From 0faeeca5b2f792cf01dc709b5c41b311d27cb9ba Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Fr=C3=A9d=C3=A9ric=20Chapoton?= Date: Fri, 30 Aug 2024 15:49:28 +0200 Subject: [PATCH] fix a bunch of typos --- acinclude.m4 | 2 +- config/config.guess | 2 +- doc/source/acb_theta.rst | 6 +++--- doc/source/ca_ext.rst | 2 +- doc/source/fmpz_lll.rst | 2 +- doc/source/gr_generic.rst | 2 +- doc/source/mpn_mod.rst | 4 ++-- doc/source/nf_elem.rst | 4 ++-- doc/source/nfloat.rst | 2 +- doc/source/qfb.rst | 2 +- doc/source/qsieve.rst | 2 +- src/acb_dirichlet/l_jet.c | 2 +- src/acb_mat/templates.c | 2 +- src/acb_theta/sp2gz_decompose.c | 2 +- src/arb_mat/templates.c | 2 +- src/ca/fmpz_mpoly_evaluate.c | 2 +- src/fft_small/nmod_poly_mul.c | 2 +- src/fft_small/profile/p-mul.c | 2 +- src/fmpz_mod_poly/minpoly.c | 2 +- src/generic_files/io.c | 2 +- src/gr_poly/hgcd.c | 2 +- src/mpn_extras/asm-defs.m4 | 6 +++--- src/mpn_extras/x86_64/broadwell/mul_hard.asm | 2 +- src/mpoly.h | 2 +- src/mpoly/doc/MPolyAlgorithms.tex | 10 +++++----- src/nmod_mat/mul.c | 2 +- src/nmod_poly/hgcd.c | 2 +- src/nmod_poly/test/t-conway.c | 2 +- src/test/t-io.c | 2 +- 29 files changed, 39 insertions(+), 39 deletions(-) diff --git a/acinclude.m4 b/acinclude.m4 index 6e5e5bb56e..6bf8adc7b3 100644 --- a/acinclude.m4 +++ b/acinclude.m4 @@ -1200,7 +1200,7 @@ dnl dnl The default is "L" if the tests fail for any reason. There's a good dnl chance this will be adequate, since on most systems labels are local dnl anyway unless given a ".globl", and an "L" will avoid clashes with -dnl other identifers. +dnl other identifiers. dnl dnl For gas, ".L" is normally purely local to the assembler, it doesn't get dnl put into the object file at all. This style is preferred, to keep the diff --git a/config/config.guess b/config/config.guess index a180c97749..5de61a6463 100755 --- a/config/config.guess +++ b/config/config.guess @@ -88,7 +88,7 @@ exact_cpu= # can't be done, or don't work. # # When a number of probes are done, test -z "$exact_cpu" can be used instead -# of putting each probe under an "else" of the preceeding. That can stop +# of putting each probe under an "else" of the preceding. That can stop # the code getting horribly nested and marching off the right side of the # screen. diff --git a/doc/source/acb_theta.rst b/doc/source/acb_theta.rst index 69f0eec60f..1f4700352e 100644 --- a/doc/source/acb_theta.rst +++ b/doc/source/acb_theta.rst @@ -944,7 +944,7 @@ Quasi-linear algorithms: AGM steps sign is determined by *rts*: each `r_k` will overlap the corresponding entry of *rts* but not its opposite. Exceptional cases are handled as follows: if both square roots of `a_k` overlap *rts*, then `r_k` is set to - their :func:`acb_union`; if none ovelaps *rts*, then `r_k` is set to an + their :func:`acb_union`; if none overlaps *rts*, then `r_k` is set to an indeterminate value. .. function:: void acb_theta_agm_mul(acb_ptr res, acb_srcptr a1, acb_srcptr a2, slong g, slong prec) @@ -1032,7 +1032,7 @@ domain, however `\mathrm{Im}(\tau)` may have large eigenvalues. return value is 1 iff all the calls to *worker* succeed. For each `0\leq a < 2^g`, we compute *R2* and *eps* as in - :func:`acb_theta_naive_radius` at shifted absolte precision *prec*. Note + :func:`acb_theta_naive_radius` at shifted absolute precision *prec*. Note that `n^T \mathrm{Im}(\tau) n\geq \lVert C_1 n_1\rVert^2`, where `C_1` denotes the lower-right block of `C` of dimensions `(g-s)\times(g-s)`. Thus, in order to compute `\theta_{a,0}(z, 2^n\tau)` at @@ -1712,7 +1712,7 @@ Checks that the result of :func:`acb_theta_naive_term` is `n^k ./build/acb_theta/test/main acb_theta_naive_00 -Checks that the ouput of :func:`acb_theta_naive_00` overlaps the first entry of +Checks that the output of :func:`acb_theta_naive_00` overlaps the first entry of the output of :func:`acb_theta_naive_0b`. .. code-block:: bash diff --git a/doc/source/ca_ext.rst b/doc/source/ca_ext.rst index 8613143638..a39390ab16 100644 --- a/doc/source/ca_ext.rst +++ b/doc/source/ca_ext.rst @@ -14,7 +14,7 @@ The content of a :type:`ca_ext_t` can be one of the following: instances. * A builtin symbolic constant such as `\pi`. (This is just a special case of the above with a zero-length argument list.) -* (Not implemented): a user-defined constant or function defined by suppling +* (Not implemented): a user-defined constant or function defined by supplying a function pointer for Arb numerical evaluation to specified precision. The :type:`ca_ext_t` structure is heavy-weight object, not just meant to act diff --git a/doc/source/fmpz_lll.rst b/doc/source/fmpz_lll.rst index 3158ad7e2a..d2601d2938 100644 --- a/doc/source/fmpz_lll.rst +++ b/doc/source/fmpz_lll.rst @@ -288,7 +288,7 @@ See https://arxiv.org/abs/cs/0701183 for the algorithm of Villard. The return from these functions is always conclusive: the functions * :func:`fmpz_mat_is_reduced` or :func:`fmpz_mat_is_reduced_gram` * :func:`fmpz_mat_is_reduced_with_removal` or :func:`fmpz_mat_is_reduced_gram_with_removal` - are optimzied by calling the above heuristics first and returning right away if they give a conclusive answer. + are optimized by calling the above heuristics first and returning right away if they give a conclusive answer. Modified ULLL diff --git a/doc/source/gr_generic.rst b/doc/source/gr_generic.rst index 488f98907b..4defbb6c36 100644 --- a/doc/source/gr_generic.rst +++ b/doc/source/gr_generic.rst @@ -58,7 +58,7 @@ Generic string parsing for exponents. If this flag is set, exponents are parsed as arbitrary subexpressions within the same ring. * ``GR_PARSE_BALANCE_ADDITIONS`` - attempt to improve performance for huge sums - by reording additions (useful for polynomials) + by reordering additions (useful for polynomials) Generic arithmetic ----------------------------------------------------------------------------------------- diff --git a/doc/source/mpn_mod.rst b/doc/source/mpn_mod.rst index c56f0934e0..3ce0598566 100644 --- a/doc/source/mpn_mod.rst +++ b/doc/source/mpn_mod.rst @@ -57,7 +57,7 @@ Context objects .. macro:: MPN_MOD_CTX_NLIMBS(ctx) - Retrives the number of limbs `\ell` of the modulus. + Retrieves the number of limbs `\ell` of the modulus. .. macro:: MPN_MOD_CTX_MODULUS_BITS @@ -259,7 +259,7 @@ Division .. function:: int _mpn_mod_poly_inv_series(nn_ptr Q, nn_srcptr B, slong lenB, slong len, gr_ctx_t ctx) int _mpn_mod_poly_div_series(nn_ptr Q, nn_srcptr A, slong lenA, nn_srcptr B, slong lenB, slong len, gr_ctx_t ctx) - Power series inversion and divison with automatic selection + Power series inversion and division with automatic selection between basecase and Newton algorithms. .. function:: int _mpn_mod_poly_divrem_basecase_preinv1(nn_ptr Q, nn_ptr R, nn_srcptr A, slong lenA, nn_srcptr B, slong lenB, nn_srcptr invL, gr_ctx_t ctx) diff --git a/doc/source/nf_elem.rst b/doc/source/nf_elem.rst index 4ae78c366d..f95ca1de6b 100644 --- a/doc/source/nf_elem.rst +++ b/doc/source/nf_elem.rst @@ -315,7 +315,7 @@ Modular reduction .. function:: void nf_elem_mod_fmpz_den(nf_elem_t z, const nf_elem_t a, const fmpz_t mod, const nf_t nf, int den) If ``den == 0``, return an element `z` with denominator `1`, such that - the coefficients of `z - da` are divisble by ``mod``, where `d` is the + the coefficients of `z - da` are divisible by ``mod``, where `d` is the denominator of `a`. The coefficients of `z` are reduced modulo ``mod``. If ``den == 1``, return an element `z`, such that `z - a` has @@ -328,7 +328,7 @@ Modular reduction .. function:: void nf_elem_smod_fmpz_den(nf_elem_t z, const nf_elem_t a, const fmpz_t mod, const nf_t nf, int den) If ``den == 0``, return an element `z` with denominator `1`, such that - the coefficients of `z - da` are divisble by ``mod``, where `d` is the + the coefficients of `z - da` are divisible by ``mod``, where `d` is the denominator of `a`. The coefficients of `z` are reduced modulo ``mod``. If ``den == 1``, return an element `z`, such that `z - a` has diff --git a/doc/source/nfloat.rst b/doc/source/nfloat.rst index 39d425ce52..dadd48c02d 100644 --- a/doc/source/nfloat.rst +++ b/doc/source/nfloat.rst @@ -154,7 +154,7 @@ Context objects (for example, ``prec = 53`` actually creates a domain with 64-bit precision). - Returns ``GR_UNABLE`` without initializating the context object + Returns ``GR_UNABLE`` without initializing the context object if the given precision is too large to be supported, otherwise returns ``GR_SUCCESS``. diff --git a/doc/source/qfb.rst b/doc/source/qfb.rst index 2075660637..cc6290bc95 100644 --- a/doc/source/qfb.rst +++ b/doc/source/qfb.rst @@ -12,7 +12,7 @@ Authors: Introduction -------------------------------------------------------------------------------- -This module contains functionality for creating, listing and reducing binary quadratic forms. A ``qfb`` struct consists of three ``fmpz_t`` s, `a`, `b` and `c`, and basic algorithms for operations such as reduction, composition and enumerating are inplemented and described below. +This module contains functionality for creating, listing and reducing binary quadratic forms. A ``qfb`` struct consists of three ``fmpz_t`` s, `a`, `b` and `c`, and basic algorithms for operations such as reduction, composition and enumerating are implemented and described below. Currently the code only works for definite binary quadratic forms. diff --git a/doc/source/qsieve.rst b/doc/source/qsieve.rst index 15e655f343..cd497140a3 100644 --- a/doc/source/qsieve.rst +++ b/doc/source/qsieve.rst @@ -69,7 +69,7 @@ `i = 0, 1, 2,\dots`, where `\operatorname{soln1} _p` and `\operatorname{soln2} _p` are the sieve offsets calculated for `p`. -.. function:: void qsieve_do_sieving2(qs_t qs_inf, unsigned char * seive, qs_poly_t poly) +.. function:: void qsieve_do_sieving2(qs_t qs_inf, unsigned char * sieve, qs_poly_t poly) Perform the same task as above but instead of sieving over whole array at once divide the array in blocks and then sieve over each block for all the primes in factor base. diff --git a/src/acb_dirichlet/l_jet.c b/src/acb_dirichlet/l_jet.c index 230acea68b..f16074680a 100644 --- a/src/acb_dirichlet/l_jet.c +++ b/src/acb_dirichlet/l_jet.c @@ -13,7 +13,7 @@ #include "acb_dirichlet.h" #include "acb_poly.h" -/* todo: move implemetation to the acb_dirichlet module */ +/* todo: move implementation to the acb_dirichlet module */ void _acb_poly_zeta_cpx_reflect(acb_ptr t, const acb_t h, const acb_t a, int deflate, slong len, slong prec); diff --git a/src/acb_mat/templates.c b/src/acb_mat/templates.c index 28bd2d49a5..9028b484c2 100644 --- a/src/acb_mat/templates.c +++ b/src/acb_mat/templates.c @@ -20,7 +20,7 @@ /* comparisons ***************************************************************/ -/* Checks if matrix fullfills a criteria */ +/* Checks if matrix fulfills a criteria */ #define IS_OP(func_name, T, OP) \ int func_name(const T am) \ { \ diff --git a/src/acb_theta/sp2gz_decompose.c b/src/acb_theta/sp2gz_decompose.c index eeb0168786..e6047f9b28 100644 --- a/src/acb_theta/sp2gz_decompose.c +++ b/src/acb_theta/sp2gz_decompose.c @@ -223,7 +223,7 @@ sp2gz_decompose_nonsimplified(slong * nb, const fmpz_mat_t mat) nb_vec++; } - /* Now r < g: make HNF on colums for the bottom of delta and recursive call */ + /* Now r < g: make HNF on columns for the bottom of delta and recursive call */ fmpz_mat_init(last, g, g - r); for (k = 0; k < g - r; k++) { diff --git a/src/arb_mat/templates.c b/src/arb_mat/templates.c index 4a1f24641f..c8e03486d0 100644 --- a/src/arb_mat/templates.c +++ b/src/arb_mat/templates.c @@ -20,7 +20,7 @@ /* comparisons ***************************************************************/ -/* Checks if matrix fullfills a criteria */ +/* Checks if matrix fulfills a criteria */ #define IS_OP(func_name, T, OP) \ int func_name(const T am) \ { \ diff --git a/src/ca/fmpz_mpoly_evaluate.c b/src/ca/fmpz_mpoly_evaluate.c index b356173696..b14e8a50ad 100644 --- a/src/ca/fmpz_mpoly_evaluate.c +++ b/src/ca/fmpz_mpoly_evaluate.c @@ -19,7 +19,7 @@ The conversion to Horner form can be stated as recursive. However, the call stack has depth proportial to the length of the input polynomial in the worst case. Therefore, we must convert it to an iterative algorithm. -The proceedure is +The procedure is HornerForm(f): diff --git a/src/fft_small/nmod_poly_mul.c b/src/fft_small/nmod_poly_mul.c index 25b45ba63b..4258f10ba6 100644 --- a/src/fft_small/nmod_poly_mul.c +++ b/src/fft_small/nmod_poly_mul.c @@ -1306,7 +1306,7 @@ In order to calculate the rhs, we need l-k k min(l-k,k) -requies k <= l < 3k < h <= 4k +requires k <= l < 3k < h <= 4k */ diff --git a/src/fft_small/profile/p-mul.c b/src/fft_small/profile/p-mul.c index 83198c8d05..2119922403 100644 --- a/src/fft_small/profile/p-mul.c +++ b/src/fft_small/profile/p-mul.c @@ -259,7 +259,7 @@ some notes on precomp: (1) the global twiddle factors need to be precomputed (2) when the big buffer for temp space needs to be reallocated, the accesses to the new space all incur page faults. These occur out of order in the - beginning of the calculation and contribute noticably to the run time. + beginning of the calculation and contribute noticeably to the run time. Therefore, there is a penalty for the first run of a computation of a certain size. If the data comes out like diff --git a/src/fmpz_mod_poly/minpoly.c b/src/fmpz_mod_poly/minpoly.c index 260ee7de21..6c6e7c9d3d 100644 --- a/src/fmpz_mod_poly/minpoly.c +++ b/src/fmpz_mod_poly/minpoly.c @@ -119,7 +119,7 @@ _fmpz_mod_poly_minpoly_hgcd(fmpz * poly, const fmpz * seq, slong len, const fmpz leng = len; FMPZ_VEC_NORM(g, leng); - /* leng is invalid intput for hgcd. todo: change hgcd to allow this? */ + /* leng is invalid input for hgcd. todo: change hgcd to allow this? */ if (leng == 0) { fmpz_one(M[0]); diff --git a/src/generic_files/io.c b/src/generic_files/io.c index 09b2fb7318..6a18333536 100644 --- a/src/generic_files/io.c +++ b/src/generic_files/io.c @@ -1146,7 +1146,7 @@ static size_t __flint_poly_fprint(FILE * fs, const void * ip, flint_type_t type) } else { - /* fmpq_poly is special as it is an fmpz_poly with a denomitator + /* fmpq_poly is special as it is an fmpz_poly with a denominator * strapped onto it */ const fmpz * coeffs = ((const fmpq_poly_struct *) ip)->coeffs; const fmpz * den = ((const fmpq_poly_struct *) ip)->den; diff --git a/src/gr_poly/hgcd.c b/src/gr_poly/hgcd.c index 98c2abb5e9..698f2ee6fa 100644 --- a/src/gr_poly/hgcd.c +++ b/src/gr_poly/hgcd.c @@ -219,7 +219,7 @@ __mat_mul_strassen(gr_ptr * C, slong * lenC, } /* - Computs the matrix product C of the two 2x2 matrices A and B, + Computes the matrix product C of the two 2x2 matrices A and B, using either classical or Strassen multiplication depending on the degrees of the input polynomials. diff --git a/src/mpn_extras/asm-defs.m4 b/src/mpn_extras/asm-defs.m4 index 9029fa9477..b6623f266a 100644 --- a/src/mpn_extras/asm-defs.m4 +++ b/src/mpn_extras/asm-defs.m4 @@ -181,7 +181,7 @@ dnl Detect and give a message about the unsuitable OpenBSD 2.6 m4. ifelse(eval(89),89,, `errprint( -`This m4 doesnt accept 8 and/or 9 in constants in eval(), making it unusable. +`This m4 does not accept 8 and/or 9 in constants in eval(), making it unusable. This is probably OpenBSD 2.6 m4 (September 1999). Upgrade to OpenBSD 2.7, or get a bug fix from the CVS (expr.c rev 1.9), or get GNU m4. Dont forget to configure with M4=/wherever/m4 if you install one of these in a directory @@ -204,7 +204,7 @@ dnl out some closing parentheses and kill it with "m4: arg stack overflow". define(m4_dollarhash_works_test,``$#'') ifelse(m4_dollarhash_works_test(x),1,, `errprint( -`This m4 doesnt support $# and cant be used for GMP asm processing. +`This m4 does not support $# and can not be used for GMP asm processing. If this is on SunOS, ./configure should choose /usr/5bin/m4 if you have that or can get it, otherwise install GNU m4. Dont forget to configure with M4=/wherever/m4 if you install in a directory not in $PATH. @@ -538,7 +538,7 @@ m4_assert_numargs(1) define(define_not_for_expansion, m4_assert_numargs(1) `ifelse(defn(`$1'),,, -`m4_error(``$1' has a non-empty value, maybe it shouldnt be munged with m4_not_for_expansion() +`m4_error(``$1' has a non-empty value, maybe it should not be munged with m4_not_for_expansion() ')')dnl define(`$1',`m4_not_for_expansion_internal(`$1')')') diff --git a/src/mpn_extras/x86_64/broadwell/mul_hard.asm b/src/mpn_extras/x86_64/broadwell/mul_hard.asm index 0845abfe25..a2dca357bf 100644 --- a/src/mpn_extras/x86_64/broadwell/mul_hard.asm +++ b/src/mpn_extras/x86_64/broadwell/mul_hard.asm @@ -11,7 +11,7 @@ dnl include(`config.m4') -dnl TODO: Alot to fix here... +dnl TODO: A lot to fix here... dnl * Instead of flint_mpn_mul_M_N for hardcoded M and N, do flint_mpn_mul_M_n, dnl where n is a variable instead. This will reduce the amount of code, and dnl probably be around the same speed, although one register has to go to n diff --git a/src/mpoly.h b/src/mpoly.h index ae7fd61092..b50f273327 100644 --- a/src/mpoly.h +++ b/src/mpoly.h @@ -88,7 +88,7 @@ slong mpoly_words_per_exp(flint_bitcnt_t bits, const mpoly_ctx_t mctx) possibly upgrade it so that it is either (mp) a multiple of FLINT_BITS in the mp case, or (sp) as big as possible without increasing words_per_exp in the sp case - The upgrade in (mp) is manditory, while the upgrade in (sp) is simply nice. + The upgrade in (mp) is mandatory, while the upgrade in (sp) is simply nice. */ FLINT_FORCE_INLINE flint_bitcnt_t mpoly_fix_bits(flint_bitcnt_t bits, const mpoly_ctx_t mctx) diff --git a/src/mpoly/doc/MPolyAlgorithms.tex b/src/mpoly/doc/MPolyAlgorithms.tex index d67b5fabbc..58cf780fec 100644 --- a/src/mpoly/doc/MPolyAlgorithms.tex +++ b/src/mpoly/doc/MPolyAlgorithms.tex @@ -588,7 +588,7 @@ \subsubsection{Quadratic in $R[X]$ for $R=\mathbb{F}_{2^k}[x_1,\dots,x_n]$} if $X_0$ is, at least one of the two roots does not have $\operatorname{lt}(A)$ as a term. (It very well may be the case that both roots have a monomial matching $\operatorname{lm}(A)$, but then both corresponding coefficients must -be different from the leading coffcient of $A$). Therefore, we make the +be different from the leading coefficient of $A$). Therefore, we make the important assumption that \emph{we are searching for a root $X_0$ with $\operatorname{lt}(A)$ not a term of $X_0$}. Let $m$ denote the leading term of $X_0$. By taking leading terms in $X_0^2+AX_0+B$ and applying the assumption, @@ -793,7 +793,7 @@ \subsubsection{Kaltofen's leading coefficient computation} In this recursive approach \cite{KALTOFEN}, after substituting away all but \emph{two} of the variables, the bivariate polynomial is factored and the leading coefficients of the bivariate factors can be lifted against the leading -cofficient of the original polynomial. Since only squarefree lifting is +coefficient of the original polynomial. Since only squarefree lifting is implemented, it is actually the squarefree parts of everything that are lifted. \subsubsection{Dense Hensel lifting} @@ -802,7 +802,7 @@ \subsubsection{Dense Hensel lifting} Wang \cite{WANG} advises but do the lifting directly over $\mathbb{Z}$. \subsubsection{Sparse Hensel lifting} -Sparse Zippel interpolation applies directly to the lifting proceedure +Sparse Zippel interpolation applies directly to the lifting procedure (\cite{SHLZIP}, \cite{SHL}). Suppose we have a given factorization into three factors $A$, $B$, $C$, \begin{equation*} @@ -811,7 +811,7 @@ \subsubsection{Sparse Hensel lifting} \end{equation*} and we would like to lift this to a factorization modulo only $\langle x_4=\alpha_4 \rangle$. This amounts to finding $A(x_1, x_2, x_3, \alpha_4)$ -(ditto for $B$ and $C$ as well). If we apply Zippel's probabalistic assumption +(ditto for $B$ and $C$ as well). If we apply Zippel's probabilistic assumption that no new monomial in $x_1$ and $x_2$ appear when lifting from $A(x_1, x_2, \alpha_3, \alpha_4)$ to $A(x_1, x_2, x_3, \alpha_4)$, then the latter can be guessed by evaluation and interpolation using a basecase bivariate lifter. In @@ -888,7 +888,7 @@ \subsection{Bivariate Absolute Factorization over $\mathbb{Q}$} \begin{equation*} f(x,y) = \prod_j \widetilde{g}_j(x,y) \text{ in } \mathbb{Q}_q[y][x]\text{.} \end{equation*} -In order to attemp this lift the $\operatorname{lc}_x(\widetilde{g}_j(x,y)) \in +In order to attempt this lift the $\operatorname{lc}_x(\widetilde{g}_j(x,y)) \in \mathbb{Q}_q[y]$ must be correct before starting. Assume $\operatorname{lc}_x(f(x,y))$ is monic in $y$, and that its squarefree part remains squarefree modulo $p$. Then, the squarefree factors of the diff --git a/src/nmod_mat/mul.c b/src/nmod_mat/mul.c index 23ba3a75da..3dd47e2d1d 100644 --- a/src/nmod_mat/mul.c +++ b/src/nmod_mat/mul.c @@ -42,7 +42,7 @@ nmod_mat_mul(nmod_mat_t C, const nmod_mat_t A, const nmod_mat_t B) of large enough dimension (3) if nmod_mat_mul_blas beats nmod_mat_mul_classical on square multiplications of size d, then it beats it on - rectangular muliplications as long as all dimensions are >= d + rectangular multiplications as long as all dimensions are >= d */ if (FLINT_BITS == 64 && min_dim > 100) { diff --git a/src/nmod_poly/hgcd.c b/src/nmod_poly/hgcd.c index bdb4326e26..71ba0abf6f 100644 --- a/src/nmod_poly/hgcd.c +++ b/src/nmod_poly/hgcd.c @@ -42,7 +42,7 @@ slong _nmod_poly_hgcd(nn_ptr *M, slong *lenM, with (1) A and B are consecutive remainders in the euclidean remainder - sequence for a, b satsifying 2*deg(A) >= deg(a) > 2*deg(B) + sequence for a, b satisfying 2*deg(A) >= deg(a) > 2*deg(B) (2) M is a product of [[qi 1][1 0]] where the qi are the quotients obtained in (1) diff --git a/src/nmod_poly/test/t-conway.c b/src/nmod_poly/test/t-conway.c index 1025f1adae..3ea36e09d1 100644 --- a/src/nmod_poly/test/t-conway.c +++ b/src/nmod_poly/test/t-conway.c @@ -273,7 +273,7 @@ TEST_FUNCTION_START(_nmod_poly_conway, state) if (result) flint_throw(FLINT_TEST_FAIL, - "Exected return value 0 for prime = %wu and degree %wd.\n" + "Expected return value 0 for prime = %wu and degree %wd.\n" "Got return value %d.\n", prime, deg, result); } diff --git a/src/test/t-io.c b/src/test/t-io.c index 0b8210c73c..11bab5c55b 100644 --- a/src/test/t-io.c +++ b/src/test/t-io.c @@ -480,7 +480,7 @@ TEST_FUNCTION_START(flint_fprintf, state) nmod_mat_t xnmod_mat; nmod_mat_t xnmod_mat_window; fmpz_mat_t xfmpz_mat; - /* NOTE: We need extra checks with fmpq_poly as it is treated differntly in + /* NOTE: We need extra checks with fmpq_poly as it is treated differently in * __flint_poly_fprint. */ nmod_poly_t xnmod_poly_zero, xnmod_poly_constant, xnmod_poly; fmpz_poly_t xfmpz_poly;