uKON5CJaDnIlIlIStS7sCAz03BgPp3qIamtrMX78eKxevRrPP/+8u9pEbnLpklgU6fX127ATEZE81LiwQ4rxkHat9vOTu0Wu41RB5OPjg4MHD7qrLeRmnExNRKQsalzYIcV4XL7sWTEeTg+ZPfzww/jwww/d0RZyI60GuRIRkWtJE6ulGA9P4fSk6rq6Oqxduxbffvsthg4d2ijD7M0333RZ48h1tBrkSkREriXFeNTViSuXPWUKhtMF0W+//Yabb74ZAPDHH3/YfE2ntQwIldBykCsREbleYKA4L9Vk0mBBdPLkSURHRyMnJ8ed7SE30HKQKxERuZ7BUF8QhYfL3RrXcHgOUd++fVFWVmb9fMqUKSgpKXFLo8i1tBzkSkRErtcwxkNpIbSt5XBBJFwzc+qrr75CZWWlyxtErtUwyJXDZURE5Aq+vvVL7j1lk0anV5mRujQMcvWk/SKIiEheDVebeQKHCyKdTtdo0jQnUSsf9x4iIiJ3kAoiaRRC7ZwaMps5cyaSk5ORnJyMq1ev4q9//av1c+nmrJUrVyIqKgp+fn6Ij4/H7t27mzz30KFDeOCBBxAVFQWdTocVK1Y0OufFF1+0Fm/SbcCAAU63yxMwyJWIiNylYYxHdbXcrWk7h1eZPfLIIzafP/zww23+5ps3b0ZqaipWr16N+Ph4rFixAklJSTh69Ci629n+sqqqCr1798aDDz6Iv/3tb01e98Ybb8S3335r/bxDB6d3F/AIDHIlIiJ3uTbGo1s3uVvUNg5XCuvWrXP5N3/zzTfx6KOPIiUlBQCwevVq/L//9/+wdu1aLFy4sNH5w4YNw7BhwwDA7tclHTp0QGhoqMvbqyYMciUiIneTYjw8oSCSbVJ1TU0N9u7di8TExPrGeHkhMTEReXl5bbr2sWPHEB4ejt69e+Ohhx5CYWFhs+dXV1fDZDLZ3NSOQa5ERORugYHivSfEeMhWEJ0/fx5msxkhISE2x0NCQlBcXNzq68bHx2P9+vXIysrCqlWrkJ+fj5EjR+JyM9Pg09PTERQUZL1FRka2+vsrBSdTExGRu0kxHmazOG9VzTxu2f1dd92FBx98EIMHD0ZSUhK++uorlJeX49NPP23yMWlpaTAajdbb6dOn27HFrscgVyIiag86XX0vkdoHV2SbbRwcHAxvb+9Gu12XlJS4dP5P586d0a9fPxw/frzJc/R6PfR6vcu+p9wY5EpERO1FivFQ+35EsvUQ+fr6YujQocjOzrYes1gsyM7OxogRI1z2fSoqKnDixAmEhYW57JpKxiBXIiJqT54S4yHrevTU1FQ88sgjiIuLw/Dhw7FixQpUVlZaV53NmDEDPXr0QHp6OgBxIvbvv/9u/bioqAgHDhxAp06dEBMTAwBYsGAB7r33XvTq1Qtnz57F4sWL4e3tjWnTpsnzQ7YzBrkSEVF7kmI8rl4Ve4k6d5a7Ra0ja0E0ZcoUlJWVYdGiRSguLkZsbCyysrKsE60LCwvh5VXfiXX27FncdNNN1s+XL1+O5cuXY9SoUcjNzQUAnDlzBtOmTcOFCxfQrVs33H777di5cye6qX09oIMY5EpERO3NYBALIpNJvQWRTrg2tZVgMpkQFBQEo9EIg9QXqAK1tcCvv4rDZjfeyOwyIiJqH0YjcPy4uNXLwIHytaMtr9/a3MLZQyktyNVsBnbsAM6dA8LCgJEjuWM2EZEn6tRJHJWorhZvalyn5HHL7rVMSXsPZWYCUVFAQgIwfbp4HxUlHiciIs/i7S2+GQfUu/yeBZGHqKhQTpBrZiYweTJw5ozt8aIi8TiLIiIizyONUKl1+T0LIg8hLbWXO8jVbAbmzbO/hbt0bP58dS/NJCKixqSCyGRSZ4wHCyIPoKQg1x07GvcMNSQIwOnT4nlEROQ5OnYU35CbzUBVldytcR4LIg+gpCDXc+dcex4REamDTmfbS6Q2LIg8gJImUzu6IbhGNg4nItIUFkQkG6UFuY4cCURENL0ppE4HREaK5xERkWeRgl7VGOPBgkjllBbk6u0NvPWW+PG1RZH0+YoV3I+IiMgT6fXiTRDUt9qMBZGKKTXINTkZ+PxzoEcP2+MREeLx5GR52kVERO6n1mEz7lStYkajcoNck5OBiRO5UzURkdYYDEBZGQsiakdS75BSg1y9vYHRo+VuBRERtafAwPoYj5oawNdX7hY5hkNmKlVbK/YQAcoaLiMiIm1Ta4wHCyKVUlqQKxERkUSN84hYEKmUkvYeIiIiakiNMR4siFRISUGuRERE11JjjAcLIhVSSpArERGRPTpd/SaNahk2Y0GkMkoKciUiImqK2uYRsSBSmYsXlRPkSkRE1BSpIFJLjAcLIpVR4s7URERE12oY4yFlbioZCyIVkYJcdTplBLkSERE1R03DZiyIVETqHTIYlBHkSkRE1BwWRORySg1yJSIiaoq00uzqVTHGQ8lYEKmEkoNciYiI7FFTjAfDXVVC6UGuRETkucxmYMcO4Nw5ICwMGDnS8X3wDAZxpZnJpOwRDvYQqQCDXImISC6ZmUBUFJCQAEyfLt5HRYnHHSHNI7p8WdkxHiyIVODCBQa5EhFR+8vMBCZPBs6csT1eVCQed6QoCggQe5Pq6oArV9zTTldgQaQCnExNRETtzWwG5s2z36sjHZs/v+VNF9US48GCSOEY5EpERHLYsaNxz1BDggCcPi2e1xI1LL9nQaRwDHIlIiI5nDvnuvOkgqiiQoyfUiIWRApmNjPIlYiI5BEW5rrzGsZ4XL7ctna5i+wF0cqVKxEVFQU/Pz/Ex8dj9+7dTZ576NAhPPDAA4iKioJOp8OKFSvafE0lu3SJQa5ERCSPkSOBiIimt3rR6YDISPE8Ryh9HpGsBdHmzZuRmpqKxYsXY9++fRgyZAiSkpJQWlpq9/yqqir07t0bS5cuRWhoqEuuqWScTE1ERHLx9gbeekv8+NqiSPp8xQrn9iMCWBDZ9eabb+LRRx9FSkoKbrjhBqxevRodO3bE2rVr7Z4/bNgwvP7665g6dSr0er1LrqlUDHIlIiK5JScDn38O9OhhezwiQjyenOz4taSCSKkxHrIVRDU1Ndi7dy8SExPrG+PlhcTEROTl5SnmmnJhkCsRESlBcjJQUADk5AAZGeJ9fr5zxRCg/BgP2aI7zp8/D7PZjJCQEJvjISEhOHLkSLtes7q6GtXV1dbPTTL/SzHIlYiIlMTbGxg9uu3XkWI8Ll9W3uub7JOqlSA9PR1BQUHWW2RkpKztYZArERF5IiXPI5KtIAoODoa3tzdKSkpsjpeUlDQ5Ydpd10xLS4PRaLTeTp8+3arv7yoMciUiIk8UECBuNFxXB1RVyd0aW7IVRL6+vhg6dCiys7OtxywWC7KzszFixIh2vaZer4fBYLC5yYVBrkRE5KmUHOMh2xwiAEhNTcUjjzyCuLg4DB8+HCtWrEBlZSVSUlIAADNmzECPHj2Qnp4OQJw0/fvvv1s/LioqwoEDB9CpUyfExMQ4dE2lY5ArERF5MoNBfONvMgGtHBByC1kLoilTpqCsrAyLFi1CcXExYmNjkZWVZZ0UXVhYCC+v+k6ss2fP4qabbrJ+vnz5cixfvhyjRo1Cbm6uQ9dUOk6mJiIiT3ZtjIeXQmYz6wTBXo6ttplMJgQFBcFoNLbr8FlFBXD0qPjHMXgws8uIiMgz/fqruBdRTIxrFw+15fVbIXUZAQxyJSIibZBqFSXlmsk6ZEb1nAlyNZuBHTvEhOGwMDFHhgUUERGphcEAnD+vrInVLIgUwtEg18xMYN484MyZ+mMREWLejLO7hhIREclBWml25Yq4uloJiQwcMlMIRyZTZ2YCkyfbFkMAUFQkHs/MdF/7iIiIXKVDB+XFeLAgUgBHglzNZrFnyN4UeOnY/PnieUREREqntP2IWBApwPnz4n1zQa47djTuGWpIEIDTp8XziIiIlE5pMR4siGQmCI5Npj53zrHrOXoeERGRnDp1UlaMBwsimTka5BoW5tj1HD2PiIhITkqL8WBBJDNHg1xHjhRXkzV1jk4HREaK5xEREamBkvYjYkEkI2eCXL29xaX1QOOiSPp8xQruR0REROrRsCCyWORtCwsiGTkb5JqcDHz+OdCjh+3xiAjxOPchIiIiNfHzA3x9xdfCigp528KNGWXUmiDX5GRg4kTuVE1ERJ6h4a7V7Rgf2ggLIplUVIj7D3l5idllzvD2BkaPdkuziIiI2pVSYjw4ZCYTae8hBrkSEZGWXRvjIRcWRDIwm8XsMsC54TIiIiJP06ED0LGj+LGcvUQsiGQgBbn6+TUf5EpERKQFSti1mgWRDBruPURERKR1StiPiAVRO3MkyJWIiEhLpBiP2lpxLpEcWBC1M6l3qLkgVyIiIi1RQowHC6J2JAit23uIiIjI08k9j4gFUTuSglx9fJoPciUiItIaqSCqqJAnxoMFUTuSeoe6dm0+yJWIiEhr/PzEDgOLRZ4YDxZE7cSZIFciIiItknPYjAVRO3E2yJWIiEhrWBBpACdTExERNU8qiOSI8WBB1A7aEuRKRESkFQ1jPNp7k0YWRO2AQa5ERESOkWvYjAWRmzHIlYiIyHEsiDwUg1yJiIgcFxAgT4wHCyI3Y5ArERGR47y86jsQ2rOXiAWRGzHIlYiIyHlyDJuxIHIjaTI1g1yJiIgcJ0eMhyIKopUrVyIqKgp+fn6Ij4/H7t27mz3/s88+w4ABA+Dn54dBgwbhq6++svn6zJkzodPpbG7jx49354/QiCAAFy+KH3MyNRERkeP8/etjPCor2+d7yl4Qbd68GampqVi8eDH27duHIUOGICkpCaWlpXbP/+mnnzBt2jTMnj0b+/fvx6RJkzBp0iT89ttvNueNHz8e586ds942btzYHj+OFYNciYiIWq+9h810giAI7fOt7IuPj8ewYcPw7rvvAgAsFgsiIyMxd+5cLFy4sNH5U6ZMQWVlJb788kvrsVtuuQWxsbFYvXo1ALGHqLy8HFu2bGlVm0wmE4KCgmA0GmGQ/kWcdOIEUF4OhIQAERGtugQREZFmXbwI5OeLGzVef71jj2nL67esPUQ1NTXYu3cvEhMTrce8vLyQmJiIvLw8u4/Jy8uzOR8AkpKSGp2fm5uL7t27o3///pgzZw4uSMu92gGDXImIiNomMFC8r6oC6urc//06uP9bNO38+fMwm80ICQmxOR4SEoIjR47YfUxxcbHd84uLi62fjx8/HsnJyYiOjsaJEyfw3HPP4a677kJeXh687WwVXV1djerqauvnpjb2z0lBrp06MciViIioNXx8xLlEV66Iw2Zdu7r3+8laELnL1KlTrR8PGjQIgwcPRp8+fZCbm4uxY8c2Oj89PR0vvfSSy74/9x4iIiJqO4Oh/QoiWYfMgoOD4e3tjZKSEpvjJSUlCA0NtfuY0NBQp84HgN69eyM4OBjHjx+3+/W0tDQYjUbr7fTp007+JPUY5EpEROQa7TmxWtaCyNfXF0OHDkV2drb1mMViQXZ2NkaMGGH3MSNGjLA5HwC++eabJs8HgDNnzuDChQsICwuz+3W9Xg+DwWBzay0GuRIREblGp071MR5Xr7r3e8m+7D41NRVr1qzBhg0bcPjwYcyZMweVlZVISUkBAMyYMQNpaWnW8+fNm4esrCy88cYbOHLkCF588UXs2bMHTz31FACgoqICzzzzDHbu3ImCggJkZ2dj4sSJiImJQVJSklt/Fga5EhERuU57xnjIPodoypQpKCsrw6JFi1BcXIzY2FhkZWVZJ04XFhbCy6u+brv11luRkZGB//zP/8Rzzz2Hvn37YsuWLRg4cCAAwNvbGwcPHsSGDRtQXl6O8PBwjBs3Dq+88gr0er1bfxYGuRIREbmWwSAWQyYT0L27+76P7PsQKVFr9zE4ckTcUbNHD6CZKU1ERETkoCtXgN9/F3uLYmPFfNCmqHYfIk9y9apYDDHIlYiIyHUaxnhUVLjv+7AgchFpMnVQEINciYiIXKk9VpuxIHIBQeDeQ0RERO4i7VrNgkjhjEZxW3EGuRIREbme1EPkzhgPFkQuIA2Xde3a/GQvIiIicp4U4wG4r5eIBVEb1dbW/+Nw7yEiIiL3kHqJLl92z/VZELWRFOQaEMAgVyIiIndx98RqFkRtJE2mZu8QERGR+3TqJE5LqalxT4wHC6I2YJArERFR+/Dycu9qMxZEbcAgVyIiovbjzmEzFkStxCBXIiKi9iX1EF2+LM7fdSUWRK3EIFciIqL21bEj0KGDe2I8WBC1kjRcxp2piYiI2o+7lt+zIGoFBrkSERHJw13ziFgQtQKDXImIiOQhFUSVla6N8WBB5CQGuRIREcmnYYyHK4fNWBA5iUGuRERE8nLHsBkLIicxyJWIiEheLIhkxiBXIiIi+bkjxoMFkROkINdOnRjkSkREJBcvr/o9AF3VS8SCyAmcTE1ERKQMrt6PiAWRgxjkSkREpBwNCyJXxHiwIHJQw8nUDHIlIiKSlxTjYTaLexK1FQsiBzQMcuVwGRERkTK4crUZCyIHMMiViIhIeVgQtTMGuRIRESlPYKB4X1kpjua0BQuiFjDIlYiISJl8feu3wWlrLxELohYwyJWIiEi5XDVsxoKoGQxyJSIiUjYWRO2AQa5ERETKFhhYH+NRXd3667AgakbD3iEGuRIRESlPwxiPtuxazYKoGdIvlsNlREREyuWKYTNFFEQrV65EVFQU/Pz8EB8fj927dzd7/meffYYBAwbAz88PgwYNwldffWXzdUEQsGjRIoSFhcHf3x+JiYk4duyY0+1ikCsREZHySQVRRUXrryF7QbR582akpqZi8eLF2LdvH4YMGYKkpCSUlpbaPf+nn37CtGnTMHv2bOzfvx+TJk3CpEmT8Ntvv1nPWbZsGd5++22sXr0au3btQkBAAJKSknD16lWn28feISIiImXz96+P8WgtnSC4IhKt9eLj4zFs2DC8++67AACLxYLIyEjMnTsXCxcubHT+lClTUFlZiS+//NJ67JZbbkFsbCxWr14NQRAQHh6Op59+GgsWLAAAGI1GhISEYP369Zg6dWqLbTKZTAgKCsL//Z8Rt95qYHYZERGRwp08CZw+bcLo0UEwGo0wSN1GDpK1h6impgZ79+5FYmKi9ZiXlxcSExORl5dn9zF5eXk25wNAUlKS9fz8/HwUFxfbnBMUFIT4+Pgmr9mULl0Y5EpERKQGTtY/jXRwTTNa5/z58zCbzQgJCbE5HhISgiNHjth9THFxsd3zi4uLrV+XjjV1zrWqq6tR3WCtntFoBAD4+Jhcko9CRERE7ldZKb5ot2bwS9aCSCnS09Px0ksvNTo+YECkDK0hIiKitrhw4QKCnNxAUNaCKDg4GN7e3igpKbE5XlJSgtDQULuPCQ0NbfZ86b6kpARhYWE258TGxtq9ZlpaGlJTU62fl5eXo1evXigsLHT6F0rkDiaTCZGRkTh9+rTT4+JE7sK/S1Iao9GInj17omvXrk4/VtaCyNfXF0OHDkV2djYmTZoEQJxUnZ2djaeeesruY0aMGIHs7GzMnz/feuybb77BiBEjAADR0dEIDQ1Fdna2tQAymUzYtWsX5syZY/eaer0eer2+0fGgoCD+JydFMRgM/JskxeHfJSmNl5fzU6RlHzJLTU3FI488gri4OAwfPhwrVqxAZWUlUlJSAAAzZsxAjx49kJ6eDgCYN28eRo0ahTfeeAMTJkzApk2bsGfPHnzwwQcAAJ1Oh/nz52PJkiXo27cvoqOj8cILLyA8PNxadBERERE1JHtBNGXKFJSVlWHRokUoLi5GbGwssrKyrJOiCwsLbSq9W2+9FRkZGfjP//xPPPfcc+jbty+2bNmCgQMHWs959tlnUVlZicceewzl5eW4/fbbkZWVBT/usEhERER2yL4PkRJVV1cjPT0daWlpdofSiNob/yZJifh3SUrTlr9JFkRERESkebJHdxARERHJjQURERERaR4LIiIiItI8FkRERESkeSyIGpg5cyZ0Ol2j21/+8he5m0YaZDabceuttyI5OdnmuNFoRGRkJJ5//nmZWkZaJT1H/vWvf230tSeffBI6nQ4zZ85s/4aR5rni9Vv2fYiUZvz48Vi3bp3NsY4dO8rUGtIyb29vrF+/HrGxsfjkk0/w0EMPAQDmzp2Lrl27YvHixTK3kLQoMjISmzZtwj//+U/4+/sDAK5evYqMjAz07NlT5taRlrX19ZsF0TX0en2TOWpE7a1fv35YunQp5s6dizFjxmD37t3YtGkTfv75Z/j6+srdPNKgm2++GSdOnEBmZqa1SM/MzETPnj0RHR0tc+tIy9r6+s0hMyKFmzt3LoYMGYI///nPeOyxx7Bo0SIMGTJE7maRhs2aNcvmnfjatWutcUtEasWCiEjhdDodVq1ahezsbISEhGDhwoVyN4k07uGHH8YPP/yAU6dO4dSpU/jxxx/x8MMPy90sojbhkBmRCqxduxYdO3ZEfn4+zpw5g6ioKLmbRBrWrVs3TJgwAevXr4cgCJgwYQKCg4PlbhZRm7CHiEjhfvrpJ/zzn//El19+ieHDh2P27Nlg4g7JbdasWVi/fj02bNiAWbNmyd0cojZjQUSkYFVVVZg5cybmzJmDhIQEfPjhh9i9ezdWr14td9NI48aPH4+amhrU1tYiKSlJ7uYQtRkLIiIFS0tLgyAIWLp0KQAgKioKy5cvx7PPPouCggJ5G0ea5u3tjcOHD+P333+Ht7e33M0hajMWREQK9f3332PlypVYt26dzV4ajz/+OG699VYOnZHsDAYDDAaD3M0gcgmdwGdUIiIi0jj2EBEREZHmsSAiIiIizWNBRERERJrHgoiIiIg0jwURERERaR4LIiIiItI8FkRERESkeSyIiIiISPNYEBGRS61evRqBgYGoq6uzHquoqICPjw9Gjx5tc25ubi50Oh1OnDjRzq10vYKCAuh0Ohw4cEDuphBRK7AgIiKXSkhIQEVFBfbs2WM9tmPHDoSGhmLXrl24evWq9XhOTg569uyJPn36yNFUxaqtrZW7CUSaw4KIiFyqf//+CAsLQ25urvVYbm4uJk6ciOjoaOzcudPmeEJCAj766CPExcUhMDAQoaGhmD59OkpLSwEAFosFERERWLVqlc332b9/P7y8vHDq1CkAQHl5Of7yl7+gW7duMBgMGDNmDH755RcAwB9//AGdTocjR47YXOOf//ynTTH222+/4a677kKnTp0QEhKCP//5zzh//rz16xaLBcuWLUNMTAz0ej169uyJV199FQAQHR0NALjpppug0+msvWEWiwUvv/wyIiIioNfrERsbi6ysLOs1pZ6lzZs3Y9SoUfDz88Mnn3zSqt89EbUeCyIicrmEhATk5ORYP8/JycHo0aMxatQo6/ErV65g165dSEhIQG1tLV555RX88ssv2LJlCwoKCjBz5kwAgJeXF6ZNm4aMjAyb7/HJJ5/gtttuQ69evQAADz74IEpLS7Ft2zbs3bsXN998M8aOHYuLFy+iX79+iIuLa1RofPLJJ5g+fToAsaAaM2YMbrrpJuzZswdZWVkoKSnBn/70J+v5aWlpWLp0KV544QX8/vvvyMjIQEhICABg9+7dAIBvv/0W586dQ2ZmJgDgrbfewhtvvIHly5fj4MGDSEpKwn333Ydjx47ZtGXhwoWYN28eDh8+jKSkpDb9/omoFQQiIhdbs2aNEBAQINTW1gomk0no0KGDUFpaKmRkZAh33HGHIAiCkJ2dLQAQTp061ejxP//8swBAuHz5siAIgrB//35Bp9NZzzWbzUKPHj2EVatWCYIgCDt27BAMBoNw9epVm+v06dNHeP/99wVBEIR//vOfQp8+faxfO3r0qABAOHz4sCAIgvDKK68I48aNs3n86dOnBQDC0aNHBZPJJOj1emHNmjV2f+b8/HwBgLB//36b4+Hh4cKrr75qc2zYsGHCE088YfO4FStWNPHbJKL2wB4iInK50aNHo7KyEj///DN27NiBfv36oVu3bhg1apR1HlFubi569+6Nnj17Yu/evbj33nvRs2dPBAYGYtSoUQCAwsJCAEBsbCyuv/56ay/R999/j9LSUjz44IMAgF9++QUVFRW47rrr0KlTJ+stPz/fOmF76tSpKCgosA7ZffLJJ7j55psxYMAA6zVycnJsHi997cSJEzh8+DCqq6sxduxYh38PJpMJZ8+exW233WZz/LbbbsPhw4dtjsXFxTn1OyYi1+ogdwOIyPPExMQgIiICOTk5uHTpkrXACQ8PR2RkJH766Sfk5ORgzJgxqKysRFJSEpKSkvDJJ5+gW7duKCwsRFJSEmpqaqzXfOihh5CRkYGFCxciIyMD48ePx3XXXQdAXMV27bwlSefOnQEAoaGhGDNmDDIyMnDLLbcgIyMDc+bMsZ5XUVGBe++9F6+99lqja4SFheHkyZMu/A01FhAQ4NbrE1Hz2ENERG6RkJCA3Nxc5Obm2iy3v+OOO7Bt2zbs3r0bCQkJOHLkCC5cuIClS5di5MiRGDBggHVCdUPTp0/Hb7/9hr179+Lzzz/HQw89ZP3azTffjOLiYnTo0AExMTE2t+DgYOt5Dz30EDZv3oy8vDycPHkSU6dOtbnGoUOHEBUV1egaAQEB6Nu3L/z9/ZGdnW335/X19QUAmM1m6zGDwYDw8HD8+OOPNuf++OOPuOGGG5z7hRKRe8k9ZkdEnmnt2rWCv7+/0KFDB6G4uNh6fMOGDUJgYKAAQDh79qxQWloq+Pr6Cs8884xw4sQJ4X/+53+Efv362Z2Pc9tttwlDhgwRAgMDhaqqKutxi8Ui3H777cKQIUOE7du3C/n5+cKPP/4oPPfcc8LPP/9sPc9kMgn+/v7CkCFDhLFjx9pcu6ioSOjWrZswefJkYffu3cLx48eFrKwsYebMmUJdXZ0gCILw4osvCl26dBE2bNggHD9+XMjLyxP+67/+SxAEQaitrRX8/f2FJUuWCMXFxUJ5ebkgCOLcJYPBIGzatEk4cuSI8Pe//13w8fER/vjjD0EQmp57RETtiwUREbmF9EI/YMAAm+MFBQUCAKF///7WYxkZGUJUVJSg1+uFESNGCFu3brVbJLz33nsCAGHGjBmNvp/JZBLmzp0rhIeHCz4+PkJkZKTw0EMPCYWFhTbn/elPfxIACGvXrm10jT/++EO4//77hc6dOwv+/v7CgAEDhPnz5wsWi0UQBHEy95IlS4RevXoJPj4+Qs+ePYV//OMf1sevWbNGiIyMFLy8vIRRo0ZZH/Piiy8KPXr0EHx8fIQhQ4YI27Zta/R7YkFEJC+dIAiCbN1TRERERArAOURERESkeSyIiIiISPNYEBEREZHmsSAiIiIizWNBRERERJrHgoiIiIg0jwURERERaR4LIiIiItI8FkRERESkeSyIiIiISPNYEBEREZHmsSAiIiIizfv/A/xQO44IM9AAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -2506,7 +1023,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.16" + "version": "3.11.7" }, "title": "Photonic Crystal Band Structure Calculation | Flexcompute", "widgets": {