-
Notifications
You must be signed in to change notification settings - Fork 52
/
train.py
39 lines (30 loc) · 1.28 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
import sys
from cnn_text_trainer.rw import datasets
from cnn_text_trainer.config import config
from cnn_text_trainer.core.multichannel.model import MultiChannelTrainer
from cnn_text_trainer.core.unichannel.model import TextCNNModelTrainer
from cnn_text_trainer.rw import wordvecs
__author__ = 'devashish.shankar'
if __name__=="__main__":
if len(sys.argv)<5:
print "Usage: training.py"
print "\t<model config file path>"
print "\t<training data file path>"
print "\t<file path to store classifier model>"
print "\t<true/false(preprocessing flag)>"
exit(0)
#processing..
config_file=sys.argv[1]
train_data_file=sys.argv[2]
model_output_file=sys.argv[3]
preprocess=sys.argv[4].lower()
training_config = config.get_training_config_from_json(config_file)
sentences, vocab, labels = datasets.build_data(train_data_file,preprocess)
print "Dataset loaded"
word_vecs = wordvecs.load_wordvecs(training_config.word2vec,vocab)
print "Loaded word vecs from file"
if training_config.mode=="multichannel":
nntrainer = MultiChannelTrainer(training_config,word_vecs,sentences,labels)
else:
nntrainer = TextCNNModelTrainer(training_config,word_vecs,sentences,labels)
nntrainer.train(model_output_file)