-
Notifications
You must be signed in to change notification settings - Fork 25
/
clm_behavioral-cloning.py
248 lines (213 loc) · 9.26 KB
/
clm_behavioral-cloning.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
import transformers
import datasets
from transformers import AdamW, get_scheduler, set_seed, AutoModelForSeq2SeqLM, AutoTokenizer, default_data_collator
from datasets import Dataset, DatasetDict
from accelerate import Accelerator
accelerator = Accelerator(split_batches=False)
from torch.utils.data.dataloader import DataLoader
from torch.utils.tensorboard import SummaryWriter
import torch
import numpy as np
import logging
import argparse
from copy import deepcopy
import os
def load_dataset(dir, file_name, file_id):
_inputs = np.load(f"{dir}/{file_name}_prompts_{file_id}.npy")
_outputs = np.load(f"{dir}/{file_name}_actions_{file_id}.npy")
_train_dataset = Dataset.from_dict({
"input": _inputs[:400000],
"output": _outputs[:400000]
})
_eval_dataset = Dataset.from_dict({
"input": _inputs[400000:],
"output": _outputs[400000:]
})
return DatasetDict({
"train": _train_dataset,
"test": _eval_dataset
})
def tokenize_dataset(dataset, tokenizer):
tokenized_datasets = dataset.map(
lambda examples: tokenizer(examples["input"], padding="max_length", max_length=1024),
batched=True,
desc="Running tokenizer on inputs",
remove_columns=["input"]
)
# max_length = 3 as longest sequence is [<pad>, <turn>, <left>] (same with "turn right" or "go forward")
tokenized_datasets = tokenized_datasets.map(
lambda examples: {"labels": tokenizer(examples["output"], padding="max_length", max_length=3)["input_ids"]},
batched=True,
desc="Running tokenizer on outputs",
remove_columns=["output"]
)
return tokenized_datasets
def setup_logging(logging_folder, args):
logger = logging.getLogger(__name__)
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO)
if accelerator.is_main_process: # we only want to setup logging once
tb_writer = SummaryWriter(log_dir=logging_folder)
hyperparams = deepcopy(args)
for hyperparam, value in hyperparams.items():
if isinstance(value, list):
hyperparams[hyperparam] = ','.join(str(value))
tb_writer.add_hparams(hyperparams, {'0': 0})
logger.setLevel(logging.INFO)
datasets.utils.logging.set_verbosity_warning()
transformers.utils.logging.set_verbosity_info()
else:
tb_writer = None
logger.setLevel(logging.ERROR)
datasets.utils.logging.set_verbosity_error()
transformers.utils.logging.set_verbosity_error()
return logger, tb_writer
def get_grouped_params(model, config, no_decay=["bias", "LayerNorm.weight"]):
params_with_wd, params_without_wd = [], []
for n, p in model.named_parameters():
if any(nd in n for nd in no_decay):
params_without_wd.append(p)
else:
params_with_wd.append(p)
return [{'params': params_with_wd, 'weight_decay': config["weight_decay"]},
{'params': params_without_wd, 'weight_decay': 0.0}]
def log_metrics(logger, tb_writer, step, metrics):
logger.info(f"Step {step}: {metrics}")
if accelerator.is_main_process:
[tb_writer.add_scalar(k, v, step) for k, v in metrics.items()]
def evaluate(model, eval_dataloader, config):
model.eval()
losses = []
for step, batch in enumerate(eval_dataloader):
with torch.no_grad():
outputs = model(**batch)
loss = outputs.loss.repeat(config["per_device_batch_size"])
losses.append(accelerator.gather(loss))
if config["max_eval_steps"] > 0 and step >= config["max_eval_steps"]: break
loss = torch.mean(torch.cat(losses))
try:
perplexity = torch.exp(loss)
except OverflowError:
perplexity = float("inf")
return loss.item(), perplexity.item()
def launch_training(args):
torch.cuda.set_device(accelerator.device)
raw_datasets = load_dataset(args.data_dir, args.file_name, args.file_id)
tokenizer = AutoTokenizer.from_pretrained(args.model_dir)
model = AutoModelForSeq2SeqLM.from_pretrained(args.model_dir)
processed_datasets = tokenize_dataset(raw_datasets, tokenizer)
config = {
"weight_decay": 0.0,
"learning_rate": 5e-4, # same as Flan paper
"lr_scheduler_type": "cosine",
"n_epochs": 1,
"evaluation_steps": 250,
"gradient_accumulation_steps": args.gradient_accumulation_steps
}
config["per_device_batch_size"] = args.per_device_batch_size
config["full_batch_size"] = args.per_device_batch_size * accelerator.num_processes
updates_batch_size = config["full_batch_size"] * args.gradient_accumulation_steps
# Use the same number of samples for evaluation than for updates
config["max_eval_steps"] = args.per_device_batch_size * args.gradient_accumulation_steps
config["num_warmup_steps"] = len(processed_datasets["train"]) // updates_batch_size * 0.01 # => 1% of total number of steps
output_dir = args.output_dir
# Sanity checks
if output_dir is not None:
os.makedirs(output_dir, exist_ok=True)
logger, tb_writer = setup_logging(output_dir + "/logs/", config)
set_seed(args.seed)
train_dataloader = DataLoader(processed_datasets["train"], collate_fn=default_data_collator,
batch_size=config["per_device_batch_size"])
eval_dataloader = DataLoader(processed_datasets["test"], collate_fn=default_data_collator,
batch_size=config["per_device_batch_size"])
n_train_steps = len(processed_datasets["train"]) / updates_batch_size * config["n_epochs"]
# Prepare the optimizer and learning rate scheduler
optimizer = AdamW(get_grouped_params(model, config), lr=config["learning_rate"], eps=1e-8)
lr_scheduler = get_scheduler(name=config["lr_scheduler_type"], optimizer=optimizer,
num_warmup_steps=config["num_warmup_steps"],
num_training_steps=n_train_steps)
def get_lr():
return optimizer.param_groups[0]['lr']
# Prepare everything with our `accelerator`.
logger.info("Accelerate preparing...")
model, optimizer, train_dataloader, eval_dataloader = accelerator.prepare(
model, optimizer, train_dataloader, eval_dataloader)
# Train model
logger.info("Training model!")
model.train()
completed_steps = 0
for epoch in range(config["n_epochs"]):
for step, batch in enumerate(train_dataloader, start=1):
input_ids = torch.tensor(batch["input_ids"])
if step == 1:
print(f"Input size: {len(input_ids)}")
attention_mask = torch.tensor(batch["attention_mask"])
labels = torch.tensor(batch["labels"])
# labels[labels == tokenizer.pad_token_id] = -100
loss = model(input_ids=input_ids, attention_mask=attention_mask, labels=labels).loss
log_metrics(logger, tb_writer, step, {'lr': get_lr(), 'samples': step * config["full_batch_size"],
'steps': completed_steps, 'loss/train': loss.item()})
loss = loss / config["gradient_accumulation_steps"]
accelerator.backward(loss)
if step % config["gradient_accumulation_steps"] == 0:
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
completed_steps += 1
if step % config["evaluation_steps"] == 0:
logger.info('Evaluating model')
eval_loss, perplexity = evaluate(model, eval_dataloader, config)
log_metrics(logger, tb_writer, step, {'loss/eval': eval_loss, 'perplexity': perplexity})
logger.info('Saving model checkpoint')
accelerator.wait_for_everyone()
unwrapped_model = accelerator.unwrap_model(model)
if accelerator.is_main_process:
torch.save(unwrapped_model.state_dict(), args.output_dir + "/model.checkpoint")
model.train()
# Evaluate and save the last checkpoint
logger.info('Evaluating and saving model after training')
eval_loss, perplexity = evaluate(model, eval_dataloader, config)
log_metrics(logger, tb_writer, step, {'loss/eval': eval_loss, 'perplexity': perplexity})
accelerator.wait_for_everyone()
unwrapped_model = accelerator.unwrap_model(model)
if accelerator.is_main_process:
torch.save(unwrapped_model.state_dict(), args.output_dir + "/model.checkpoint")
if __name__ == '__main__':
parser = argparse.ArgumentParser(description="Finetune a LLM on transitions")
parser.add_argument(
"--data_dir",
type=str
)
parser.add_argument(
"--file_name",
type=str,
default="trajectories"
)
parser.add_argument(
"--file_id",
type=str,
default="13"
)
parser.add_argument(
"--model_dir",
type=str
)
parser.add_argument(
"--output_dir",
type=str
)
parser.add_argument(
"--gradient_accumulation_steps",
type=int
)
parser.add_argument(
"--per_device_batch_size",
type=int
)
parser.add_argument(
"--seed",
type=int
)
args = parser.parse_args()
launch_training(args)