-
Notifications
You must be signed in to change notification settings - Fork 4
/
ResNet_feature.py
105 lines (79 loc) · 3.2 KB
/
ResNet_feature.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
# Reference "https://github.com/pytorch/vision/blob/master/torchvision/models/resnet.py"
import torch
import torch.nn as nn
from torch.autograd import Variable
import math
def conv3_3(in_planes,out_planes,stride=1):
return nn.Conv2d(in_channels=in_planes,out_channels=out_planes,stride=stride,kernel_size=3,padding=1,bias=False) #??
class BasicBlock(nn.Module):
expansion = 1
def __init__(self,in_planes,planes,stride=1,downsample=None): # downsample 的条件
super(BasicBlock, self).__init__()
self.conv1 = conv3_3(in_planes,planes,stride=stride)
self.bn1 = nn.BatchNorm2d(planes)
self.relu = nn.ReLU(inplace=True) # 另一位用 sigmod ?
self.conv2 = conv3_3(planes,planes)
self.bn2 = nn.BatchNorm2d(planes)
self.downsample = downsample # downsample -> nn, 考虑维度
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
if self.downsample is not None:
residual = self.downsample(x)
out += residual
out = self.relu(out)
return out
class ResNet(nn.Module):
def __init__(self,block,layers):
super(ResNet,self).__init__()
self.inplanes = 64
self.conv1 = nn.Conv2d(3,64,kernel_size=7,padding=3,stride=2,bias=False)
self.bn1 = nn.BatchNorm2d(64)
self.relu = nn.ReLU(inplace=True)
self.maxpool = nn.MaxPool2d(kernel_size=3,stride=2,padding=1)
self.layer1 = self._make_layer(block,64,layers[0])
self.layer2 = self._make_layer(block,128,layers[1],stride=2)
self.layer3 = self._make_layer(block,256,layers[2],stride=2)
for m in self.modules():
if isinstance(m,nn.Conv2d):
n = m.kernel_size[0]*m.kernel_size[1]*m.out_channels # m.kaiming
m.weight.data.normal_(0,math.sqrt(2./n))
elif isinstance(m,nn.BatchNorm2d):
m.weight.data.fill_(1)
m.bias.data.zero_()
def _make_layer(self,block,planes,blocks,stride = 1):
downsample = None
if stride!=1 or self.inplanes!=planes*block.expansion:
downsample = nn.Sequential(
nn.Conv2d(self.inplanes,planes*block.expansion,kernel_size=1,stride=stride,bias=False),
nn.BatchNorm2d(planes*block.expansion)
)
layers = []
layers.append(block(self.inplanes,planes,stride,downsample))
self.inplanes = planes*block.expansion
for i in range(1,blocks):
layers.append(block(self.inplanes,planes))
return nn.Sequential(*layers)
def forward(self, x):
out= self.conv1(x)
out= self.bn1(out)
out = self.relu(out)
out = self.maxpool(out)
out= self.layer1(out)
out= self.layer2(out)
out= self.layer3(out)
return out
def resnet18():
model = ResNet(BasicBlock,[3,4,6])
return model
def test():
x = Variable(torch.randn(5,3,224,224)).cuda()
net = resnet18().cuda()
y =net(x)
print(y.size())
if __name__=="__main__":
test()